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t-READ:1: Transformer-Powered Robust and Efficient
Multimodal Inference for Autonomous Driving

Pengfei Hu"”, Yuhang Qian

Xiuzhen Cheng

Abstract—Given the wide adoption of multimodal sensors (e.g.,
camera, lidar, radar) by autonomous vehicles (AVs), deep analytics
to fuse their outputs for a robust perception become imperative.
However, existing fusion methods often make two assumptions
rarely holding in practice: i) similar data distributions for all
inputs and ii) constant availability for all sensors. Because, for
example, lidars have various resolutions and failures of radars
may occur, such variability often results in significant performance
degradation in fusion. To this end, we present t-READi, an adaptive
inference system that accommodates the variability of multimodal
sensory data and thus enables robust and efficient perception.
t-READI identifies variation-sensitive yet structure-specific model
parameters; it then adapts only these parameters while keeping
the rest intact. t-READi also leverages a cross-modality contrastive
learning method to compensate for the loss from missing modalities.
Both functions are implemented to maintain compatibility with
existing multimodal deep fusion methods. The extensive experi-
ments evidently demonstrate that compared with the status quo
approaches, t-READi not only improves the average inference
accuracy by more than 6% but also reduces the inference latency
by almost 15X with the cost of only 5% extra memory overhead in
the worst case under realistic data and modal variations.

Index Terms—Autonomous vehicle, robust perception, multi-
modal learning, object detection, semantic segmentation.

1. INTRODUCTION

UTONOMOUS driving, with its worldwide develop-
ments [60], [65], [70], promises to achieve greater safety,
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less harmful emissions, increased lane capacity, and reduced
travel time [52]. At the core of autonomous driving, the percep-
tion capability of autonomous vehicles (AVs) leverages the data
collected from various sensors (e.g., camera, lidar, and radar) to
better understand AVs’ surrounding, thus enabling applications
such as object detection [19], [27], [76] and semantic segmen-
tation [11], [17], [58]. To power the perception capability, deep
neural networks (DNN) are adopted to process and fuse the
multimodal data [39] into a unified representation. Therefore,
maintaining the effectiveness of these AV-DNN models is crucial
to autonomous driving.

The lifecycle of an AV-DNN model starts with its design, then
it gets pre-trained model by individual manufacturers, before
being deployed to respective AVs equipped multimodal sensors
for performing perception-related inferences. Although DNN-
based multimodal fusion for on-device inference in general has
attracted attention from both academia [18], [20] and industry
(e.g., Google [38], as well as Intel and Ford [23]), only part of
them have targeted multimodal DNN for autonomous driving
(e.g., [1], [45]). Since this latter batch of proposals largely
focuses on DNN architecture design at the manufacturer side,
they often disregard the per-vehicle variations in terms of input
data and modality, resulting in a missing link, pertaining to
in-vehicle inference, between DNN models and their practical
adoptions.

One critical issue with existing proposals is the fixed set of
multimodal sensors and environment conditions used for model
training. In practice, both sensor modalities and environmen-
tal conditions may experience drastic variations. For example,
different lighting conditions may force the camera to change
its exposure, different velocities can result in motion blurs to
various degrees, and adverse weather conditions (e.g., rain, fog,
and snow) often scatter laser light, thus forcing lidar to perform
more intensive scans. Consequently, those two modalities intro-
duce more drastic variations. Moreover, sensor occlusion and/or
malfunction may lead to missing modalities that compromise the
multimodal fusion. All these realistic scenarios yield variations
in the input data and modality, as illustrated in Fig. 1. They often
significantly degrade the performance of well-designed DNN
models, causing erroneous decision-making and even traffic
accidents. Therefore, it is crucial to address adverse external
conditions and internal sensor malfunctions carefully. As high-
lighted in the survey by [61], adverse weather conditions and
faulty sensors are common contributors to autonomous vehicle
accidents, such as the 2019 Tesla Model 3 incident [62]. A naive
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Fig. 1. The variations in data and modality.

solution to mitigate performance degradation is to pre-train a
large set of models for different scenarios and switch among
them during runtime based on the available data and modality
variations. However, this solution is not robust against con-
tinuously varying sensor and environment conditions since we
may only have a countable number of models. Besides, model
switching incurs excessive memory footprints and intolerable
inference latency.

Whereas, it is non-trivial to realize robust and efficient multi-
modal inference for autonomous driving. First of all, as robust-
ness and efficiency are often at odds, designing a multimodal
system that copes with variations without consuming exces-
sive resources remains an uncharted area. Second, it’s hard to
strike an adaptive balance between these two objectives since it
depends on continuously varying conditions. For instance, the
latency requirements for DNN models in high-speed cruising
and low-speed maneuvering scenarios are different because of
the DNN responsiveness needed to match the vehicle speed.
Last but not least, since DNN models embedded in vehicles
are typically compiled low-level codes optimized for specific
DNN architecture [1], [45], [74], it is largely impossible to
modify the architecture in response to, for example, missing
modalities and in turn their sensory data as part of the in-
put. To address these challenges, we propose t-READi (i.e.,
transformer-powered Robust and Efficient multimodal inference
for Autonomous Driving) as a novel AV inference system; it
adaptively accommodates the variations in multimodal sensory
data and missing modalities. Specifically, t-READi employs a
variation-aware model adaptation algorithm to handle data and
modality variations under memory constraints while producing
multiple variants of models deviated from the pre-trained model.
For each variant, we exploit the parameter-efficient fine-tuning
techniques of Large Language Models (LLMs) [29], but extend
to widely-used modules in AV-DNN models in addition to trans-
former modules in LLMs. For example, t-READi injects train-
able rank decomposition matrices into residual blocks leading to
a significantly decreased number of trainable parameters. With
multiple variants of models and the pre-trained model, we can
switch different variants according to current input indications,
such as weather conditions.

Moreover, t-READI leverages a contrastive learning frame-
work to overcome the issue of missing modalities, while
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maintaining a comparable performance as using complete
modalities. In particular, by contrasting the samples with and
without a potential missing modality, t-READi drives the latent
representation under missing modality towards semantically
correlated with that under full modalities; this renders the DNN
model robust to missing modalities without altering its architec-
ture. Our key contributions can be summarized as follows:

® We design t-READI to address the variations of sensory
data and modality in autonomous driving so that t-READi
adapts to various run-time environments with both robust
and efficient manners.

® We propose a variation-aware model adaptation algorithm
to perform model adaptations with sparse parameter up-
dates. The technique minimizes memory footprints, hence
allowing for loading a large number of model variations
into memory and in turn eliminating extra latency caused
by model reloading.

® We design a cross-modal contrastive learning method to
compensate for input data loss due to missing modalities.
It avoids runtime modifications on model architecture and
thus preserves the overall efficiency.

e We implement a prototype of t-READi and evaluate it
with extensive experiments. The promising results confirm
that t-READi indeed offers robust and efficient multimodal
inference for autonomous driving.

Though proposals on multimodal fusion for on-device in-
ference do exist [18], [20], [23], t-READi is still the first to
design such a system for autonomous driving with practical
considerations, i.e., robustness and efficiency in driving environ-
ments. The rest of the paper is organized as follows. Section II
introduces the background and motivation. The detailed system
design and implementation are described in Sections III and IV,
respectively. Section V reports the evaluation results. Related
works are presented in Section VI, along with limitations and
future directions of t-READi. Finally, Section VIII concludes
our paper.

II. BACKGROUND AND MOTIVATION

In this section, we first investigate the impact of sensors’
parameter changes (e.g., lidar and camera) on DNN inference
performance. We then show how missing modalities signifi-
cantly degrade the performance of DNN for autonomous driving.
Finally, we explain why model reloading is not feasible for
mitigating these negative impacts due to high inference latency
and memory usage.

A. Sensor Parameter Variation

Most existing DNN-powered perception systems use a pre-
trained model assuming that inference and training data follow
the same probability distribution [1], [16], [45]. However, this
assumption does not always hold true under AV scenarios: the
camera of an AV may capture video with varying exposure and
motion blur; the lidar of the AVs may retrieve data streams with
a dynamic density of point cloud. Consequently, the parameter
variation will result in a non-iid (independent and identically
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distributed) distribution that cannot be well handled by the AV-
DNN model and hence lead to degraded performance.

Lidar is a vital sensor used in AVs due to its depth estimation
capability. Currently, the automotive industry primarily uses
rotating lidar sensors, which are powered by mechanical rota-
tion [69]. For lidar sensors, the spinning rate refers to the number
of revolutions in a second, and a higher spinning rate results in
lower azimuth/elevation angular resolution. For example, when
the spinning rate sweeps from 5 Hz to 20 Hz, the azimuth angular
resolution deteriorates from 0.09° to 0.36° . However, the pre-
setting spinning rate cannot accommodate varying driving speed
of the AV on run-time, resulting in a dynamic density of point
cloud. The reason is shown in Fig. 2(a) that lidar cannot catch
point cloud timely, leading to depth difference in each scanning
period (inverse of spinning rate). Fig. 2(b) and (c) demonstrate
aroad sign lies in front of the view, and the reflected lidar points
are delaminated significantly, as the fixed spinning rate cannot
catch different driving speeds of the AV.

The camera is another sensor widely used in AVs but much
more affordable, which can provide richer semantic information
than lidar. However, its performance can be significantly affected
by surrounding environments. For example, a high or low inten-
sity of light can cause cameras to malfunction. A common issue
is the flare effect. Generally, a model’s inference performance
will degrade for unseen and bad environments with high possi-
bility. As shownin Fig. 2(d) and (e), even though scenarios of two
images are similar, the pre-trained object detection model can
work well onits training dataset in Fig. 2(d), but fails to detect the
target in Fig. 2(e) due to flare effect. In a nutshell, input variations
of multiple modalities severely affect AV-DNN performance.

B. Missing Modality

In the realm of multimodal sensing data fusion, most existing
research presumes the availability of all modalities during both
the training and inference stages [3], [72]. However, this assump-
tion does not always hold true, as sensors can malfunction or be-
come obstructed during inference, leading to missing modalities,
as demonstrated for the RGB-camera modality in [6]. Such fail-
ures pose significant challenges to DNN-based perception tasks
in autonomous driving, primarily due to mismatches between
the partial input data and the model architecture. A common
solution to this problem is data imputation, which involves filling
in missing modalities with predefined values, such as zeros [66],
[73]. However, this approach introduces bias during inference,
resulting in non-iid issues.

0.6 /’_’/f 0.6 /_ﬂf
% 0.4 /ﬁ 8 04 /_/\/\/“’\/¥
£ Full modality z FFull modality
0.2 —Missing camera 0.2 [—Muissing camera
Missing lidar Missing lidar
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(a) mAP. (b) NDS.

Fig. 3. Damaging effects of missing modality.

We demonstrate this in Fig. 3 by showing the mAP (mean
average precision) and NDS (details of the metrics will be
introduced in Section IV) of BEVFusion [45] under both full and
missing modalities of the nuScene Dataset [5] with zero-filling.
The results reveal that BEVFusion inference with all modalities
outperforms inference with missing camera data (filled with ze-
ros) by over 15%. Moreover, training with missing lidar modality
results in significantly lower mAP and NDS, due to the absence
of rich geometric information provided by 3D lidar point cloud.
These findings confirm that merely filling missing modalities
with zeros falls short. They highlight the need for novel methods
that can effectively harness the complementary information
from multiple modalities, thereby reducing the performance gap
between inference with full and missing modalities.

However, designing an effective mechanism to compensate
for missing modalities without additional computational over-
head, while maintaining comparable performance to using com-
plete modalities, is challenging. To address this, t-READI intro-
duces a novel method that effectively utilizes complementary
information from multiple modalities to narrow the performance
gap between full and missing modalities. This method will be
presented in Section III-C.

C. Model Reloading is Impractical

To address the performance degradation caused by environ-
ment variance, sensor parameter changes, and missing modali-
ties, a straightforward solution is to pre-train a set of distinct
DNN models for different data input variations and missing
modalities. These models can be reloaded as needed in corre-
sponding scenarios. However, changing environments can lead
to time-varying parameter changes and missing modalities, re-
quiring frequent model reloading to accommodate these varia-
tions. This places a heavy burden on AV embedded systems in
terms of memory and latency, making this solution impractical.
To illustrate the memory and latency demands imposed by
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frequent DNN model reloading, we present the memory and
latency requirements with and without model reloading in Fig. 4
using aforementioned pre-trained models.

As Fig. 4(a) shows, model reloading from hard drives can
increase the inference latency by up to 40% compared to not
reloading the model. However, as reported in [13], the median
driving reaction time in urban street is 370 ms, which makes
hundreds of millisecond latency unacceptable indeed. In fact,
if we can fit all pre-trained models into memory instead of
reloading them from hard drives, the inference latency will be
comparable to the case of not reloading. However, as Fig. 4(b)
demonstrates, each time the AV reloads the model, it requires
an additional 160 MB of hard disk space (i.e., typical size of
our trained model) to store the new model parameters compared
to not reloading model. More importantly, the memory capacity
is still limited (e.g., Tesla Model 3 has 8GB RAM), and the
memory needs to run multiple applications simultaneously. Fur-
thermore, contemporary AV inference engines heavily rely on
neural network processors, which use SRAM with capacities
comparable to L3 cache at best. The prolonged latency and
additional memory requirements are unacceptable for real-time,
memory-constrained AV embedded systems. Thus, a more ef-
ficient solution for DNN model adaptation is needed to handle
variations in input data and modalities. Although parameter-
efficient fine-tuning methods [2], [28], [29] have succeeded in
LLMs for adaptation, these strategies are not directly applicable
to AV-DNN models. Adapting such fine-tuning approaches to
address the specific data variation issues in AV-DNN models
remains an unresolved challenge. AV-DNN models incorporate
diverse modules, such as transformers, convolutional layers, and
residual convolution blocks. The challenge lies in developing
a versatile fine-tuning method that integrates seamlessly with
these diverse structures. To this end, we will present t-READI
in Section III and tackle the challenge in Section III-B.

D. Transformer for Autonomous Driving

DNN in computer vision has long been dominated by CNN
(convolutional neural networks), and these architectures are en-
hanced with greater scale, more extensive connection, and more
sophisticated form of convolution. Recently, the Transformer
architecture [67] is adapted from NLP (natural language process-
ing) to vision community [15], [44]. Vision transformer provides
the capability to encode distant dependencies or heterogeneous
interactions, which is crucial for autonomous driving scenario,
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and is qualified to be a powerful backbone as achieves better per-
formance with similar complexity against convolutional-based
backbone counterparts. The attention module, as a component
of transformer, plays a critical role in modeling the interactive
relation. Mathematically speaking, it is computed as

Ax = X"TWLW KX /V. (1)

Where X € R/*" denotes f-dimensional n features, usually
as the intermediate results translated from sensor data with
encoders. Wqo, Wi € RS are feature projection matrices
which project vectors to d-dimensional ones. Many attention
modules split relative large projected dim d into pieces as known
as “multi-head attention” to obtain effective performance, which
implies d < n.

Transformer-powered DNNs are notoriously difficult to train
from scratch, particularly in the presence of noisy data, often due
to ill-conditioned attention modules. t-READI effectively tunes
these AV-DNNSs by addressing and correcting issues within the
attention modules.

III. SYSTEM DESIGN

This section introduces the design of t-READi. First we
give an overview, then we introduce the variation-aware model
adaptation and cross-modal contrastive learning. Finally, we put
everything together and summarize the training strategy.

A. Overview

Motivated by the observation in Section II, we design t-
READI, a system consisting of two key components: i) a
variation-aware model adaptation mechanism for efficient multi-
modal inference under memory and latency constraints, and ii) a
cross-modal contrastive learning algorithm that addresses miss-
ing modalities and improves inference robustness. As shown in
Fig. 5, t-READi maintains compatibility with existing multi-
modal DNNs for AVs, while incorporating two aforementioned
components that will be elaborated in Sections III-B and III-C,
respectively. Given a multimodal DNN (e.g., BEVFusion) and
sensory data (e.g., lidar and camera), the first component iden-
tifies, selects and injects the variation-aware model parameters.
The second component compensates for information loss due
to missing modalities. The design of t-READI resolves three
key technical challenges. i) Adapting techniques from LLM
to AV-DNN to manage data variations (Section III-B), as in-
troduced in Section II-C. ii) Narrowing the performance gap
between full and missing modalities (Section I1I-C), as discussed
in Section II-B. iii) As most training samples are collected in a
normal environment, we may only have limited types of data
variations for fine-tuning the pre-trained model. However, the
AV-DNN models always encounter unseen variations in reality,
which may result in unexpected performance drop. Therefore,
our final challenge is to expand the capability of fine-tuned
models to deal with unseen variations (Section III-D).
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B. Variation-Aware Model Adaptation

Existing parameter-efficient fine-tuning techniques [2], [28],
[29], [34] are mostly designed for downstream tasks of LLMs,
and how to effectively apply those approaches to AV-DNN
models is barely studied. To investigate the effectiveness of
the parameter-efficient fine-tuning method for AV-DNN models,
we start with the models with the same transformer modules
as LLMs, and then extend to other widely-used modules in
AV-DNN models. Drawing inspirations from BitFit [2], which
focuses on fine-tuning lightweight inductive-bias terms only, we
begin by tuning all the normalization layers and task-specific
heads in the AV-DNN model. This foundational operation of
t-READI is elaborated in Section V-H, and results demonstrate
that it significantly outperforms the conventional practice of only
fine-tuning task-specific heads.

a) Low-Rank Adaptation: Our exploration continues into the
transformer module, where the attention mechanism is a critical
component. We conduct an experiment by setting n = 200, d =
16 in (1), calculating the cumulative sum of eigenvalues of Ax
for each sample, and averaging them to gauge its rank. As
Fig. 6(a) shows, it is noticeable that even on clean data that
the attention module is most familiar with, it already exhibits a
low-rank instance as the top 3% eigenvalues account for more
than 85% energy. This bias amplifies as sensor data distortion in-
tensifies. In other words, the matrix Az, inherently low-rank due
to multi-head operations, degrades when processing distorted
data. However, this is not a consequence of low-quality input

t-READ:I architecture: Optimized multimodal inference with contrastive data augmentation.

data since comprehensive fine-tuning can substantially mitigate
this effect. The observed rank collapse phenomenon was first
recognized in NLP, specifically when fine-tuning the pre-trained
model for distinct tasks. To overcome this, a Low-Rank Adapta-
tion method [29] is proposed by of injecting rank-decomposition
matrices to transformer blocks. Drawing on this concept, we
design low-rank modules to fine-tune transformer blocks in
AV-DNNs based on sensory data variations. Fig. 6(b) presents
its detailed architecture. In general, the low-rank module com-
prises a pair of matrices A, B, which coexist parasitically for
each inherent projection weight matrix. Each matrix has a low
rank, bounded by a hyperparameter r, and is transparent due to
their near-identity initialization. During fine-tuning, we keep the
bulky pre-trained weights frozen, allowing only updates to these
low-rank modules. As our objective is to restore the pre-trained
matrix, and its rank is relatively low in optimal scenarios (as
indicated in Fig. 6(a)), we can efficiently bound r by a small
integer. Additionally, the two distinct paths that are demonstrated
in Fig. 6(b) can operate in parallel, causing no distinctive latency
overhead.

b) Generalization to Non-Tranformer Modules: 1t is worth
noting that not all AV-DNNs rely on transformers. To make
our adaptation approach general and not specific to particular
models, we take a closer look at the similarities and distinctions
between transformer-heavy DNNs and others. Our key insight is
that transformers or residual convolution blocks widely adopted
cutting-edge AV-DNNss are deeply interconnected. For example,
they both utilize the skip connection, significantly mitigates the
rate of rank degeneration [14]. Furthermore, it has been demon-
strated that a convolution-only network with a relatively large
kernel size can achieve performance on par with its transformer-
based counterparts [46], suggesting that the attention mechanism
of transformers can be emulated with larger convolution kernels.
Moreover, we find parallels in viewing the attention module
as an ensemble of shallow networks, as studies of ResNet
point out [68]. Based on these insights, with the intention of
reviving convolution kernels, we inject a module with a similar
structure as the low-rank module into residual blocks, resulting
in a different style of adaptation in the attention module [28].
This module, demonstrated in Fig. 7, is placed before batch
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'
Fig.7. A variant of widely-adopted residual convolution block, we inject such
transparent module.

normalization layers with skip connection, a decision informed
by a similar layer arrangement in transformers. We complement
this setup with an activation layer, given the absence of an
apparent low-rank attention matrix. By harmonizing the above
three techniques, we ensure our adaptation method remains
efficient and universally applicable.

C. Cross-Modal Contrastive Learning

Recall that the preliminary experiments in Section II-B
showed that the conventional data imputation methods, such
as filling the missing modalities with zeros, incur information
loss and even introduce biases into the DNN model. To com-
pensate for the information loss caused by missing modality,
we resort to representation learned from full modalities (e.g.,
camera and lidar) to guide uni-modal data (e.g., camera) to-
wards a unified multimodal representation space. To this end,
we design a cross-modal contrastive learning framework. The
key idea behind the this framework is that even when some
modalities are missing due to sensor occlusion or malfunction,
the latent representation learned from missing modalities should
be as similar as possible to the representation extracted from
complete modalities. For example, if only one camera on an
AV, which are equipped with multiple cameras and lidars, is
missing, the inference performance can be preserved if the
missing camera’s latent representation can be compensated by
the remaining sensors, which typically have overlapping fields of
view (FoV). To make the latent representations with and without
missing modalities as similar as possible, follow work [33], [77],
t-READi employs four components (i.e., data augmentation,
feature extractor, projection head, and contrastive loss) in its
contrastive learning framework, as shown in the right side of
Fig. 5. First, t-READI uses a stochastic data augmentation mod-
ule to remove each sample of some modalities with a probability
of 10%, resulting in one missing-modality dataset paired with the
original full-modality one. The full-modality dataset and the one
with missing modality are denoted as = and «(z), respectively.
We consider (z;,a(z;)) € {(zi,a(z;)) : ¢ € |x|} as a positive
pair, and (x;,a(z;)) € {(xs,a(z;)) 14,7 € |z|,and i # j} as
a negative pair since z; and a(x;) describe different scenes.
Then, t-READI leverages a neural network based encoder f(-)
to extract representation vectors from a pair of samples from
x and «a(z). Our framework allows various choices of network

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 1, JANUARY 2025

architecture without any constraints, and we opt for simplicity,
and reuse the feature extractor used in the object detection
network. Thereafter, we use a multilayer perceptron with one
hidden layer as g(+), which is used to map representations to the
latent space where the contrastive loss is applied. Last but not
least, we use a contrastive loss function, termed NT-Xent [9],1i.e.,
the normalized temperature-scaled cross-entropy loss, to train
the encoder f(-). The loss function enforces that the features
between a positive pair as similar as possible, while enlarging
the distance between the features of a negative pair.

We randomly sample a mini-batch of N samples from z
and one sample from a(x), i.e., a(z;) and z; € {z1,..., 2N}
resulting in N 4 1 samples. Given a positive pair (z;, a(z;)), we
consider the other N — 1 samples from x as negative samples
with regard to a(x;). Then the contrastive loss for a positive pair
(zi,a(x;)) can be formally expressed as

exp (sim (z;, 2;) /7)

L, = —log N - - ,
> ket Ljpq exp (sim (zg, 25) /7)

@)

where z; = g(f(x;)) is the projected feature for scene x; and
Zj = g(f(a(x;))) is the projected feature for scene x; where
some missing modality happens, sim(-) is a function that cal-
culates cosine similarity of two latent representations, Ij;.; €
{0,1} is an indicator function evaluating to 1 if k # 4, and
T denotes a temperature hyper-parameter, whose appropriate
tuning can help the model learn from hard negatives as it controls
the penalties on hard negative sample. The final loss is computed
across all positive pairs in a N size mini-batch. Minimizing the
contrastive fusion loss will force the projected features from the
same scene but modality-missing conditions are different (i.e.,
(zi, Z;) pair) together, while pushing projected features from
different scenes (i.e., (zx, Z;), k # ¢ pairs) apart. A previously
trained but not robust model is incorporated into the contrastive
learning framework, during the subsequent adaptation phase,
these additional components are removed. The contrastive learn-
ing framework approximately doubles the forward propaga-
tion time, however, we find that a relatively small number of
epochsis sufficient, and itremains completely transparent during
inference. Therefore, we consider it introduces an affordable
computational cost.

D. Putting Everything Together

We summarize the training strategy of the t-READi, and
present the overall workflow as follows. With the strategy pre-
sented in Section III-C, t-READI re-trains the model under
missing modality settings, allowing each sensor to fail inde-
pendently. During the following tuning phase, which addresses
various scenarios with variation, t-READ:I is constrained by two
parameters, namely rank bound & and projection squeeze ratio
r, as we have discussed their insights in Section III-B above.

In reality, a cocktail of domain-specific variations muddles
the situation, rendering the tuning of the entire domain space
anything from unmanageable to impossible. Yet, by employ-
ing tuned parameters from individual variations, we squeeze
the combined domain’s tuning scope from M x N to a more
manageable M + N (respecting lidar and camera modalities).
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Furthermore, we find unseen domains like nighttime often
share traits with seen domains, such as underexposure. We
propose a conditional melding of two tuned variants £c' and
Ll': for exclusive layers (UjenLei') @ (UjenLlj'), where @
indicates a symmetric difference operation, we opt for a straight-
forward update. More complicated are the overlapping layers
(UenLei") N(UjenLlj"), for which we choose interpolation
using A, * Pc(t) + A * Pl(t), where ¢ denotes overlapping lay-
ers and P, [(t) represents the model-specific parameter set for
t, with the additional constraint A, + A; = 1.

While it’s possible to overwrite the tuned layers, t-READi
takes a different approach for the sake of efficiency. It simul-
taneously loads all the layers that are tuned under different
variations, and further refines the less significant bits within
the “shared” layers through pruning. These layers are organized
as the values in a map. During inference, t-READ: utilizes the
information provided by various sensors (e.g., brightness) to
encode the key that switches to the desired layer set. While a
more self-contained method that only uses input data to switch
parameters might be ideal, it can be more specific to certain
modalities and less general. For example, it might be easier to
implement for cameras but more challenging for lidar. Simple
solutions like a lightweight filter are capable of rating images,
mapping the ratings to keys, and selecting the tuned parameters
to switch. However, it is not as straightforward when dealing
with lidar data. The complexity of lidar data, with its 3D point
cloud representation, makes it challenging to use the same
methodology to rate, map, and switch parameters as easily as we
do with images. Therefore, we consider the development of a
more self-contained approach to be part of our future work. This
would enhance t-READi’s adaptability to different variations in
sensory data and modalities.

IV. IMPLEMENTATION AND EXPERIMENT SETUP

In this section, we first present the details of t-READi’s imple-
mentation, then we apply t-READiI to develop two widely-used
applications. Finally, we describe the metrics that we use to
comprehensively evaluate the performance of t-READ:.

A. Implementation

We implement the vehicle detection application on a server
equipped with an Intel Xeon Gold 6226 CPU [31], 128 GB
RAM, and NVIDIA GeForce RTX 3080 Ti GPU [48]. As for the
software, Python 3.7 and PyTorch 1.9.1 [49] are used for imple-
menting the application. Our object detection and segmentation
model is built upon mmDetection [8], which is an open-source
toolbox that provides state-of-the-art OD models. In particular,
the model components and settings for t-READI are as follows:

e The encoder f(-) consists of two modality-specific en-

coders. For the camera and lidar modalities, Swin
Transformer-T [44] and VoxelNet [78] are used as the
encoders, which is transformer intensive and residual block
intensive respectively.

® We choose to project both camera’s and lidar’s data to a

unified bird’s-eye view. For lidar, we flatten the sparse lidar
features along the height dimension, hence not creating

TABLE 1

DATASETS USED FOR T-READI
Dataset NuScenes[5] DENSE[4]
Sensor Setup
Cameras 6 2
Camera Resolution 1600 x 900 1920 x 1024
lidars 1 2
lidar Resolution 32 32, 64
Dataset Statistics
Images [.AM 104K
Bounding boxes 1.4M 13.5K
Frames 390K 104K
Point density per frame 35K 30K, 55K
Annotations 1.17M 212K

geometric distortion. For camera, we cast each camera
feature pixel back into a ray in the 3D space, which can
resultin a feature map that retains full semantic information
from the cameras.

e Even though all sensory inputs are converted to a unified
representation, the lidar features and camera features can
still be spatially misaligned to some extent due to the
inaccurate depth in the view transformer. To this end, we
apply a fully convolutional encoder (with a few residual
blocks) to compensate for such local misalignments.

¢ In the tuning process, the AdamW optimizer, which em-
ploys the decoupled weight decay regularization [47] is
used by setting a fixed learning rate of 5 x 10~° and
weight decay as 0.01. We also enabled gradient clip, which
confines the L2 norm to be less than 35.

B. Tuasks and Dataset

We perform two tasks to evaluate of t-READA, i.e., object de-
tection and semantic segmentation, which are primary tasks for
autonomous driving perception. We evaluate our scheme on two
large-scale public datasets for autonomous driving: nuScenes [5]
and DENSE [4]. Details of the two datasets are given in Table I.

e nuScenes includes 1000 driving scenes under different
weather and illumination conditions in Boston and Sin-
gapore, which are known for dense traffic and challenging
driving situations. There are approximately 1.4M camera
images and 390k lidar frames which are annotated with
1.4M accurate bounding boxes for 23 classes.

e DENSE is captured during two test drives in February
and December 2019 for two weeks, each under different
weather (i.e., rain, snow, light/dense fog). There are ap-
proximately 104K camera images and 104K lidar frame
which are annotated with 13.5K accurate bounding boxes.

C. Evaluation Metrics

To evaluate the performance of object detection, follow the
previous works, we consider the widely used metric mean
Average Precision (mAP), along with the specialized nuScenes
detection score (NDS) tailored for the nuScenes. Since semantic
segmentation can be considered as a pixel-wise classification
task, we employ Intersection over Union (IoU) to measure the
overlap between pixel set pairs of ground-truth and prediction.
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® Average Precision (AP): Our predictions consists of 4
categories: True Positive (TP), True Negative (TN), False
Positive (FP) and False Negative (FN). Based on whether
our prediction agrees with the corresponding ground truth
(T/F) and the condition of our prediction (P/N). Precision
(prec) is then calculated as % to evaluate the likeli-
hood of making false positive reports. Consequently, AP is
defined as the integration over recall: AP = fol prec(r)dr.

® mAP: mAP is calculated by averaging the AP values
across different thresholds and categories. These thresh-
olds are based on IoU typically (like DENSE). However in
NuScenes, the thresholds are center-distance based repre-
sented by a set of thresholds D). The overall object category
space, denoted as C, is heavily biased and consists of 10
categories. The mAP can be expressed as

1
mAP = EB] Z Z AP, 4.

ceC deD

e NDS: NDS is designed to address the limitations of mAP
in capturing all aspects of general detection tasks, such as
vehicle velocity. To overcome these limitations, it decom-
poses the detection error into individual normalized metric
components, such as translation, orientation, etc.

All metrics are bounded between 0 and 1, with higher values

indicating better performance. We refer readers to the original
papers [4], [5] for more dataset-specific metric details.

3

V. EVALUATION

In this section, we evaluate t-READi under various sensory
variation and modality-missing scenarios.

A. Benchmark

One primary motivation of t-READ:I is to accommodate var-
ious distortion inputs. We now summarize several common
distortion types which prevail in daily driving conditions:

e Fog-induced distortion: Fog affects lidar systems by dis-
torting point clouds at short distances and reducing inten-
sity information. We adopt the approach from [22] to model
lidar as a Linear Time Invariant (LTT) system, and calibrate
sensors according to the manuals as necessary. We use «
to characterize the meteorological optical range (MOR)
explicitly and capture the fog density implicitly.

® Snow-induced distortion: Lidar in snow poses unique chal-
lenges compared to fog scenarios. In snow conditions, the
air can be considered as a low-humidity medium with
high-reflectivity snowflakes.

We adopt the approach [21], and utilize (3 to represent the
snowfall rate.

® Motion blur: This effect is common in images when the
vehicle moves rapidly. For simplicity, we use a convolution
with Gaussian kernel to simulate this blurring effect. A
smaller kernel size corresponds to a lower speed and less
pronounced blurring, and vice versa.

e Exposure condition: Auto exposure of cameras can resultin
poor image quality under poor illumination conditions. We
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Fig. 8. t-READIi maintains high performance when fog density deviates from
pre-training.

use Gamma calibration to characterize different exposure
levels. An image is classified as under-exposed for v €
[0, 1) and over-exposed for v € (1, +00).

We adopt two models as baselines to demonstrate the capabil-
ity of t-READiI. The first one is a pre-trained BEVFusion model
without further fine-tuning (w/o ft). It is trained with a relatively
high point density (= 200k points) along with 6 x well-exposed
RGB images from different perspective resized to 256 x 704
pixels.

No distortion is adopted during training, and the framework
proposed in Section III-C is not applied. We also employ a fine-
tuned model (full-model ft) as a baseline, all parameters in the
model can be fine-tuned.

B. Object Detection

We have demonstrated in Section II-A that sensory input vari-
ation considerably impacts inference performance. To evaluate
the task- and model-agnostic nature of t-READI, we first focus
on the object detection task and lidar modality. We assess its
effectiveness by systematically varying each type of lidar input
to specific levels. Subsequently, we present the performance of
t-READ:I for each variation setting.

a) Effects of Fog-induced Distortion: We introduce noise
points by simulating scattering using fog density indicators of
a € {0.01,0.02,0.03,0.06,0.1,0.12,0.15}. As arule of thumb,
when o = 0.06, the MOR is approximately 50 m. Fig. 8 demon-
strates the high inference accuracy of t-READi across all quanti-
fied fog density levels. In contrast, w/o ft experiences significant
accuracy degradation when the fog density deviates from the
training data. t-READI achieves 15% average accuracy gain
over the w/o ft model while only 2% average accuracy loss over
the full-model ft, but with much higher memory efficiency, at a
cost of only 2.6% memory and 2.1% inference time overhead
respectively. Our key observations are as follows. First, training
amodel from scratch with severely deviated data (e.g., o > 0.1)
is risky and results in corruption at an early stage, leading to
a result far from full-model ft. Second, only a small fraction of
distorted points (= 5% on average when o« = 0.03) significantly
impairs the inference accuracy. In these scenarios, radar data can
provide more valuable insights.

b) Effects of Snow-induced Distortion: We generate
snowflake-scattered and high-reflectivity points with the snow-
fall rate indicator 5 € {0.5,1.0,1.5,2.0,2.5}. Fig. 9 demon-
strates the high inference accuracy of t-READi across all quanti-
fied snowfall rate levels. t-READI achieves an average accuracy
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TABLE II

3D AVERAGE PRECISION ON DENSE DENSE FOG SPLIT
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Model

PointRCNN [

Method

train with clear:
t-READ;:
full ft:

train with dense fog:

Car AP@.5IoU
easy mod hard

47.94 46.07 42.07
48.52 46.77 42.19
4931 47.33 42.94

easy mod hard

27.60 27.65 29.21
27.66 27.94 29.37
27.89 27.89 29.29

easy mod hard
. . 7.
45.52 43.38 41.10
45.65 43.23 41.15
45.79 43.47 41.33

Cyclist AP@.25IoU  Pedestrian AP@.25IoU

PV-RCNN [54]

train with clear:
t-READ:I:
full ft:

40.19 40.93 39.66
46.69 47.38 46.51
47.36 47.55 46.89
47.81 47.86 47.12

24.33 24.63 24.63
29.63 28.50 28.22
29.92 29.01 27.54
30.11 29.42 27.91

42.67 41.04 39.59
46.03 45.23 43.76
46.51 45.44 4491
46.73 45.61 45.12

train with dense fog:
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Fig. 9. t-READi maintains high performance when snow fall rate deviates
from pre-training.

loss of only 2 ~ 3% compared to the full-model ft, while offering
higher memory efficiency. We note that snowflake scatter has
less impact than reflection from melted snow, this also explains
why fog affects lidar more than snow.

C. Primary Results on DENSE Dataset

To justify the methodology of t-READI as neither dataset-
nor model-specific, we focus on lidar modality under practical
dense fog conditions. We evaluate our approach using PointR-
CNN [55] and PV-RCNN [54], which differ from the model
used in Section V-B in terms of how raw points are represented
and how proposals are generated. We train each model on the
clear-split dataset (model M,) and the dense-fog-split dataset
from scratch. We then fine-tune or apply t-READi to M, and
compare their performance on the dense-fog-split dataset.

The results of the class-wise AP metric are shown in Table II,
and we chose » = 4 and k& = 0 as the parameters for t-READI,
as neither is based on transformer. An interesting observation is
dataset-specific: for DENSE, when testing a model trained on
clear data with severe adverse weather data, the performance
degradation (= 7AP) is much smaller than that on NuScenes (~
15mAP). We hypothesize that the multi-lidar setup in DENSE
enhances its robustness and that the weather-based split achieves
better consistency within the dataset. Despite this, t-READi
demonstrates its generalizability: for every class, it incurs at
mostal ~ 1.5% AP loss compared to the full-model fine-tuning
approach. Moreover, for subtle instances occupied by fewer
points, the performance gap between t-READI and full-model
fine-tuning is even more marginal.

D. Semantic Segmentation

We focus on the camera modality in the segmentation task,
where the pre-trained model relies heavily on transformers. We
pick the maximum IoU under each variation setting.

x 0.6 % 0.6

= b=
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Fig. 10. t-READIi maintains high performance when camera modality perfor-
mance deviates from pre-training.
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Fig. 11. t-READiI suffers from marginal overhead in additional memory or
load/inference time.

a) Effects of Motion Blur: We apply different kernel sizes
chose from {5, 10, 15, 20, 30} to the original datasets to obtain
blurred datasets. In Figs. 10(a) and 11(a), t-READi demonstrates
robustness even under heavy distortion, with only slight 1 ~ 2%
IoU loss compared to the full-model ft approach. Moreover,
t-READI achieves this by updating only 3% of the parameters.
This approach also offers higher memory efficiency, with a
memory overhead of 4.9% and an load time overhead of 5.8%.
On average, it takes 160 ms with a standard deviation of 25 ms to
load a 200 MB model, whereas t-READi completes the switch
within 10 ms in most cases.

b) Effects of Poor Exposure: Exposure variations in im-
ages can blur the boundaries between different textured zones.
We apply pixel-wise gamma calibration with values of v €
{0.25,0.5,1,2,4} (Where “CF” denotes Calibration Factor for
short in Fig. 10(b)). To our surprise, when the image is heavily
under-exposed (e.g., v = 0.25), t-READi shows a significant
margin of 7 IoU points compared to the full-model ft. Ad-
ditionally, the properties of under-exposure effects may differ
from over-exposure effects, as indicated by the marginal gap
of approximately 1.5 IoU points at v = 4. Furthermore, we
observed that both t-READi and the full-model ft can im-
prove segmentation performance when the camera is pushed
to its limits, whereas this trend is not observed for detection
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and lidar modality. This discrepancy can be attributed to the
relatively simple and less lossy compression applied to the
camera-generated variations, while the fog/snow simulation on
lidar introduces more noise. Exploring a more comprehensive
framework for modeling the behavior of cameras under adverse
conditions would be an interesting avenue for future research.

E. Discussions on Inference Latency

t-READ:I significantly mitigates memory and load time over-
head in scenarios necessitating multiple model variants, while
the exact inference time per frame can be compensated. Leverag-
ing the torch.profiler interface in PyTorch, we compare
the overall inference time distributions between the original
model and its t-READi-enhanced counterpart, as illustrated in
Fig. 11(b). t-READ:I introduces an approximate 3.2% overhead
in both averaged and tail latency, while this increment exceeds
the parameter injection overhead (calculated as 4.9% — 3% =
2.9%), it remains modest. Surprisingly, the tail-latency (90th
percentile) to averaged-latency ratio is notably large (=~ 1.12).
Upon profiling the latency contributed by the encoder from the
camera modality, we observe a corresponding ratio as low as
1.04. Furthermore, we identify that the prolonged tail latency
primarily stems from the quantization pipeline in the lidar
modality encoder, which is beyond the scope of t-READi.

In addition, considering the significant variability in latency
as advocated by [42], tail latency emerges as a more pertinent
metric for meeting real-time constraints. To alleviate tail latency
within the context of t-READI, we take a simple step, employ
pruning in the vast frozen layers. Specifically, we reset all
parameters whose absolute value is less than 1 x 1073, resulting
in approximately 10% parameter pruning. We find that this
approach nearly halves the overhead with no discernible ac-
curacy degradation. Moreover, there exists potential for further
reduction in tail latency by applying more advanced techniques
such as parameter quantization [79] to the vast frozen layers,
along with the implementation of more efficient lidar point cloud
quantization operators.

F. Missing Sensing Modalities

We have shown in Section II-B that missing modality incurs
information loss, and filling the missing modality with 0’s does
not help because doing so only introduces bias into the network.
Correspondingly, we propose to improve t-READi’s robustness
to missing modality by contrastive learning. We evaluate the
robustness of t-READi to missing modalities by removing a
certain number of sensors during inference and observe how
the DNN’s performance drops. In the following, we show the
mAP and NDS of t-READi under different missing modality
scenarios. On the z-axis of the figures, “Full” denotes there are
no missing sensors, and “number+C/L” denotes the number of
remaining cameras and lidars (there is a total of 6 cameras and
1 lidar).

a) Missing camera: We first present how our contrastive
learning framework deals with missing cameras. It can be seen in
Fig. 12 that mAP and NDS under contrastive learning decrease
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Fig. 12. t-READi compensates for the information loss of missing cameras.
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Fig. 13.  t-READi compensates for the information loss of missing lidar.

from 0.71 to 0.59 and from 0.68 to 0.60, respectively, and the
mAP and NDS under zero filling decrease from 0.72 to 0.52 and
from 0.68 to 0.53, respectively. Although we can still observe
mAP and NDS decrease when contrastive learning is adopted,
the decreased mAP and NDS is smaller than those of zero filling,
proving t-READi’s robustness to missing modalities. Moreover,
we find that in some cases (e.g., “3C” for zero filling and “1C”
for t-READI), t-READI can achieve comparable performance
with zero filling with fewer camera sensors. The result shows
that fewer sensors can be used by t-READ:I to achieve the same
performance than previous solutions, thus proving t-READi’s
better efficiency.

b) Missing lidar: We then demonstrate t-READi’s robustness
to missing lidar. As Fig. 13(a) and (b) show, removing the lidar
and filling the missing modality with 0’s renders the system
unusable since it only gives an mAP and NDS of 0.22 and
0.29, respectively. The poor performance can be attributed to the
fact that lidar is the dominant sensor and removing it results in
major information loss. As for the contrastive learning adopted
by t-READI, we find that while maintaining the same perfor-
mance under full modalities, it greatly improves t-READi’s
performance with missing lidar. The result demonstrates that the
contrastive learning of t-READI can effectively compensate for
missing lidar information by learning from the complementary
radar modality.

c) Mixed missing sensors: We also evaluate t-READi’s ro-
bustness in cases where radar and lidar data are. It can be seen in
Fig. 14 that even when there is no radar or lidar data, t-READI
still performs significantly better than the zero filling baseline
in terms of mAP and NDS. This demonstrates that t-READi
is able to effectively make use of remaining camera data, even
when there are only a small number of cameras. Overall, our
results show that t-READi offers both efficiency and robustness
in multi-modal perception tasks.
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Fig. 15. t-READ:I is capable of handling multi-variation domain with mono-
variation domain.

G. Combating Cross-Domain Variations

To evaluate t-READI’s ability of handling of cross-domain
variation using previously seen mono-domain variation, we ex-
tend the experiment in Section V-B. The lidar/camera variation
levels are set to o = 0.03 and v = 0.5 respectively. Our results
are shown in Fig. 15. Compared to the full model ft operation in
column 3 and tuning both variation domains together (referred
to as TG in legend), t-READI achieves significant performance
with mono-variation domain variants. Specifically, updating the
exclusive layers, i.e., modality-specific encoders (referred to
as JE in legend), already achieves an impressive performance
loss of only 4 ~ 5 mAP and NDS compared to full model ft.
With interpolation, the local maximum is achieved at A. = 0.8,
reducing the gap to 2 ~ 2.5 mAP and NDS loss. The approxi-
mation to the TG variant is remarkable, with a marginal gap of
only 0.1 and 0.4 for mAP and NDS, respectively. In challeng-
ing cross-domain variation scenarios, we propose interpolating
from mono-variation domains as a simple yet effective method,
yielding sub-optimal performance but with greater scalability.
This insight has the potential to be extended to more diverse
sensor systems and over-the-air variations. When variations
from different sensors are superimposed, t-READi achieves
exceptional parameter efficiency compared to full model ft. It
combines interpolation with variation-aware adaptation, ensur-
ing scalability: the overall parameter space increases linearly
with the number of variation quantization levels, regardless of
the number of modalities.

H. Ablation Study and Micro-Benchmark

In this section, we present how the components of t-READi
are fused properly and evaluate the critical hyperparameters to
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Fig. 16. Loss profile of various tuning schemes, as parameters of t-READi
vary.
TABLE III
IMPACT OF MODULE’S PARAMETERS
mAP  NDS  Exist budget Add budget
no op 31.71 3843 N/A N/A
just pred | 37.11 4191 0.63% N/A
k, r=null | 42.23 4530 0.87% N/A
k=4, r=2 | 4790 49.17 0.87% 1.83%
k=4, r=4 | 4723 48.62 0.87% 1.00%
k=8, r=2 | 47.67 48.87 0.87% 2.00%
alt org 46.43  47.62 0.87% 3.51%

justify our choices. The settings are consistent with Section V-B,
with parameter « set to 0.03.

a) Ablation Study: We first study the effectiveness of individ-
ual module of t-READi. We set the default values of intrinsic
rank upper bound %k and squeeze ratio r to 4 and 2, respec-
tively. Fig. 16 provides a clear illustration: compared to the
common practice of adjusting only a few downstream layers
(typically lightweight prediction heads), t-READi demonstrates
its effectiveness and efficiency by prioritizing the adjustment of
Batch Normalization (BN) layers as the first step. This approach
outperforms the conventional practice, which often reaches a
plateau early on. Moreover, injecting transparent tiny modules
further boosts t-READi’s performance. By injecting the tiny
modules, t-READI achieves significant loss reduction in the first
epoch compared to conventional schemes that require up to 10
epochs or more.

b) Performance and Overhead Trade-off: In addition, we
conducted an evaluation of the effects of k and » on mAP, NDS,
and memory budgets. Table III presents a summary of the results.
Here we have 4 insights: 1) BN contribute a small percentage
(=~ 0.12%) to memory usage, ensuring t-READi’s memory ef-
ficiency. 2) Increasing r for adapter squeezing memory usage
but leads to fluctuating and slower convergence, we choose 2 as
the default ratio. 3) t-READI’s low overhead is due to bulky 3D
convolution modules, compared to 2D counterparts. This makes
adapter less efficient for 2D convolution-intensive scenarios.
While with the default configuration, the budget still remains
within 5%. A no-projection fully connected layer was omitted
in earlier versions of the adapter to save space, sacrificing a
maginal gain of 0.5 points. 4) A relatively small k effectively
mitigates rank collapse. Larger k (e.g., 8) worsen performance
even more than not using this option. One may complain this
improvement is more marginal, while can be attributed to the
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reduced reliance on the transformer and the minimal impact on
the additional budget.

c) The Effectiveness of t-READi beyond Adding More Pa-
rameters: One might argue that the improvement achieved by
t-READ:I is simply aresult of adding more parameters. However,
we show that this is not the case by comparing t-READi with an
alternative configuration that allocates the budget to convolution
modules instead of t-READi modules. The configuration has
more parameters than t-READI, but it performs worse, as shown
in the last row of Table III. This demonstrates that t-READi1 is
effective not because it has more parameters, but because it has
a better organization of them.

VI. RELATED WORK

a) Multi-modal Sensor Fusion: Multi-modal fusion is essen-
tial for autonomous driving systems’ perception, combining
data from multiple sensors to enhance accuracy and robust-
ness. Major paradigms for multi-modal fusion can be cate-
gorized into early, deep, and late fusion based on the stage
(raw data, feature, proposal) where the fusion occurs [10], [30],
[56], [71]. Each paradigm can employ different fusion policies,
ranging from simple concatenation or element-wise addition
to more sophisticated methods using differentiable and learn-
able functions. These traditional paradigms have limitations
as they fuse all modalities simultaneously. Recent works have
attempted to fuse modalities selectively, achieving more robust
performance [7].

b) Multi-modal Detection & Segmentation: Detection and
segmentation are vital tasks in autonomous driving perception.
Multi-modal 3D detection and segmentation techniques leverage
complementary modalities due to the deficiencies of the cam-
era’s depth information and the lidar’s semantic information.
For 3D multi-modal object detection, [41] uses cross-modal
attention to fuse camera and lidar features. [19] combines edge-
assisted 2D detection with on-device 3D boxes for lightweight,
hybrid 3D object detection. For 3D semantic segmentation, [11]
projects 2D CNN-extracted image features to 3D space and
fuses them with lidar data for voxel-wise segmentation. In [58],
permutohedral lattice representation fuses multi-modal data for
3D semantic segmentation.

c) Combating Missing Modalities: Multimodal systems face
challenges with missing modalities, negatively impacting per-
formance. Researchers proposed methods for missing modality
imputation and performance improvement. [64] uses cascaded
residual autoencoder (CRA) for missing modality imputation,
stacking residual autoencoders (RAs) that iteratively output the
difference between incomplete and complete data. [50] learns
robust joint representations by translating between modalities,
using a translation network to establish a consistent, robust
common space. This approach allows the system to handle
missing modalities at test time by inferring them from available
modalities.

d) Networking and system support for Al inference: The scope
of support for Al spans the entire lifecycle of Al services, from
data collection and model training to model inference [53]. In
the inference phase, multi-dimensional QoS can be achieved. To
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ensure power efficiency and low latency for end users with lim-
ited computing capabilities and battery power, model partition
techniques divide a DNN into multiple sub-models, embedding
them into different network nodes to conduct inference collab-
oratively [59], [75]. Additionally, model compression leverages
techniques such as weight pruning [25], [37], parameter quan-
tization [79], and encoding [51] to fit DNNs into Application
Specific Integrated Circuit (ASIC), thereby overcoming memory
and power constraints [24]. However, while a typical driving sys-
tem is not as energy-constrained as energy-harvesting systems,
real-time reaction to traffic conditions is critical, necessitating
that processing always meets strict deadlines. Communication
between the vehicle and edge servers (e.g., smart lampposts)
is too costly, as an autonomous driving vehicle can generate
hundreds of megabytes of raw sensor data per second. Most
model compression techniques and ASIC designs focus on
“single-branch” networks like AlexNet [36], VGG [57], while
thoroughly compressing or designing ASICs for “multi-branch”
networks like ResNet [26] is challenging. This is even more
complex for attention-based advanced networks, which are the
de facto solutions for autonomous driving [63].

e) Efficient Fine-Tuning for LLM: Several methods for tuning
LLM are proposed to achieve parameter efficiency. Low-Rank
Adaptation (LoRA) [29] updates every parameter in low-rank
matrices at each iteration. Prefix-tuning [40] adds a series of
trainable vectors, known as prefix tokens, to each layer in
LLM; these tokens can be tailored to specific tasks. Unlike
prefix-tuning, prompt-tuning allows tokens to be inserted either
as a prefix or anywhere within the input tokens. Advanced
techniques, such as those introduced in [43], incorporate con-
tinuous prompts at each layer rather than solely at the input
layer, boosting performance in natural language understanding
tasks. Additionally, memory efficiency is also a critical topic.
Models can first be quantized or decomposed into low-precision
data types, and only the LoRAs corresponding to specific down-
stream tasks are tuned [12]. In [32], scalar vectors resulting from
decomposition are also updated. Our method is greatly inspired
by LoRA, thanks to its scalability.

VII. DISCUSSION

In this section, we discuss the existing limitations of t-
READ:i’s pipeline and potential techniques that could enhance
t-READI when integrated.

a) High-Fidelity variations: t-READi employs an online ver-
sion of camera modality variation to conserve disk space. How-
ever, an offline approach, such as estimating the blur kernel and
then generating artificial images accordingly, would be a more
comprehensive method. Concurrently with t-READI, a study
by [35] also explores lidar-perception robustness, simulating
blur effects for lidar by introducing jitter noise subject to certain
distributions.

b) Additional Modalities: t-READI currently focuses on cam-
era and lidar binary modalities. When additional modalities
are introduced, simple fusion policies, such as concatenation
followed by element-wise multiplication [4], have been shown
to be less robust [7]. Consequently, t-READi’s robustness can be
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enhanced further through the adoption of more advanced fusion
methods.

c) AV-DNN Accelerators: t-READiI functions akin to a gear
mechanism, facilitating the swift switching of AV-DNNs rather
than serving as an inference accelerator. Although it only
marginally compromises inference latency, as discussed in Sec-
tion V-E, we have identified that the primary bottleneck in
current inference latency resides within the lidar quantization
pipeline, which falls outside the scope of t-READi. Address-
ing this bottleneck can be approached through software- or
hardware-based optimizations, such as refining quantization pa-
rameters or offloading the quantization preprocessing to ASICs.
Both methods are compatible with t-READI and hold significant
potential for accelerating this stage.

VIII. CONCLUSION

Taking an important step towards full driving automation, we
have proposed t-READI in this paper for robust and efficient
multimodal inference for autonomous driving. Employing a
novel partial weight adaptation mechanism and a data imputation
method by autoencoder, t-READI gracefully handles the hetero-
geneous data caused by sensor parameter variation and missing
modality, thus releasing its full potential in the vehicle detection
task. With extensive experiments under highly heterogeneous
scenarios and comparisons with other baselines, we demonstrate
the promising performance of t-READI in vehicle detection for
autonomous driving. Overall, we believe that t-READi repre-
sents an important step forward in the development of robust
and efficient multimodal inference for autonomous driving.
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