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Abstract—Proliferation of smart environments entails the
need for real-time and ubiquitous human-machine interactions
through, mostly likely, hand/arm motions. Though a few recent
efforts attempt to track hand/arm motions in real-time with
COTS devices, they either obtain a rather low accuracy or have
to rely on a carefully designed infrastructure and some heavy
signal processing. To this end, we propose SoM (Sound of Motion)
as a lightweight system for wrist tracking. Requiring only a
smart watch-phone pair, SoM entails very light computations
that can operate in resource constrained smartwatches. SoM uses
embedded IMU sensors to perform basic motion tracking in the
smartwatch, and it depends on the fixed smartphone to act as
an “acoustic anchor”: regular beacons sent by the phone are
received in an irregular manner due to the watch motion, and
such variances provide useful hints to adjust the drifting of IMU
tracking. Using extensive experiments on our SoM prototype,
we demonstrate that the delicately engineered system achieves a
satisfactory wrist tracking accuracy and strikes a good balance
between complexity and performance.

Index Terms—Tracking, acoustic signal, smartwatch, smart-
phone, human-machine interface

I. INTRODUCTION

Though untethered Human-Machine Interface (uHMI) has a
long development history under the video game industry, it is
mostly dominated by technologies that require an infrastruc-
ture support, e.g., computer vision and voice recognition [1]–
[4]. Recently, we start to witness an increasing demand on
infrastructure-free uHMIs due to the proliferation of smart
environments. Powered by successes in both Internet of Things
(IoT) and Virtual/Augmented Reality (VR/AR) (e.g., Oculus
Rift [5] and HoloLens [6]), we are immersed into environ-
ments full of smartness anytime anywhere. To better interact
with these new environments, we urgently demand ubiqui-
tously deployable uHMIs free of infrastructure constraints.

There are indeed a few attempts in designing uHMIs based
only on Commercial Off-The-Shelf (COTS) devices, such as
smartphones and smartwatches [7]–[9]. These proposals pio-
neered in using COTS devices for tracking the hand/arm mo-
tions, so as to drive a uHMI through the digitized motion traces
(e.g., playing virtual golf). However, both AAMouse [7] and
CAT [9] require an acoustic transmitter array (an infrastructure
not always available) to achieve cm-level tracking accuracy,
which may confine their applicability to smart environments.
Also, the heavy computation load incurred by intensive signal
processing tasks makes them infeasible to existing smart-
watches. ArmTrak [8], on the contrary, relies solely on a
smartwatch and certain domain-knowledge driven priors to
track arm motions. Its online version is computationally light
by relying on prior point cloud and orientation information,

Fig. 1. Sound-driven wrist tracking with a smart watch-phone pair.

but may not guarantee the tracking accuracy and smoothness
even under strong priors (e.g., fixed shoulder position).

In this paper, we intend to develop a system striking a good
balance between CAT and ArmTrak: it relies on COTS devices
available to most human users (namely a pair of smartwatch
and smartphone) to enable ubiquitous deployability, and it
achieves a satisfactory real-time wrist tracking accuracy by
using the fixed smartphone as an “acoustic anchor” to correct
the IMU-driven motion tracking in the smartwatch (Fig. 1).
This novel yet plausible watch-phone pair concept faces two
major challenges posed by the resource limited smartwatch:
firstly, even the most up-to-date smartwatch cannot handle
the heavy signal processing algorithms (e.g., the 44k-point
FFT for AAMouse/CAT [7], [9] and the synchronization
procedure for CAT) while catching up with the IMU sensing
running at 100Hz level. Secondly, the information offered by
a single anchor is too little to assist the motion tracking in the
conventional manner, such as Kalman or particle filtering [10],
[11] commonly used for robotics.

To tackle these challenges, our SoM (or Sound of Motion)
system fixes the smartphone (e.g., on a table) and lets it
emit inaudible sound tones at regular intervals. Observed
by the smartwatch in motion, these intervals may vary due
to the changing distance between the pair. Such a Motion-
induced Time Difference of Arrival (MTDoA) naturally avoids
synchronization between the pair, while generating ranging
information for correcting the IMU-based motion tracking. In
order to precisely detect the arrival time of a tone, SoM adopts
the very lightweight Sliding Goertzel DFT algorithm [12],
whose constant time complexity allows it to be fit into the
limited time frames and the resource constrained smartwatch.
Moreover, SoM innovatively utilizes the ranging information
provided by MTDoA to opportunistically rectify the IMU-
based tracking, instead of performing constant corrections in
a filtering manner. In summary, we make the following major
contributions in designing SoM:
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• The novel concept of real-time wrist tracking with a
smart watch-phone pair; it has the potential to enable
ubiquitously deployable uHMIs.

• A sound-driven MTDoA scheme that delivers useful
error-correcting observations on wrist tracking, while
avoiding complicated synchronization between the pair.

• A suit of lightweight signal processing procedures to syn-
thesize the IMU/sound sensing results, delicately tailored
to stringent time frames and computational resources.

• A prototype that demonstrates a reasonable wrist tracking
accuracy with only a pair of smartwatch and phone.

SoM is not aiming to compete with AAMouse [7] and
CAT [9] in tracking accuracy. Instead, it showcases that uHMIs
can be conveniently deployed with smartwears commonly
available to human users. In the following, we shall first survey
the related literature to motivate our design in Sec. II. Then
we present the core technologies of SoM on both acoustic
ranging and motion tracking in Sec. III and IV. We summarize
the system architecture and execution pipeline is Sec. V. The
system evaluation is reported in Sec. VI, before concluding
the paper in Sec. VII.

II. RELATED WORK

Literature related to motion tracking is vast. Computer vi-
sion has been widely adopted in both academia [13]–[15] and
industry [1]–[3], but it is an intrinsically different methodology
that is computationally intensive and requires line-of-sight.
Another emerging trend is RF-enabled tracking [16]–[18], yet
it entails a heavy signal processing pipeline and a purposely
arranged infrastructure. Device-free acoustic tracking [19]–
[21] is possible but offers a limited detection range and is
susceptible to multipath interference. Exisiting proposals on
gesture recognition [8], [21]–[27] can only identify a small
number of patterns and thus fails to track free-form wrist/arm
motions. Therefore, we omit these marginally related literature
but rather focus on device-based acoustic sensing and IMU
technologies for motion tracking in the following.

A. Device-based Acoustic Tracking

Acoustic or ultrasonic signals are popular media for ranging,
since their Time of Flight (ToF) can be readily measured
by normal clocks with MHz precision. Nevertheless, the real
challenge lies in the precise synchronization between a pair
of sender and receiver. Earlier proposals such as Cricket [28]
use a concurrent RF signal to perform synchronization, but
COTS devices lack of specially designed hardware to ensure
instantaneous timestamping for the arrivals of both radio and
ultrasonic signals. Guoguo [29] deploys multiple acoustic
beacons and sophisticated signal processing techniques to get
around the synchronization issue, yet the system architecture
is too heavy to serve continuous tracking.

To avoid instantaneous timestamping, BeepBeep [30] re-
quires a pair of devices to mutually transmit acoustic signals;
the timestamps of receptions are obtained through cross-
correlations and then exchanged using a side channel (e.g.,

WiFi). Unfortunately, the design may not work in high-
mobility systems due to the large computation delay [31].
With a more complicated software structure and Doppler-shift
compensation, SwordFight [31] is able to support ranging
under 2m/s moving speed, but its sophisticated design may
never fit into a low-end mobile device such as a smartwatch.
CAT [9] eliminates the need for mutual transmission by
Frequency Modulated Continuous Waveform (FMCW), at the
cost of a further increased overall computational load in terms
of signal processing. As follow-ups of CAT, Millisonic [32]
supports concurrent tracking of multiple smartphones with a
sub-mm tracking accuracy. Moreover, UPS [33] enables regu-
lar smartphones to perform ultrasonic tracking by leveraging
the nonlinearity effect of microphone.

B. Robotic and Human Tracking

Motion tracking is a central issue of robotics, where Kalman
or particle filtering is commonly used with state transitions
driven by IMU sensing and observations derived from laser
scanner or visual odometery [34]–[37]. Similar mechanisms
have been extended and reused for indoor localization and
tracking with COTS devices, where innovations are mostly
made for deriving observations from (signal) fingerprint
matching [38]–[41]. Apparently, none of the aforementioned
approaches are applicable to the design of SoM, as mobile
devices lack of sophistication in deriving high-accuracy obser-
vations (e.g., laser ranging) while the fingerprinting methods
work only in a much larger scale.

To overcome the difficulty in acquiring useful observations
with a smartwatch, ArmTrak [8] focuses on tracking the
elbow whose freedom is rather constrained given the strong
assumption that the shoulder is fixed. As a result, given priors
on the mapping between watch orientations and potential
elbow positions (in the form of point cloud), a motion trace
can be treated as a Hidden Markov Model (HMM) and thus
be “decoded” by Viterbi’s algorithm in an offline manner.
However, the real-time performance of ArmTrak could not
be fully guaranteed as it performs only a weighted average
over the point cloud. Therefore, ArmTrak may not satisfy all
requirements imposed by a ubiquitous uHMI.

III. RANGING WITH ACOUSTIC SIGNAL

Ranging is the most commonly used observation for as-
sisting state estimation in motion tracking, so it is also a
core to our SoM design. In this section, we first give more
justifications on the need for a new design, then we explain
the design principles in SoM ranging. We also present certain
implementation details in optimizing our design.

A. Motivations

As we have discussed in Sec. II, acoustic ranging ap-
pears to be the most suitable choice for a COTS-based
design, yet synchronization between the sender-receiver pair
should be avoided. There are two typical methods towards
a synchronization-free acoustic ranging. One method relies
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on the cross-correlations between mutually transmitted sig-
nal [30], [31], but it may not work for a watch-phone pair
because it is demanding in both hardware and software: i)
both sides need to perform transmissions and receptions, ii) a
side channel (e.g., WiFi) is required to coordinate between the
pair, and iii) correlation computations need to be performed
constantly. While many smartwatches do not have a speaker,
all these demands cause excessive computation and energy
consumptions. Another method requires an acoustic beacon
infrastructure (i.e., multiple speakers) [7], [9], confining its
ubiquitous deployability. More importantly, as computationally
intensive algorithms (e.g., FMCW and FFT) are necessary
to process multiple acoustic receptions in real-time, there
is virtually no hope for a smartwatch-based implementation.
Consequently, we need a novel acoustic ranging method that
is lightweight in both hardware and software.

B. SoM Ranging: Differential Perspective

Our idea of ranging in a differential manner is rather intu-
itive (Fig. 2): if a fixed sender transmits a sequence of acoustic
tones at a constant interval, the sequence observed by a moving
receiver will have dilated (resp. compressed) intervals if the
receiver moves away from (resp. towards) the sender. These
variances in the intervals are caused by the displacements of
the receiver relative to the sender, so that an acoustic tone takes
longer (resp. shorter) time to propagate from the sender to the
receiver. Denoting an interval variance by ∆τ , the receiver’s
displacement can be computed as cs × ∆τ , where cs is the
sound speed. We term such a displacement derived from a
variance in interval radial displacement hereafter. SoM takes
a smartphone fixed on a table as the sender and a smartwatch
worn on a user’s wrist as the receiver. Therefore, setting the
phone to the origin of a global coordinate system, the tone
sequence observed by the watch can enable a partial tracking
of its position in this coordinate system: integrating over the
radial displacement yields the radial distance. It is worth
noting that no synchronization between the pair is needed, as
measuring the radial displacement only requires the knowledge
of the tone waveform and the interval.

A commonly adopted method of detecting a tone is to use
the known tone waveform to perform cross-correlation with
the received signal [30]; this, however, has two drawbacks. On

Dt

Fig. 2. Differential ranging through Motion-induced Time Difference of
Arrival (MTDoA). A fixed smartphone transmits the tone sequence (middle),
so a wrist-worn smartwatch moving away from (resp. towards) the phone
will observe dilated (resp. compressed) intervals, as shown by the top (resp.
bottom) tone sequences.
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Fig. 3. Tracking radial distance with a tone sequence. We circle the
smartwatch 4 times beside the phone, so the tracked radial distance exhibits
an expected sinusoid shape.

one hand, the waveform can be so distorted during propagation
that the peak of the cross-correlation cannot precisely pinpoint
the time of (tone) arrival. On the other hand, the complexity is
O(N) for an N point waveform, which can be a rather heavy
burden for a smartwatch. Our observation is that, although the
waveform can be heavily distorted in time domain, its energy
is still concentrated around the carrier frequency of the tone
(we later show that even the Doppler effect can be implic-
itly handled). Therefore, we perform detection in frequency
domain. As the carrier frequency is known, we adopt the
Sliding Goertzel DFT algorithm [12] (SDFT hereafter) to only
extract the energy concentrated around the carrier frequency.
As shown in Fig. 3, the SDFT filter sharply indicates the arrival
of tones, resulting in very accurate tracking. Moreover, SDFT
has a constant time complexity (actually 3 multiplications and
4 additions [12]) except for the first round.

Unlike other sensors, embedded operating systems (such as
Android) do not provide timestamps for sound recording, so
another challenge is how to determine the (clock) time of tone
arrival upon detection. A nice solution to this problem has
been proposed by [30] and is adopted by several subsequent
proposals (e.g., [31], [42]): as the A/D converter is driven by
a 44.1kHz clock and thus the sample interval is a constant
22.7µs, counting the number of samples would serve as a
relative timestamp. Nevertheless, as our SoM requires other
sensor readings to fully serve the wrist tracking purpose, we
need to further align the sound recording with other readings,
as will be discussed in Sec. IV-C and V.
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Our method is fundamentally different from the Doppler
effect based tracking [7], [9], which has to perform a full
spectrum FFT (with N = 44100 given the 22kHz sound
spectrum) and induces an O(N logN) time complexity (as
opposed to the O(1) complexity of SDFT). Such a heavy
computation load cannot be borne by a smartwatch for real-
time tracking. Moreover, estimating frequency shift can hardly
be made robust in practice; AAMouse [7] averages the estima-
tions over tones with 5 different carrier frequencies and hence
causes an even heavier computation load.

C. System Optimization

The tone interval τs in the original transmission is a key
parameter to our differential ranging. On one hand, we would
like it to be short so that the system can quickly respond
to the radial displacement. On the other hand, longer period
is more robust against possible noises in the acoustic signal
and errors in detecting the arrival time. We test all possible
intervals from 10ms to 100ms, with a stepsize of 10ms, and we
report the statistics on correctly detected tones in Fig. 4(a). The
robustness starts to reduce after τs becomes shorter than 60ms
due to the reason explained in Fig. 4(b), so we set τs = 70ms
as a balance between robustness and responsiveness. However,
this interval is longer than that (about 5ms) of IMU sensors,
so we will handle this mismatch in Sec. IV-C.

Doppler effect may shift the carrier frequency, potentially
affecting the detection accuracy of the tone arrival time.
Rather than computationally compensating this shift [31], we
implicitly handle it by widening the filter window: we perform
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(a) Percentage of correctly detected tones vs. τs.
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Fig. 4. Selecting a proper tone interval: a balance between robustness
and responsiveness. (a) The robustness improves with an increasing τs but
saturates after τs = 70ms. (b) For τs ≤ 50ms, the interval is so short that
a lot of ambient interferences get squeezed inside, making it hard to set a
threshold that avoids noise on one hand while detecting the rising edge (not
peak) of the tone signal on the other hand.

the 128-point SDFT so that the outcome indicates the total
energy within a 44100

128 = 344.5Hz window centered around the
carrier frequency. According to [7], a 1Hz shift is equivalent
to a speed of 2cm/s at 17kHz, hence our filter window can
tolerate a radial speed up to 3.445m/s. Since the arm motion
speed for a normal person can hardly exceed 4m/s [43], its
projection onto the radial direction (the radial speed) would
rarely go beyond 3.445m/s.

One critical observation is that, once a tone is detected,
the next arrival time cannot be too soon given the bounded
speed of wrist motion; this can further save computational
resources for performing IMU-based tracking. Based again
on [43], a reasonable displacement during a 100ms interval
should be less than 0.5m. Assuming a sound speed of 346m/s
at 26◦C, 0.5m displacement translates to less than 70 samples.
As a result, for the 3087 samples recorded within the 70ms
interval, it is impossible that the first 2800 of them contain
the next tone, so there is no need to run SDFT over them.
Consequently, we can skip 90% of the SDFT computations
without compromising the performance.

It is rather unlikely that the 17kHz inaudible frequency
exists in the ambient sound, yet the tone sequence sent by
our smartphone may be reflected by surrounding objects,
causing superfluous receptions during an interval. Whereas the
aforementioned “SDFT skipping” helps to partially filter out
such receptions, a proper threshold is still necessary for tone
detection. Normally, the threshold is set to be sufficiently high
to avoid false positive detection, as sporadic false negatives
can be handled by skipping a couple of tracking correction
opportunities. However, as sound energy attenuates during
propagation, the false negative rate will increase with the radial
distance dr, while a fixed threshold often detects a peak rather
than a rising edge and hence loses interval detection accuracy,
as illustrated by Fig. 5(b). Therefore, we adaptively adjust the
threshold according to the power law of dr:

thrd =

{
c dr ≤ 1

c(β − 1)α(βdr − 1)−α dr > 1
, (1)

where c is the constant threshold used when dr ≤ 1m (adopted
in Fig. 4), and α > 0, β ≥ 1 control the attenuation rate. The
benefit of an adaptive threshold is shown in Fig. 5: whereas
a fixed threshold fails at around 1.8m, an adaptive threshold
always achieves a very accurate track of the radial distance.

IV. IMU-DRIVEN MOTION TRACKING

Motion tracking driven by IMU sensing is well understood
in robotics, but SoM requires some substantial fine-tuning
to meet the needs of wrist tracking with a smartwatch. Our
presentation in this section focuses on these innovative aspects.

A. Basics of Kalman Filtering

Kalman filter has been widely used in tracking and navi-
gation, so it might also serve as the basis of SoM. Here we
briefly explain the basic procedure of Kalman filtering, so as
to establish terminology for further discussions. For a tracking
system, the Kalman filter model assumes that the true state sk
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Fig. 5. Higher robustness and accuracy with an adaptive detection threshold.
(a) Adaptive threshold is necessary to maintain the tracking accuracy. (b)
When the radial distance goes beyond 1m, a fixed threshold tends to detect
the peak of the tone, which causes an unpredictable delay from the rising
edge detected by an adaptive threshold.

at time k can be derived from the previous state sk−1 at time
k− 1 by transition sk = Aksk−1 +wk, where Ak is the state
transition matrix and wk ∼ N (0,Wk) is the noise assumed
to follow a zero mean multivariate normal distribution with
covariance Wk. Moreover, an observation ok is made on the
state at time k: ok = Hksk + vk, where Hk is the state
observation matrix and vk ∼ N (0, Vk) is the observation
noise. If the system is nonlinear, the matrices Ak and Hk

are replaced by the Jacobian of the corresponding nonlinear
functions. A Kalman filter estimates a state sk by two steps:
an a priori prediction based on state transition and an a
posteriori correction based on the observation ok. Basically,
the following computations are executed one by one so as to
derive an estimation ŝk on sk from ŝk−1:

ŝk|k−1 = Akŝk−1, rk = ok −Hkŝk|k−1 (2)

Pk|k−1 = AkPk−1A
T
k +Wk, Rk = HkPk|k−1H

T
k + Vk,

Kk = Pk|k−1H
T
k R
−1
k , (3)

ŝk = ŝk|k−1 +Kkrk, Pk = (I −KkHk)Pk|k−1

where the Kalman gain Kk in (3) is the key, derived to
minimize the mean-square error of the estimation ŝk.

For a normal IMU-driven tracking system, we have sk =
[qTk ,v

T
k ,p

T
k ]T , where qk is the 4D quaternion representing

the orientation, vk and pk are the 3D vectors indicating the
velocity and position, respectively. Unfortunately, operating
on a 10D vector (thus many 10-by-10 matrices) is infeasible
for a resource scarce smartwatch, so we have to substantially

reduce the state space. According to Sec. III, the observation
derived from the differential ranging is related to sk by ok =
‖pk‖2 − ‖pk−1‖2, which is not concerning qk. This allows
us to separate qk from the state and estimate it independently.
However, the most fatal issue is that we would have to use a
scalar observation to correct a high-dimensional state (6D even
after removing qk); this is fundamentally impossible under
the filtering framework because the lack of observability [44]
makes it hard to identify which component(s) of a state
contain(s) noises to be corrected. Therefore, we need a novel
solution to apply the rectifications.

B. Orientation Tracking through Opportunistic Calibrations

There are two approaches towards tracking orienta-
tion with IMU sensing, namely gyroscope-enabled and
accelerometer+magnetometer-enabled. As the former monitors
the changes while the latter observes the states, it is possible to
construct a specific Kalman filter for orientation tracking [45],
but the resulting algorithms are very computationally intensive.
An opportunistic calibration approach has been proposed in
[46], yet it was designed for tracking slow motions in a large
scale (e.g., for human localization and/or navigation), which is
very different from wrist tracking for ubiquitous uHMI where
the motion can be intense but the scale is rather confined
(e.g., around a table). Therefore, our calibration is specifically
tailored to wrist tracking.

It is well known that gyroscope-enabled tracking can cause
serious drift due to the error accumulations in time. As we
cannot hope to get constant observations to correct the tracking
in a Kalman filtering manner, the only choice is to “drag” the
orientation back to the right track whenever possible, which is
often termed opportunistic calibration. Based on the physical
understanding of the IMU sensors, we know that, when a
smartwatch is i) in a relatively steady state and ii) away
for a strong magnetic field, accelerometer and magnetometer
readings can be used to rather accurately obtain the gravity
vector g and magnetic north n, respectively. Combining these
two vectors allows us to estimate the orientation within a
global coordinate system whose x-z plane is defined by n
and g. Although n may be biased indoor, what matters to
wrist tracking (given its confined scale) is the stability of n
rather than its correctness. Therefore, we use the following
two criteria to declare a calibration opportunity: i)

1) |‖a‖2 − g| ≤ 0.2m/s2, for an accelerometer reading a
and g = 9.81m/s2 ,

2) ‖m‖2 ≤ 50µT, for a magnetometer reading m.
We shall not demonstrate the performance of this module here,
as the correctness of orientation tracking will be implied by
the final performance of wrist tracking.

C. Position Tracking through Opportunistic Calibrations

As we explained earlier, Kalman filter would not work
because our low dimension observation fails to provide a full
observability and hence correction can be wrongly applied to
signal (motion) rather than noise (drift). As shown in Fig. 6,
using Kalman filter can lead to a tracking outcome worse than
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solely relying on IMU sensing. Therefore, we decide to give up
filtering and resort again to opportunistic calibration, aiming
to determine calibration opportunities when the observations
do provide sufficient observability to the system. To this
end, we redefine the observation ok as the radial distance by
accumulating the radial displacements, and we also revise the
calculation of the residual rk as:

rk =



rxk
ryk
rzk
ryzk
rxzk
rxyk
rxyzk


=



|ok − |pxk||
|ok − |pyk||
|ok − |pzk||
|ok − ‖[pyk, pzk]‖2|
|ok − ‖[pxk, pzk]‖2|
|ok − ‖[pxk, p

y
k]‖2|

|ok − ‖pk‖2|


, (4)

where we compute scalar residuals with respect to vectors
derived from 7 combinations of the 3 coordinates of pk. Note
that rk in (2) is rxyzk in our calculation.

We keep using the prediction step in (2) to obtain ŝk|k−1

whenever new IMU readings become available. Upon ob-
taining a new observation ok, we compute rk as (4), and
correct ŝk|k−1 using Algorithm 1. To facilitate the algorithm
presentation, we let [p1

k, p
2
k, p

3
k] = [pxk, p

y
k, p

z
k]; we denote by

p−jk the position vector with the j-th component of pk set
to zero and by pjk the complement of p−jk (i.e., the j-th
component of pk remains while others set to zero). Essentially,

0 100 200 300 400 500 600 700 800
-0.4

-0.2

0

0.2
Position with IMU tracking only (i)

x y z

0 100 200 300 400 500 600 700 800
-0.6

-0.4

-0.2

0

0.2
Position with Kalman Filter (ii)

0 100 200 300 400 500 600 700 800
-0.4

-0.2

0

0.2
Position with Calibration (iii)

(a) Motion tracking with different tracking schemes.

0.2

-0.2

0

-0.40.2

Trace (i)

0
-0.2

-0.05
0

0.05

0.5

-0.5

0

-1

Trace (ii)

0.5
0

-0.5

0
0.5

-0.5

0.2

-0.2

0

-0.4

Trace (iii)

0.2
0

-0.2

0.05

-0.05
0

(b) Corresponding motion traces.

Fig. 6. Comparison among IMU-only tracking, Kalman filter, and our oppor-
tunistic calibration. Our method preserves the motion trend while substantially
reducing the drift.

Algorithm 1: Opportunistic State Calibration
Data: ŝk|k−1, rk, tprv, ε
Result: ŝk, tprv

begin
t← clock time− tprv; ŝk ← ŝk|k−1;
if ok < ε then

v̂k ← v̂k|k−1 − p̂k|k−1/t; p̂k ← 0;
else

j ← arg mini[rk]i;
if rjk < ε and j ∈ {1, 2, 3} then

v̂k ← v̂k|k−1 − p̂−jk|k−1/t; p̂k ← pjk|k−1;

else if rjk < ε and j ∈ {4, 5, 6} then
v̂k ← v̂k|k−1 − p̂

(j−3)
k|k−1/t; p̂k ← p̂

−(j−3)
k|k−1 ;

tprv ← clock time;

Algorithm 1 looks for three types of opportunities where ok
may offer sufficient observability: i) ok is close to zero, ii)
the magnitude of either of the three coordinates of pk is close
to ok, and iii) the Euclidean norm of combining either of the
two coordinates of pk is close to ok. While case i) suggests
that pk is caused by drifts, the other two cases indicate certain
coordinate(s) (other than those concerned by the criteria) of
pk is(are) caused by drifts. The algorithm acts similarly under
each of these opportunities: it first corrects the velocity vector
by subtracting the mean velocity drift, which is computed by
dividing the elapsed time t since the last calibration into the
position drift. Then it sets the drift coordinate(s) of pk to
zero. Fig. 6 shows that, while the IMU-only tracking may drift
away when the smartwatch moves according to a square shape,
the “brutal” correction applied by Kalman filtering actually
exacerbates the situation: it cannot even preserve the trend.
Fortunately, applying our opportunistic calibration may largely
recover the motion trace.

V. SYSTEM ARCHITECTURE

We hereby assemble the aforementioned components to
construct SoM, whose architecture is illustrated in Fig. 7. The
smartphone takes several duties, including constantly transmit-
ting the tone sequence during the whole operation period and
relaying the tracking results from the smartwatch to whatever
devices that require wrist tracking. Using a Bluetooth/WiFi
relay allows SoM to have an extended range beyond what
Bluetooth may reliably reach while conserving energy for the
watch. The device demanding the uHMI uses WiFi to receive
the tracking states and it needs a driver to “translate” the states
to what an application may require (e.g., the motion of a role in
a video game). Our prototype only implements a basic driver
displaying the wrist motion trace.

The SoM system core resides in the smartwatch. On one
hand, the tone-driven radial tracking accumulates differential
measurements to derive observations for the state calibration.
On the other hand, IMU-sensing drives the independent ori-
entation tracking, enabling SoM to adjust the accelerometer
readings into wrist motion accelerations under a global coor-
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Fig. 7. System architecture of SoM.

dinate system with the smartphone as the origin. Based on the
adjusted accelerometer readings and the observations, the State
Transition & Opportunistic Calibration (STOC) module keeps
track of the wrist positions and the results are transmitted
over Bluetooth to the phone. One component not explicitly
discussed is detecting facing direction: it is included under the
orientation tracking as a sub-module, and it requires a user to
initialize SoM by aligning the y-axis of the watch with the
facing direction (e.g., stretching the arm straightly ahead).

Arranging all the computational components into a
resource-constrained smartwatch is far from trivial. In Fig. 8,
we illustrate the execution pipeline to demonstrate how to
coordinate multiple threads to complete the complicated sens-
ing/calibrating process in real-time. The Android system has
two default threads for recording sounds and retrieving IMU
sensor readings: while the former is done regularly at 44.1kHz,
the latter yields timestamped samples arriving irregularly. We
set the sound recording buffer to have a size of lbuff = 512,
and the SoM ranging thread periodically takes samples from
the buffer for tone detection. Upon a detection at tdetect, the
actual tone arrival time tarrival is deduced by counting the
samples. The SoM STOC thread then retrieves all the sensor
readings between the previous tarrival and the current one;

lbuff

1

2

time

3

State Transition & Opportunistic Calibration

5

6

4

1 Transmitted tone sequence 2 Sound recording

3 SoM ranging thread 4 SoM STOC thread

5 SoM orientation tracking thread 6 IMU sensing

[o ]k-1, xk-1 [o ]k+m-1, xk+m-1

...

...

tarrival

tdetect

BT state tx

OT

... ... ... ...

Fig. 8. Multi-threaded execution pipeline.

it aligns them with the observations, filters the accelerations,
and estimates the current state according to the algorithms
discussed in Sec. IV-C. The resulting state is then sent to the
smartphone using Bluetooth. The orientation tracking thread
runs in parallel based on all IMU sensor readings, and its
output is used for adjusting accelerations.

VI. PERFORMANCE EVALUATION

We report extensive experiments on SoM in this section. We
first explain implementation details and how the evaluations
are conducted, then we present the evaluation results for SoM,
including a comparison with ArmTrak [8]. We would refrain
from comparing with AAMouse [7] and CAT [9] as the results
are expectable: they are bounded to excel in accuracy, but SoM
is lightweight and infrastructure-free.

A. Implementation Details

We have implemented the entire SoM system on a watch-
phone pair. We choose LG W100 smartwatch and HTC One
M8 smartphone, as watches such as Samsung Gear Live
used previously [8] are not available anymore. Although we
prototype the system in Android wear system (which most
of the smartwatches can support), we believe the prototype
can be readily migrated to other systems, given its light
demand on both software and hardware. We keep the phone
transmitting tones with 70ms interval, with each 220Hz tone
carried upon 17kHz and lasting for 1ms. The tone detection
threshold is set according to (1) in Sec. III-C, where c = 106,
α = 0.5, and β = 2. The threshold ε used in Algorithm 1
is set to 0.01m. We set the IMU sensing rate to the highest
level, so the sample frequency is roughly 200Hz for all IMU
sensors, though their samples may still arrive irregularly.

Fig. 9. Experiment setup.

We recruit 6 users
(3 males and 3
females) for testing
SoM. Participants
can wear the watch
on either the left
or right wrist based
on their preference
since our algorithm is
insensitive to user’s
wearing habit. They are then asked to perform a set of
motion traces shown on a screen (Fig. 9), including straight
lines, circles, squares, triangles and numbers (from 1 to 4)
at different scales. Although example traces are on a 2D
plane, we do not restrict a user’s motion to any fixed plane;
it can be arbitrarily in 3D space. Since our algorithm requires
calibration opportunities with zero observations (i.e., ok < ε),
the motion traces are designed so as to start and end at
the phone position. However, when performing the gestures,
they were not asked to purposely return to the exact starting
position but just to follow the gesture trace to perform. It
helps us to evaluate the performance of SoM in adequately
capturing calibration opportunities.
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Fig. 12. Comparing SoM with ArmTrak in CDF.

To evaluate the tracking accuracy, we need certain ground
truth to compare with. To make a fair comparison with
ArmTrak [8], we use Kinect 2.0 and its Body Skeleton API to
retrieve the estimated position of the wrist, though computer
vision based tracking may cause non-negligible errors. The
wrist motion traces are recorded and then analyzed offline.
Since Kinect has a much lower sampling rate than SoM, we
reconstruct the ground truth trace by interpolating the trace
based on the time frame. The possible discrepancy incurred by
the asynchrony between Kinect and SoM is controlled within
44 ms, the average sampling interval for Kinect program.

B. Acoustic Ranging Evaluation

We first evaluate the accuracy of acoustic ranging. We move
the watch away from the phone, which is marked as zero,
along a scale for multiple times to different distance then back
to the phone, and record the ranging result in the watch for
offline analysis, and the intermediate ranging distances are
assumed to be linearly interpolated. We classify the errors
according to their respective ground truth radial distances
(Fig. 10): they are well-controlled under shorter distances;
the error CDF within 1m range (Fig. 11) shows a median
error below 2cm. The errors should have been monotonically
increasing beyond 1m distance, but our adaptive threshold
manages to keep them under control within 2m distance. The
non-monotonic trend of errors beyond 1m is an artifact caused
by the specific parameters chosen for the adaptive threshold:
the parameters are chosen to maintain the overall performance
rather than to shape the trend. In general, we would expect
a uHMI to require wrist motions mild enough so that the
acoustic ranging could operate in its safe zone.

C. Comparison with ArmTrak

To evaluate the overall performance of SoM, we first
compare SoM with ArmTrak’s online algorithm (hereafter
ArmTrak). ArmTrak computes the elbow position as weighted
average position of an orientation-to-position dictionary with
a prior point cloud sampled by Kinect as weights. We obtain
the prior point cloud by performing all the designed gestures,
and the point cloud is created with a 1cm resolution. After
obtaining the orientation calibrated with the facing direction,
we further get the estimated elbow position then transform
it to wrist position. Fig. 12 shows the CDF of wrist posi-
tion error. The median error of SoM is about 11.7cm for
the 2 left-hand users but is only 10.3cm overall, compared
to 20.7cm for ArmTrak. Moreover, SoM manages to keep

up to 90% of errors within 20cm, though its maximum
error is over 60cm, slightly larger than ArmTrak’s 50cm.

Fig. 13. Smaller scale of ArmTrak result:
SoM (Red) and ArmTrak Online (Blue) vs.
Kinect tracking result (Black).

We could not
achieve the claimed
median error in [8]
probably due to the
different experiment
setup. As ArmTrak
estimate wrist position
via elbow, it is
insensitive to certain
motions (such as squares and lines), rendering the shape scale
at wrist much smaller than the true size, as demonstrated
in Fig. 13; the errors larger than 30cm occur mostly due
to the scale difference. Moreover, ArmTrak assumes fixed
shoulder, hereby any body movement may potentially affect
its performance. For SoM, most errors result from the drift,
but our STOC module can keep most of the drift largely
checked. However, since ArmTrak is based on a prior point
cloud, the error is well bounded by the motion scale and
prior, while SoM may suffer from larger maximum error due
to some uncorrectable drift at some farther distance.

Fig. 17 shows some example traces produced by SoM and
ArmTrak projected on the global XZ plane. Compared with
ArmTrak, SoM can achieve smoother trace and more reason-
able scale since its tracking methodology follows physical
laws. Moreover, SoM is not constrained by the assumption
of fixed shoulder or any user’s wearing behavior. SoM can
also track elbow if we reversely use the rationale proposed in
ArmTrak, but we will not evaluate the tracking accuracy for
elbow since it is not the main point of this paper.

D. Impact of Motion Scale

Since the tracking of SoM is calibrated by the sound ranging
results as shown in Sec. VI-B, the scale of wrist motion
will affect the tracking accuracy. We evaluate the tracking
performance across different scale of motion traces. For the
ground truth of each motion trace, we define a bounding box
which contains the entire motion trace, and use the diagonal
distance as the scale of the motion. We categorize the scales
into 3 types: small (≤ 30cm), middle (30 − 60cm), and
large (≥ 60cm). Fig. 14 shows the mean and median error
for motion at different scales. Both quantities are slightly
increasing with the scale from 10cm to 14cm due to the error
introduced in sound ranging that in turn leads to fewer chances
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Fig. 17. Example Traces: SoM (Red) and ArmTrak Online (Blue) vs. Kinect
tracking result (Black).

for opportunistic calibration. For human arm, most of gentle
motion performed in a uHMI scenarios are within the scale of
60cm, for which SoM can keep the median error within 10cm.

E. Accuracy across Different Motions

We evaluate the performance of SoM across different mo-
tions. Fig. 15 plots the CDF of errors for 5 sets of motions:
line, circle, square, triangle and numbers. We observe that the
performance is consistent across different motions, showing
that SoM is not biased to any patterns. Among all motions,
circle has the best performance whereas square leads to the
worst. Due to its non-smooth nature, drawing squares involves
more sudden changes in moving direction compared to circle,
and such a sudden switch from one axis to another may
introduce errors during opportunistic state calibration. Line
has the largest maximum error compared to the rest since all
users tend to draw lines in a larger scale. Drawing circle has
the smallest maximum error as a result of a smaller and stabler
shape size when the participants performed such motion.

F. Accuracy across Users

We evaluate SoM performance across different users to test
its robustness against different user behaviour. Although 6
users used different hand (U4 and U5 chose left hand, while
the rest chose right hand) and moved their hand with different
speed and scale, we observe that the median error across
different users are all within 12cm. Among all users, U1 has
the worst performance while U3 has the best performance.
From the detailed tracking result, we find U1 performed the
gesture in a larger scale, which are all beyond 60cm, while U3
has relatively small motion scale, which are all within 40cm.
There is no obvious difference between left-hand users and
right-hand users. Regarding the moving speed, we observe that
both U2 and U6 performed relatively faster compared to the
rest, but the performance under a higher speed is still stable.

G. Energy Consumption

Lacking dedicated devices, we cannot measure the exact
energy consumption for each component in SoM. Instead, we
conduct a simple experiment to roughly estimate the overall
energy consumption of SoM over a long period of time.
We kept both phone and watch running and tracking for 20
minutes. While tracking, we keep the watch sending data to
phone every 100ms through Bluetooth, and keep the phone
processing received data and sending them to PC through web
socket. For both devices, we have recorded the timestamps (in
seconds) for each 1% decrease in the battery level. Based on
the battery capacity of HTC One M8 smartphone (2600mAh)
and LG W100 smartwatch (400mAh) and the percentage and
time recorded, we estimated the power consumption of the
entire system over time as shown in Fig. 18. We observed that
the average energy consumed per minute is about 5mAh for
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Fig. 18. Energy consumption of SoM.

phone and 2mAh for
watch. This consump-
tion includes that of
WiFi and Bluetooth
since the communi-
cation among watch,
phone and PC is a
part of the SoM sys-
tem as a uHMI.

VII. CONCLUSIONS

In this paper, we have presented SoM as a wrist tracking
system with a lightweight design but a satisfactory tracking
accuracy. SoM adopts a pair of smart watch and phone as
its hardware basis, which makes it ubiquitously deployable.
Using the smartphone to send sound tones, SoM derives
the distance between the watch and phone. It leverages this
information to opportunistically calibrate drifts caused by IMU
tracking. In order to realize these functions, SoM represents
a delicately engineered sensing and signal processing pipeline
that fits into the resource-scarce smartwatch. Overall, SoM
achieves a promising tracking performance with a median error
of 10.27cm. When comparing with ArmTrak [8], we have
identified certain complementary features between ArmTrak
and SoM. Therefore, we plan to improve the performance
of SoM by integrating the prior-driven position estimation
method proposed by ArmTrak for strengthen both the intitial
and opportunistic calibrations. This may lead to a system
that retains SoM’s detail preserving ability while having an
improved robustness against drift.
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