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ABSTRACT
Recent years have witnessed a growing interest in contact-free res-
piration monitoring leveraging radio-frequency (RF) technologies.
However, the proposed solutions mostly consider single-person sce-
narios, whereas a few multi-person monitoring proposals simply
apply blind source separation to handle inter-person interference,
without drawing a clear line between physical and algorithmic sep-
arability. In this paper, we set out to answer: under what condition(s)
one may physically separate multiple respiration signals sensed by
diversified RF technologies? Drawing inspiration from conventional
signal processing, we propose respiration-to-interference-plus-noise
ratio (RINR) as a novel metric, taking into account the impact from
both background noise and various interfering sources. Instead of
attenuation in Euclidean distance, RINR has to be evaluated upon
range/angle bins where physical separation actually take place. As
signal attenuation has never been modeled in this manner, we rise
to this challenge by levering a deep learning model to fit a spread
function upon range/angle bins. The resulting RINRmodel allows us
to concretely indicate the limit of physical separability of RF-based
multi-person respiration monitoring. Our extensive experiments
firmly validate the RINR model, thus evidently demonstrating the
benefits of employing RINR model as a guideline for conducting
respiration monitoring with different RF technologies.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Hardware → Sensor applications
and deployments.
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1 INTRODUCTION
Since respiration monitoring plays a key role in reflecting human
health status [5, 11, 16], it has enabled a wide range of health-
care applications, such as sleep status monitoring [31, 39, 61], fa-
tigue detection [47, 57, 68], and medical care [16, 43, 45]. Tradi-
tional approaches for respiration monitoring depend on wearable
devices to achieve high-quality measurement [15, 18, 19, 24, 35],
but these contact-based sensing methods tend to cause discom-
fort and inconvenience, rendering them less practical for long-
term monitoring. Therefore, both academia and industry have de-
voted efforts lately to developing contact-free respiration mon-
itoring schemes. Essentially, contact-free sensing leverages the
reflected signals of various media (e.g., light, acoustic, and radio
waves) to capture themicro-motions of human chests during breath-
ing [1, 7, 8, 25, 37, 38, 46, 49, 56, 61, 62, 68]. Among all the contact-
free sensingmedia, radio-frequency (RF) [1, 8, 25, 37, 61, 68], appears
to be the most appealing option, because it is less susceptible to am-
bient noise and interference suffered by vision- and acoustic-based
solutions [7, 38, 46, 49, 51, 56, 62], and they are promoted by highly
configurable commercial-grade devices [3, 10, 14].

Given all the projected benefits, it is a surprise that many existing
RF respiration monitoring solutions only deal with single-person
scenarios [8, 25, 33, 37, 40, 54, 65, 67], while realistic scenarios often
involve multiple persons (e.g., sharing a couch). This situation is
likely caused by the difficulty to handle the mutual interference
among the respiration signals (i.e., reflected RF signals induced by
respiration) from multiple persons (subjects): when multiple sub-
jects are present within sensing range, the induced RF reflections
superimpose onto each other, thus forming a signal mixture that
demands a specific mechanism to handle (i.e., to separate individ-
ual respiration signals), as briefly illustrated in Figure 1. Existing
proposals for multi-person respiration monitoring can be roughly
classified into two categories. On one hand, physical separation
method relies on large bandwidth or multiple antennas to achieve
a high range or angular resolution, thus zooming in on individual
subjects while excluding interference from others [1, 2, 50, 55, 68].
On the other hand, algorithmic separation method leverages sta-
tistical independence (e.g., distinct rates or phases) to drive either
spectral estimation (only for rate estimation) [6, 31, 53] or one-time
blind source separation schemes [63, 66].

Theoretically, there is no limit on the algorithmic separability, as
it may always succeed as far as the assumption of statistical inde-
pendence holds true. However, this independence assumption may
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Figure 1: Respiration signals from two persons form a mix-
ture demanding potential separations. For subjects located
far enough, the mutual-interference is minor and hence the
mixture can be readily separated. As they get closer to each
other, separating themixed respiration signals becomesmore
and more difficult, till totally inseparable at a certain point.
So the question is: can we quantify the separability?

not always be justified in reality because, for example, breaths of
two close-by subjects can be somewhat “synchronized” due to a phe-
nomenon called respiration coupling [17]. Moreover, algorithmic
separation schemes tend to incur a very high computational com-
plexity [30, 64] and hence hamper a real-timemonitoring. Therefore,
instead of quantifying the limit between separability and insepa-
rability, we turn to a more reasonable objective of demarcating
physical separability from algorithmic separability. In particular, we
aim to answer the following questions:

(1) How to assess the physical separability of diversified RF
technologies?

(2) Where is the limit of physical separability under different
RF technologies, and what determine(s) the limits?

(3) When conductingmulti-person respirationmonitoring, what
positions, ranges, and angular spacing among the subjects
may achieve satisfactory monitoring performance?

To answer these questions, we first propose a new metric termed
respiration-to-interference-plus-noise ratio (RINR) to measure the
quality of the respiration signals under multi-person monitoring
scenarios. Inspired by the definition of signal-to-interference-plus-
noise ratio (SINR) in conventional signal processing, RINR takes
into account the impact of both background noise and mutual inter-
ference among monitored subjects. Unlike SINR often evaluated on
Euclidean distances, RINR is defined over the range/angle bins con-
taining targeted respiration information. Since the definition over
range/angle bins conforms to the data format of RF-sensing [13],
RINR is more practical in evaluating the performance of respiration
monitoring, yet this novel definition does entail a challenge: a new
spread function has to be in place to characterize how respiration
from one subject spreads across neighboring bins and interferes
with others’ respiration signals.

Due to the intrinsic complexity in physical environments and
hardware implementations, the spread function may not admit

a closed-form representation. Consequently, we resort to a deep
learning model to fit the spread function given inputs such as the
radar bin index, the bandwidth, and the number of antennas. After
substituting the spread function into the RINR model, we are able to
depict how multi-person respiration interferes with each other. By
setting proper thresholds, the RINR further indicates the physical
limit of RF-based multi-person respiration monitoring, hence pro-
vides practical guidance for the corresponding operations. Through
extensive experiments, we validate the RINR model and also quan-
tify the relationship between RINR and a variety of practical factors.
To sum up, our main contributions are:

• We propose RINR as a new metric to not only quantify the
quality of respiration signals but also characterize the physi-
cal separability; it is generalizable to diversified RF schemes
for measuring their respective performance.

• To our best knowledge, this is the first work investigating the
mechanism of multi-person respiration interference; it es-
tablishes guidelines for conducting multi-person respiration
monitoring with different RF technologies.

• We evaluate the developed model with extensive experi-
ments using three RF technologies: Wi-Fi, IR-UWB, and
FMCW; the results evidently confirm the validity of our
RINR model.

In fact, our metric and model are applicable to all types of contact-
free motion/vibration sensing applications, yet we stick to respira-
tion monitoring for the sake of focus in remaining of the paper. In
particular, Section 2 surveys the related works of multi-person respi-
ration monitoring; Section 3 explains the preliminaries of RF-based
contact-free sensing; Section 4 introduces the RINR metric, and
Section 5 completes the RINR model by fitting the spread function
with a neural network; Section 6 presents the evaluation results to
validate the RINR model, and Section 7 concludes the paper.

2 RELATEDWORKS
In this section, we briefly review the state of the art in RF-based res-
piration sensing. We broadly group past works into two categories,
i.e., Wi-Fi-based and radar-based respiration monitoring.

Solutions Leveraging Wi-Fi. Wi-Fi-based sensing mostly exploits
Channel State Information (CSI) retrieved from received signals to
estimate respiration rate and waveform in different scenarios [6,
31, 32, 34, 53, 65, 66]. Liu et al. [32] proposes a sleep monitoring
system that can extract respiration patterns from CSI in a single-
person scenario. Zeng et al. [65] investigated the complementary
relationship between amplitude and phase of CSI to address the
"blind spot" problem sensing by Wi-Fi signals. However, since the
main function of Wi-Fi is communication, its designed bandwidth
is narrow and does not provide sufficient range resolution for sens-
ing multiple close-by respiration signals. As a result, researchers
have to resort to advanced signal processing techniques to retrieve
respiration information in multi-subject scenarios. Liu et al. [31]
propose a method to simultaneously estimate respiration rates for a
known number of subjects by analyzing the power spectral density
of CSI. PhaseBeat [53] and TR-BREATH [6] apply the root-MUSIC
algorithm [44] to resolve the respiration signals of multiple sub-
jects. Yang et al. [59] utilize the Fresnel zone model to optimize the
deployment of Wi-Fi transceivers, so that each target’s respiration
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signal is less interfered with by others. However, this method re-
quires the accurate location of each person and fixed placements of
the transceivers. MultiSense [66] views multi-subject respiration
monitoring as a blind source separation problem, and applies the
ICA (independent component analysis) algorithm [20] to extract
respiration waveforms. Distinct in terms of the adopted commer-
cial hardware, ViMo [50] leverages IEEE 802.11ad [42] with large
bandwidth and a 32-antenna array for respiration monitoring; the
powerful hardware makes ViMo comparable to the radar-driven
approaches introduced below.

Radar-driven Approaches. Numerous commercial-grade radars
have become available for near-field sensing in the past few years [4,
22, 48]. Compared with Wi-Fi, radar systems are dedicated to sens-
ing tasks, so they provide a higher bandwidth, thus having bred a
wealth of literature on high-accuracy and fine-grained respiration
monitoring [1, 28, 55, 58, 63, 68]. Generally speaking, radars can
be categorized into IR-UWB (impulse radio ultra-wideband) and
FMCW (frequency modulated continuous wave). While IR-UWB
radars transmit pulses in the time-domain [58, 68], FMCW radars
send chirp signals whose frequency increases over time [2, 63];
they can be deemed as a time-frequency dual pair. Conventional
ways to distinguish respiration signals from multiple subjects is
to separate them on range bins. Vital-Radio [1] adopts an FMCW
radar that sweeps from 5.46GHz to 7.25GHz to achieve satisfac-
tory separation of respiration signals when the subjects are at least
1m apart; V2iFi [68] leverages the wide 1.4GHz bandwidth of its
IR-UWB radar to discriminate different subjects in a vehicle.

Moreover, researchers have exploited beamforming techniques [2,
55] to further mitigate the interference. Xiong et al. [55] propose a
1 × 8 SIMO radar system to achieve an angular respiration separa-
tion of 15◦. Ahmad et al. [2] adopt a 3 × 4 MIMO radar system to
separate signals of 15◦ apart. In addition, Yang et al. [60] propose a
multi-beam technique, where an FMCW radar mechanically steers
its beam by a rotator, yet requiring a minimum separation of 12◦
and 1.67m between two subjects still. Similar to Wi-Fi-based ap-
proaches, radar-based systems also explore various sophisticated
signal processing techniques and algorithms. Lee et al. [28] pro-
posed a parametric spectral estimation technique to mitigate the
mutual interference among subjects, and overcome the theoreti-
cal range resolution to detect subjects that are 40cm apart. Deep-
Breath [63] shows that ICA may help extract the respiration signals
of multiple subjects even when they are separated by zero distance.

Summary. Despite extensive research efforts on RF-based respi-
ration sensing, there is still an evident gap between research and
real-life application. The root cause of this gap is that the underly-
ing assumptions of the specially designed algorithms [20, 53, 66]
may not always be robust in varying environments and scenarios.
To avoid this issue, certain proposals demand that sensing sub-
jects be placed in fixed positions, for example, DeepBreath [63] and
V2iFi [68] require their users to remain to lie in bed or seated in the
car, respectively. Such stringent requirements make sensing condi-
tions largely invariant across different environments and scenarios,
yet they are not remedies for all real-life deployments. A recent
proposal [52] advocates that theoretical analysis on sensing perfor-
mance is required to guarantee a consistent sensing performance.

They come up with a new metric termed SSNR (sensing-signal-to-
noise-ratio) to aid the design of sensing systems that are robust
to environment changes. Unfortunately, they only focus on the
single-person case under the Wi-Fi scheme, totally disregarding
common scenarios involving multiple subjects.

3 CAPTURING MULTI-PERSON RESPIRATION
In this section, we provide the theoretical background of sensing
respiration with RF technologies. We carefully study and derive
the multi-person respiration model, laying a foundation for further
discussions on the metric selection and quantification of respiration
signal quality in Section 4.

Existing proposals have employed various RF technologies (Wi-
Fi, IR-UWB, and FMCW) for monitoring respiration. Although they
adopt different central frequencies, bandwidths, and waveforms,
the received signal model can be unified to facilitate exposition and
further processing [13]. Basically, these proposals exploit the chan-
nel information contained in the reflected signals off the subjects
in a give space to perform monitoring. The channel at the carrier
frequency 𝑓c can be represented as:

ℎ(𝑡) = ∑𝑃
𝑝=1𝛼𝑝 (𝑡)𝑒

−𝑗2𝜋 𝑓c
2𝑑𝑝 (𝑡 )

𝑐 +𝑤 (𝑡), (1)

where 𝑃 is the number of indoor multipaths,1 𝛼𝑝 (𝑡) is the amplitude
of the real channel gain of the 𝑝-th reflected signal, 𝑐 is the speed
of light, 𝑑𝑝 (𝑡) is the length of the 𝑝-th path, and𝑤 (𝑡) is Gaussian
noise. Given the transmitted signal𝑥 (𝑡), the received signal is𝑦 (𝑡) =
𝑥 (𝑡) ∗ℎ(𝑡) with ∗ denoting convolution. After I/Q downconversion,
the demodulated baseband signal becomes a complex sequence
𝑟 (𝑡) = 𝑟I (𝑡) + 𝑗𝑟Q (𝑡), with the carrier phase of 𝑟 (𝑡) representing
fine displacements of human chest, as shown in Eqn. (1).2

In Figure 2a, we plot the amplitude of the received complex signal
𝑟 (𝑡) with the peaks indicating the subjects being sensed. Due to
limited bandwidth and sampling frequency, fast-time 𝑡 is a discrete
index resulting from binning its continuous counterparts. Since
the index 𝑡 denotes the propagation time related to distance, it
is termed range bin, and the interval between consecutive bins is

1𝑃 indicates the number of reflectors for a radar, while this number should be increased
by 1 for Wi-Fi to include the LoS (line-of-sight) path.
2The phase difference of the waveform is a linearly function of the difference in
distance traveled by signal: Δ𝜙 = 2𝜋 Δ𝑑
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Figure 2: Reflections from two breathing subjects captured
by the radar. (a) shows a single signal frame indicating the
distances (or range bins) of the two subjects. By adding a
slow-time dimension, (b) shows the respiration signal matrix
depicting how respiration evolves over time. (c) adds angle
dimension to form a signal tensor involving signal matrices
captured from different directions (or angle bins).
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the range resolution3 of the concerned RF technology. While the
samples of IR-UWB radar directly correspond to range bins, those
of Wi-Fi OFDM symbols or FMCW chirps have to be transformed
with FFT to obtain corresponding range bins. With sufficiently wide
bandwidth, subjects at different distances will fall into different bins
and can be clearly differentiated as shown in Figure 2a.

However, a single signal frame 𝑟 (𝑡) only allows one to differenti-
ate subjects at distinct distances. Tomonitor themicro-displacement
of the human body induced by respiration, one has to consecutively
transmit multiple frames at a regular time interval; stacking 𝑁 such
frames forms a signal matrix 𝑟 (𝑡, 𝑛) = [𝑟1 (𝑡), · · · 𝑟𝑛 (𝑡), · · · 𝑟𝑁 (𝑡)]𝑇
in Figure 2b, with 𝑛 being the slow-time indices. In other words, the
slow-time dimension of the frame describes how the OFDM sym-
bols, FMCW chirps, or IR-UWB pulses vary in a larger timescale.
As shown in Figure 2b, the patterns of respiration of two subjects
can be readily observed at distinct locations indicated by the cor-
responding range bins. Moreover, for RF devices equipped with
multiple antennas, the signal matrix is extended to a signal tensor
𝑟 (𝑡, 𝑛, 𝑘) in Figure 2c with 𝑘 indicating the angle bin (representing
the angle of arrival) as resolved by multiple antennas. To summa-
rize, the signal tensor 𝑟 (𝑡, 𝑛, 𝑘) containing the respiration of a single
person can be represented as:

𝑟 (𝑡, 𝑛, 𝑘) = 𝛽𝜏,^ (𝑡, 𝑛, 𝑘) ◦ |𝑟H (𝑡, 𝑛, 𝑘) |𝑒−𝑗4𝜋 (
𝑑+𝑑r
_

)

+ 𝑟LoS (𝑡, 𝑛, 𝑘) + 𝑟N (𝑡, 𝑛, 𝑘), (2)

where 𝛽𝜏,^ (𝑡, 𝑛, 𝑘) is the spread function parameterized by the sub-
ject’s location (as determined by 𝜏 and ^) that describes how a
subject’s respiration signal spread to the neighboring range and an-
gle bins, the operator ◦ denotes the Hadamard product, 𝑟H (𝑡, 𝑛, 𝑘) is
the human respiration signal, 𝑑 is the mean distance from the radar
to the subject’s body, 𝑑r is the micro-displacement caused by res-
piration, _ is the wavelength at the carrier frequency, 𝑟LoS (𝑡, 𝑛, 𝑘)
is the interference due to the LoS path for Wi-Fi, and 𝑟N (𝑡, 𝑛, 𝑘)
denotes noise. Extending Eqn. (2) to cases involving𝑀 subjects in
the environment, we have:

𝑟 (𝑡, 𝑛, 𝑘) =

𝑀∑︁
𝑚=1

𝛽𝑡𝑚,𝑘𝑚 (𝑡, 𝑛, 𝑘) ◦ |𝑟H
𝑚 (𝑡, 𝑛, 𝑘) |𝑒−𝑗4𝜋

(
𝑑𝑚+𝑑r

𝑚
_

)
+ 𝑟LoS (𝑡, 𝑛, 𝑘) + 𝑟N (𝑡, 𝑛, 𝑘) . (3)

Let𝑚 = 𝑖 to be the subject of interest for respiration extraction,
and𝑚 = 𝑗 to be other subjects that cause the interference, then 𝑟𝑖
can be rewritten as a sum of the respiration signal of interest 𝑟H

𝑖
,

interference from other breathing subjects 𝑟 I
𝑗
, LoS signal 𝑟LoS (only

for Wi-Fi sensing), and noise 𝑟N as follows:

𝑟𝑖 (𝑡, 𝑛, 𝑘) = 𝛽𝑡𝑖 ,𝑘𝑖 (𝑡, 𝑛, 𝑘) ◦ |𝑟H
𝑖 (𝑡, 𝑛, 𝑘) |𝑒

−𝑗4𝜋
(
𝑑𝑖+𝑑r

𝑖
_

)

+
𝑀∑︁
𝑗≠𝑖

𝛽𝑡 𝑗 ,𝑘 𝑗
(𝑡, 𝑛, 𝑘) ◦ |𝑟H

𝑗 (𝑡, 𝑛, 𝑘) |𝑒
−𝑗4𝜋

(
𝑑𝑗 +𝑑r

𝑗

_

)

+ 𝑟LoS (𝑡, 𝑛, 𝑘) + 𝑟N (𝑡, 𝑛, 𝑘)
= 𝑟H

𝑖 (𝑡, 𝑛, 𝑘) + 𝑟 I
𝑖 (𝑡, 𝑛, 𝑘) + 𝑟

LoS (𝑡, 𝑛, 𝑘) + 𝑟N (𝑡, 𝑛, 𝑘) . (4)
3Range resolution indicates the ability of an RF sensing device to differentiate reflectors
at different distances. It relies on the bandwidth (𝐵) of the baseband signal and can be
calculated as Δ𝑟 = 𝑐

2𝐵 .
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Figure 3: Constellation diagrams of respiration signals.While
Wi-Fi performs poorly in differentiating multi-person respi-
ration, both radars can differentiate the respiration signals
of sufficiently separated subjects.

Clearly, both the interference and noise are integral parts of the
received signals in Eqn. (4): they complicate the extraction of res-
piration signals. To demonstrate the damaging effects of the in-
terference and noise, we plot the constellation diagrams of the
received signals of different RF schemes under both single-person
and dual-person scenarios in Figure 3. While the noise 𝑟N (𝑡, 𝑛, 𝑘)
is Gaussian-like and it disperses the signal in the IQ space by a
small amount, the interference 𝑟 I

𝑖
(𝑡, 𝑛, 𝑘) (together with the LoS

path 𝑟LoS
𝑖

(𝑡, 𝑛, 𝑘) for Wi-Fi), whose strength is much higher, may
totally overwhelm the targeted respiration signal. Figures 3a and 3b
show that Wi-Fi-based respiration monitoring is able to trace the
respiration of a single person out as an arc, but it is susceptible
to multi-person interference and can barely separate the mixed
signal from close subjects (of 1m distance), because each range bin
of Wi-Fi spans across a large distance of 7.5m. In Figures 3c, 3d,
and 3e, FMCW radar is demonstrated to be more robust to multi-
person interference, as it can differentiate the respiration signals
of reasonably separated subjects of 1m distance, though the front
(closer) subject exhibits a clearer trace. Similarly, it can be observed
in Figures 3g and 3h that IR-UWB can also distinguish two respira-
tion signals from 1m separated subjects, though the rear subject
may be slightly more dispersed due to a further distance.
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To find out the factors that affect the physical separability of the
respiration signals, we perform a quantified analysis on the rela-
tionship between target and interfering respiration signals, given
background noise. In the next two sections, we choose to conduct
experiments and trace-driven analysis using an FMCW radar, be-
cause it is the most re-configurable one and capable of representing
all RF sensing technologies: while FMCW and IR-UWB are a time-
frequency dual pair [13], Wi-Fi introduces an extra (constant) LoS
term that incurs only a scaling effect to the analysis.

4 QUANTIFYING SIGNAL QUALITY
In this section, we give a formal definition of our newly proposed
metric RINR, which measures the quality of received respiration
signal. We also present a thorough investigation into the RINR-
affecting factors to facilitate the modeling of RINR.

4.1 RINR: A New Metric
The signal-to-noise ratio (SNR) is a widely used measure in science
and engineering that measures the quality of a signal by comparing
it to noise. Specifically, SNR can be defined as the ratio between
the power of a signal and that of the background noise. According
to Eqn. (4), we can express the SNR of a particular frame as:

SNR(𝑛) = 𝑃H (𝑛)
𝑃N (𝑛)

=

∑
𝑘

∑
𝑡 |𝑟H (𝑡, 𝑛, 𝑘) |2∑

𝑘

∑
𝑡 |𝑟N (𝑡, 𝑛, 𝑘) |2

. (5)

However, applying SNR directly to RF respiration sensing may
not be exactly practical as it is only suitable for a single subject.
Interference induced by other subjects and the LoS signal is not
properly taken into consideration. Enhancing over SNR, signal-to-
interference-plus-noise ratio (SINR) of the 𝑖-th subject further takes
into account the interfering signals induced by other sources:

SINR𝑖 (𝑛)=
𝑃H
𝑖
(𝑛)

𝑃 I (𝑛) + 𝑃N (𝑛)

=

∑
𝑘

∑
𝑡 |𝑟H

𝑖
(𝑡, 𝑛, 𝑘) |2∑

𝑘

∑
𝑡 ( |𝑟 I

𝑖
(𝑡, 𝑛, 𝑘) |2 + |𝑟LoS (𝑡, 𝑛, 𝑘) |2 + |𝑟N (𝑡, 𝑛, 𝑘) |2)

.(6)

Since SINR integrates power over all range and angle bins, the loca-
tion information of the subject is lost in the metric. Consequently,
physically separable interference from far-away subjects that would
normally not interfere with a respiration signal will also contribute
to a degraded SINR, thus making SINR less useful for assessing
multi-person respiration monitoring.

To exclude physically separable interference, we propose a new
metric RINR to quantify the respiration signal quality under inter-
ference and noise. Specifically, we define RINR as the ratio between
concerned signal power and the sum of interference and noise
power only over specific range and angle bins (𝑡, 𝑘), as identified
by the CFAR (constant false alarm rate) algorithm [29]. According
to Eqn. (4), RINR can be defined as follows:

RINR𝑖 (𝑡, 𝑛, 𝑘) =
𝑃H
𝑖
(𝑡, 𝑛, 𝑘)

𝑃 I (𝑡, 𝑛, 𝑘) + 𝑃N (𝑡, 𝑛, 𝑘)

=
|𝑟H
𝑖
(𝑡, 𝑛, 𝑘) |2

|𝑟 I
𝑖
(𝑡, 𝑛, 𝑘) |2 + |𝑟LoS (𝑡, 𝑛, 𝑘) |2 + |𝑟N (𝑡, 𝑛, 𝑘) |2

. (7)
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Figure 4: Respiration signals from the bin where the subject
of interest is located. The comparison between (a) and (b)
demonstrates that RINR is more practical in evaluating res-
piration signal quality.

This new metric zooms into the range bin 𝑡 and angle bin 𝑘 of the
concerned subject 𝑖 and exclude physically separable interference,
thus correctly characterizing the quality of respiration signal.

To demonstrate that RINR is a better metric than SINR in char-
acterizing the quality of respiration monitoring, we conduct the
following experiment in an indoor environment with an FMCW
radar and two subjects𝐴 and 𝐵. While 𝐵 is the target subject,𝐴 acts
as the interfering subject, and both of them directly face the radar.
In the case shown in Figure 4a, subject 𝐴 and 𝐵 respectively sit at
distances of 1.5m and 2m from the radar. Another case shown in
Figure 4b keeps 𝐴 intact but moves 𝐵 closer to 𝐴. Comparing these
two cases, the power of 𝐴’s respiration signal remains unchanged
but that of 𝐵’s increases as it moves toward the radar. As a result,
𝐵’s SINR gets increased but its RINR can be decreased. Plotting 𝐵’s
respiration waveforms in Figure 4, one may observe the distortion
when 𝐵 gets very close to 𝐴 in Figure 4b: it contradicts the SINR
implication but strongly validates the efficacy of RINR in measuring
the quality of respiration monitoring.

4.2 Factors Affecting Signal Quality
In this section, we further investigate what factors may affect the
quality of respiration signal monitoring leveraging RINR. To per-
form this experiment analysis, we adopt an FMCW radar [48] as
it is the representative RF technology explained in Section 3. This
radar is equipped with 2 transmitter (Tx) antennas (for azimuth),
4 receiver (Rx) antennas, and a tunable bandwidth up to 4GHz
theoretically. Consequently, it is deemed to have up to 2 × 4 = 8
virtual antennas [2].

Target and Interfering Range Bin Indices. In this experiment, we
activate a pair of Tx-Rx antennas and a 2GHz bandwidth to in-
vestigate the relationship between the respiration signal quality
and range bin indices. We first sit subject 𝐴 facing the radar while
varying the subject-radar distance from 1m to 4m with a step size
of 1m, and plot the results in Figure 5a. Subsequently, we fix 𝐴 at
2m distance facing the radar (along the normal radiating direction),
then sit another interfering subject 𝐵 at 15◦ from the radar normal
direction, and vary 𝐵’s position along the radial direction from
−0.4m to 0.4m with a step size of 0.2m from 𝐴 (a negative sign
indicating 𝐵 closer to the radar than 𝐴); the results are shown in
Figure 5. It is clear from Figure 5a that increasing range has a nega-
tive impact on the quality of respiration monitoring, as the reflected
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(b) Respiration with interferer.

Figure 5: Respiration signals obtained by changing range bin
indices of target and interfering subjects.

respiration becomes weaker. Moreover, Figure 5b demonstrates that
the interference induced by a close-by subject may severely degrade
the quality of respiration monitoring.

Different Bandwidths. We further study the impact of bandwidths
of an RF technology on the quality of respiration signals, since band-
width is one of the key parameters that determine range resolution.
We again activate a pair of Tx-Rx antennas of the radar, but sit two
subjects respectively at distances of 2m and 2.2m from the radar,
with azimuth angles 20◦ and -20◦ from the radar normal. To sense
the respiration signal, we chose three radar bandwidths: 750MHz,
1.5 GHz, and 3GHz, and the resulting waveforms are shown in
Figure 6. It can be observed in Figure 6a that the respiration signals
can barely be separated under a narrow bandwidth of 750MHz. As
the bandwidth gradually increases to 1.5 and 3GHz, the respiration
signals achieve higher fidelity as they can be better separated under
a lower mutual interference, as proven by Figures 6b and 6c.
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Figure 6: Respiration signals from two subjects obtained by
employing different radar bandwidths.

Target and Interfering Angle Bin Indices. We activate one Tx and
four Rx antennas of the radar in this experiment and perform respi-
ration monitoring of two subjects. We first fix the distance between
the radar and subject 𝐴 to be 2m, and we vary 𝐴’s azimuth angle
(with respect to the radar normal) from 0◦ to 60◦ with a step size of
20◦. For each setting, we plot a segment of the received respiration
signal and show the results in Figure 7a. We further fix the range
and angle of subject𝐴 to be respectively 2m and 0◦, and let another
interfering subject 𝐵 sit at the same distance, but vary 𝐵’s angle so
that the angle between 𝐴 and 𝐵 is changed from 20◦ to 60◦ with
a step size of 20◦. The results of 𝐴’s respiration signals are shown
as curves of different colors in Figure 7b. It is very evident that
changing the angle of a single subject𝐴 does not have much impact
on the quality of the respiration signals. However, an interfering
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(b) Respiration with interferer.

Figure 7: Respiration signals obtained by changing angle bin
indices of the target and interfering subjects.

subject 𝐵 with the same range as 𝐴 may clearly degrade 𝐴’s signal
quality, unless they have a rather large discrepancy in angles (e.g.,
till 60◦). Note that, with 1 × 4 = 4 virtual antennas, each angle bin
has on average roughly a span of 180◦/4 = 45◦, so both 20◦ and
40◦ may not sufficiently separate the two subjects.

Number of Antennas. We then study the effect of deploying differ-
ent numbers of the virtual antennas in the radar. In the experiment,
both subjects are 1.5m away from the radar, and their azimuth
angles from the radar normal are -20◦ and 20◦, respectively. We
vary the number of antennas to be 2, 4, and 8 and perform FFT
beamforming to focus on signals coming from different directions
(i.e., angle bins). Regardless of the number of antennas, the respi-
ration signals of 𝐴 and 𝐵 always reside in the two middle angle
bins encompassing −20◦ and 20◦, respectively. For example, given 8
angle bins enabled by 8 antennas,𝐴 and 𝐵 respectively reside in the
4-th and 5-th bins. According to the received waveforms of 𝐴 and
𝐵 shown in Figure 8, one may readily observe that a larger number
of antennas helps with resolving mixed signals and improves the
quality of respiration signals: while 2 antennas can barely sepa-
rate the two respiration signals, 4 antennas can already capture
the signal of one subject, and the results with 8 antennas clearly
showcase that respiration signals reflected from different angles
can be perfectly separated.
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Figure 8: Respiration signals obtained by deploying different
numbers of virtual antennas: the more the better.

4.3 Summary
Based on the experiment analysis discussed above, we conclude
that RINR is dependent on all the factors including range/angle
bin indices, bandwidth, and the number of antennas. Although
we have investigated other potential factors, such as center fre-
quency and waveform of the RF technologies, we find out that the
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quality of respiration signals is largely insensitive to the change
of these factors. Therefore, we simply omit to present the related
results. Motivated by the preliminary results, we aim to establish a
comprehensive characterization on how respiration signals spread
across range/angle bins, so as to associate the above-mentioned
four factors with our RINR model.

5 MODELING THE INTERFERENCE
In this section, we first model the relationship between signal atten-
uation and the aforementioned four factors (i.e., range bin, band-
width, angle bin, and antenna number), with the help of a deep
learning network. Leveraging the resulting spread functions of both
the target and interfering subjects, we can further derive the RINR
model of the target subject’s respiration. Finally, we summarize the
key properties of the RINR model as a guide for conducting real-life
multi-person respiration monitoring.

5.1 Spread Function
According to Eqn. (4) and (7), one needs 𝑟H

𝑖
(𝑡, 𝑛, 𝑘) and 𝑟 I

𝑖
(𝑡, 𝑛, 𝑘) to

calculate RINR, which further requires modeling the spread func-
tion 𝛽𝜏,^ (𝑡, 𝑛, 𝑘). This function measures the interference from the
source “location” (in terms of range and angle bins) (𝜏, ^) to another
“location” (𝑡, 𝑘). Conventionally, interference strength is determined
by the “distance” between (𝜏, ^) and (𝑡, 𝑘), but the spread function
has to characterize this distance in the “bin” space, hence becom-
ing dependent on bin-related parameters: bandwidth 𝐵, antenna
number 𝑁 ant, and range/angle bin indices (𝜏, ^). Since respiration
signal is cyclostationary, the spread function does not change along
slow-time 𝑛. Consequently, we could expect the actual form of the
spread function to be 𝛽𝜏,^,𝐵,𝑁 ant (𝑡, 𝑘), which is visualized by our
experiment data in Figure 9, as a “bell” shape around (𝜏, ^) whose
influence may spread to more than 20 range bins and 8 angle bins.
However, we also notice a few challenges in obtaining a closed-
form for the spread function: i) the function does not have a unified
shape across range and angle bins, ii) it may not be monotonic,
but rather displays ripple-like sidelobes. For example, in Figure 9a,
signal strengths in angle bins -4 and -2 are greater than those in
bins -3 and -1, which are closer to the source.

To tackle these challenges, we intend to fit 𝛽𝜏,^,𝐵,𝑁 ant (𝑡, 𝑘) via a
deep neural network trained by our experiment data. Our SPD-Fit
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Figure 9: Visualization of 𝛽𝑡,𝑘,𝐵,𝑁 ant of subject sitting at 1.2m
and 45◦. The respiration signal attenuates across both neigh-
boring range and angle bins, manifesting differently under
distinct settings.

aims to overcome three issues not readily handled by pure analyti-
cal models. First, human respiration cannot be modeled as an ideal
point reflector in space, it is instead the overall result of a reflective
continuum inmotion. Second, the complex physics of a human body
(e.g., scattering, refraction, and attenuation) further complicate the
model. Last but not least, instead of being evaluated on Euclidean
distance, the spread function has to be evaluated upon the range
and angle bins where physical separation among RF signals actually
takes place. However, the discrete nature of the bins (discretized
due to intervals specified by the range and angle resolutions) makes
it impossible to obtain a closed-form solution. Fortunately, the uni-
versal approximation ability [12] of deep learning networks enables
us to recover a complex function relationship, so we leverage SPD-
Fit to fit 𝑓 (𝜏, ^, 𝐵, 𝑁 ant) = 𝛽𝜏,^,𝐵,𝑁 ant (𝑡, 𝑘),∀𝑡, 𝑘 . In other words, 𝑓
takes in 𝜏 , ^, 𝐵, and 𝑁 ant and outputs a matrix across all possible
(𝑡, 𝑘). The Encoder-Decoder architecture of SPD-Fit, arguably the
best for fitting a complex function, is shown in Figure 10. It first
performs one-hot positional encoding to transform the information
of 𝜏 and ^ to an 8 × 120 matrix whose value is 1 at (𝜏, ^) and 0
elsewhere. Meanwhile, all 4 input parameters are transformed to
a vector whose length is 960 with a fully connected layer, then
reshaped to matrices of size 8 × 120. The 5 matrices are combined
to form an 8 × 120 “image” with 5 channels. SPD-Fit then employs
an encoder consisting of three 2D convolutional layers, followed
by a fully connected layer to encode the transformed image to a
32×1 vector in the latent space. Finally, a decoder consisting of four
transposed 2-D convolutional layers and one convolutional layer is
invoked to upsample the latent vector as the output spread func-
tion matrix. Specifically, inside SPD-Fit, kernel size is set to 3 × 3,

𝐵

𝑁𝑎𝑛𝑡

5 × 8 × 120

64 × 4 × 60

128 × 2 × 30

𝜏

κ

Input: 4 × 1

Output: 8 × 120
256 × 1 × 15

32 × 1

64 × 8 × 120

FC + ReLU CNN + BatchNorm + ReLU

(kernel = 3, stride = 2)

TransCNN + BatchNorm + ReLU

(kernel = 3, stride = 2)
8 × 120

256 × 1 × 15

128 × 2 × 30

64 × 4 × 60

1 × 8 × 120

CNN + ReLU

(kernel = 3, stride = 2)

(𝜏, κ) = 1,
otherwise 0

Figure 10: The architecture of our SPD-Fit model for fitting 𝛽𝜏,^,𝐵,𝑁 ant (𝑡, 𝑘).
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Table 1: Parameter settings for data collection.

Angle bin index -4, -3, -2, -1, 1, 2, 3, 4
Range bin index from 1 to 100
Bandwidth (MHz) 150, 750, 1000, 1500, 2000, 3000

Number of (virtual) antennas 2, 4, 8

and stride is set to 2. Multiple batch normalization layers [23] are
used for rescaling and centering intermediate values, while ReLU
layers [27] are used as the activation function to add nonlinearity
as indicated in Figure 10.

To train the SPD-Fit model, we first collect a dataset of spread
functions under different parameter combinations specified in Ta-
ble 1, and we traverse all 8,400 possible combinations. Since the
spread function describes a time-averaged effect of how respiration
signals spread to neighboring bins, we take a 20 seconds average
over the slow-time axis to include the effect of at least 4 complete
respiration cycles. It is worth noting that not all parameter com-
binations are possible; for example, 2 antennas would invalidate
angle bin indices of 3 to 8. To guarantee a consistent 8 × 120 input
data format for SPD-Fit, we pad unavailable bin indices with 0’s to
indicate the absence of sensing signal. During the training process,
we force the output spread function to be as close to the ground
truth as possible by minimizing the MSE (mean squared error) loss.
The training is conducted with Pytorch on a GeForce RTX 2080 Ti
GPU with batch size set to 64. We train the network for 500 epochs
using Adam optimizer [26] with an initial learning rate of 0.0001.

To demonstrate the efficacy of using SPD-Fit network for gen-
erating spread functions, we feed several sets of parameters into
the network and plot the generated results in Figure 11. It can be
observed the respiration signals spread to both neighboring range
and angle bins just as the ground truth spread function does in
Figure 9: i.e., the spread function resembles a “bell” in the 2-D space
constituted by the range and angle bins, and conforms to the fol-
lowing rules. First, as the bandwidth of the radar increases, the
number of affected range bins also increases. This can be explained
by the fact that higher bandwidth results in a decreased range bin
width, leading to more range bins within a certain Euclidean dis-
tance. Similarly, we find that a larger number of antennas results in
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Figure 11: Visualization of 𝛽𝜏,^,𝐵,𝑁 ant (𝑡, 𝑘) of a subject gener-
ated by SPD-Fit with different parameter settings.

more affected angle bins due to the decreased angle bin intervals.
Last but not least, it can be observed that while the spread function
attenuates monotonically in the range bin, it displays sidelobes
causing fluctuations along the angle bin dimension.

5.2 RINR Model
Fitting the spread function allows us to derive a more concrete RINR
model. Since the spread function describes a time-average effect,
the RINR model should also be evaluated in a time-average sense.
Therefore, we take the expectation of the right side of Eqn. (7) so
as to absorb the slow-time dimension 𝑛; the resulted notation of
RINR (only with (𝑡, 𝑘) as parameters) can be written as:

RINR𝑖 (𝑡, 𝑘)=
E𝑛 ( |𝑟H

𝑖
(𝑡, 𝑛, 𝑘) |2)

E𝑛 ( |𝑟 I
𝑖
(𝑡, 𝑛, 𝑘) |2 + |𝑟LoS (𝑡, 𝑛, 𝑘) |2 + |𝑟N (𝑡, 𝑛, 𝑘) |2)

, (8)

where E𝑛 ( |𝑟LoS (𝑡, 𝑛, 𝑘) |2) and E𝑛 ( |𝑟N (𝑡, 𝑛, 𝑘) |2) are constant pow-
ers of the LoS path and noise, according to [52].E𝑛 ( |𝑟LoS (𝑡, 𝑛, 𝑘) |2) >
0 for Wi-Fi-based respiration monitoring; E𝑛 ( |𝑟LoS (𝑡, 𝑛, 𝑘) |2) = 0
otherwise. Assuming the same amplitude for the respiration signals
of all subjects, we can simplify Eqn. (8) using the newly fitted spread
function 𝛽𝜏,^,𝐵,𝑁 ant (𝑡, 𝑘):

RINR𝑖 (𝑡, 𝑘) =
𝛽2
𝑡𝑖 ,𝑘𝑖 ,𝐵,𝑁

ant (𝑡, 𝑘)∑
𝑗≠𝑖 𝛽

2
𝑡 𝑗 ,𝑘 𝑗 ,𝐵,𝑁

ant (𝑡, 𝑘) +𝐶
, (9)

where 𝐶 = E𝑛 ( |𝑟LoS (𝑡, 𝑛, 𝑘) |2) + E𝑛 ( |𝑟N (𝑡, 𝑛, 𝑘) |2); it is empirically
set to 2 × 10−8 and 7 × 10−5 for IR-UWB and FMCW radar, re-
spectively.4 Moreover, for Wi-Fi-based respiration monitoring, 𝐶
depends not only on the noise strength, but also on the strength
of LoS path (to be evaluated in Section 6.4). Eqn. (9) indicates that
RINR is in the form of a 2-D matrix whose two dimensions are
indices of range and angle bins, respectively.

Fixing the radar with 3GHz bandwidth and 8 antennas, we show
two cases of deriving RINR from the spread functions of two sub-
jects5 in Figure 12. The first case has the two subjects distantly
located (with 1m distance), while the second case has them closely
located (with 0.4m distance); we show them in the upper and lower
panels of Figure 12, respectively. In particular, the sum of squares of
their spread functions

∑2
𝑖=1 𝛽

2
𝑡𝑖 ,𝑘𝑖 ,𝐵,𝑁

ant (𝑡, 𝑘) (the first term in the
denominator of Eqn. (9)) is shown in Figure 12a, where the actual
bin locations of subjects 𝐴 and 𝐵 are marked with black and red
crosses, respectively. Dividing the power of one subject’s spread
function by the sum of noise power and that shown in Figure 12a,
we get the RINR matrices for both subjects, and show them in
Figure 12b and 12c, respectively. One may readily observe that,
whereas the optimal RINR location coincides with the actual bin
and angle bins in the first case, this coincidence can be slightly
violated in the second case, the actual peaks are “pushed away” by
nearby interfering subjects. The inconsistency between the bins
of an RINR peak and the actual location of a subject necessitates a
two-step procedure, i.e., calculate the RINR matrix first and then
select the bins of RINR peak for retrieving respiration signals.

4The empirical value of𝐶 is obtained by a two-hour statistics.
5The derivation can be readily extended to more subjects, but we stick to two-subject
scenarios here for better clarity and brevity.
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Figure 12: Visualization of 𝛽2
𝜏,^,𝐵,𝑁 ant (𝑡, 𝑘) of subject 𝐴 and 𝐵

and their RINR; the positions of subjects are labeled by black
and red crosses respectively.

We can further derive an RINR heatmap to describe the spatial
distributions of the achievable RINR of multi-person respiration
monitoring. We set the radar at the origin of the coordinate system,
and align 𝑥 and 𝑦 axes with the parallel and normal directions
of the radar, respectively. We fix the 𝑥 coordinate of subject 𝐴
(marked as a red cross) to be 0m and 1m in Figure 13a and 13b,
respectively, with the top, middle, and bottom panels having the
𝐴’s 𝑦 coordinate set as 1m, 2m, and 3m, respectively. Given a fixed
position of 𝐴, we move subject 𝐵 to scan across the 𝑥-𝑦 plane. For
each𝐴-𝐵 position pair, we calculate RINR matrices and extract peak
values respectively for 𝐴 and 𝐵, and we put the smaller RINR value
(termed achievable RINR) at the midpoint between them to obtain
RINR heatmaps characterizing the spatial distribution of quality of
respiration monitoring. Noted that each subfigure is independently
normalized to fit the color scale, so the same color scale does not
necessarily represent the same RINR value across subfigures.

The top panel of Figure 13a clearly depicts a triangular “forbid-
den” area around𝐴; it indicates that, when 𝐵 gets too close to𝐴, the
achievable RINR becomes too small to enable physical separation of
their respiration signals. One may also observe a “wheel spoke”-like
pattern at different angles; it is caused by the sidelobes induced by
FFT beamforming, as discussed in Section 5.1 (e.g., Figure 9). As
𝐴 moves to 2m along the 𝑦-axis, the middle panel of Figure 13a
shows that the forbidden area enlarges to a trapezoid, since the
width along the 𝑥-axis spanned by a single angle bin increases.
Moreover, further moving 𝐴 to 3m, as shown in the bottom panel
of Figure 13a, makes the forbidden area grow boundlessly along
the radial direction from the radar, where the signal reflected from
𝐵 becomes too weak to be detected. While Figure 13a illustrates a
symmetric case, we change the 𝑥-coordinate of subject 𝐴 to 1m to
show an asymmetric case in Figure 13b. It is clear that similar ob-
servations made in Figure 13a (e.g., a forbidden area around 𝐴) still
apply here; the major differences in patterns can be attributed to
the asymmetric deployment. Moreover, the conclusions definitely
hold true for negative 𝑥-coordinates of 𝐴 due to space symmetry.
Therefore, the results shown in Figure 13 are generalizable to arbi-
trary subject positions. To summarize the key insights suggested
by the RINR heatmap, we further quantify the relationship between
RINR and the distance between the subjects in Section 5.3.
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(a) 𝑥 = 0, 𝑦 = 1, 2, 3 m.
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(b) 𝑥 = 1, 𝑦 = 1, 2, 3 m.

Figure 13: RINR heatmaps generated for a 3GHz and 8 an-
tenna radar. The 𝑥 distance of subject 𝐴 is 0m and 1m in
(a) and (b), respectively. The top, middle, and bottom panels
show that his 𝑦 distance is 1m, 2m, and 3m, respectively.

5.3 Key Takeaways from the Model
Given the radar settings and the bin indices of the subjects, the
RINR model in Section 5.2 outputs the worst-case (among several
subjects) achievable RINR that indicates the quality of multi-person
respiration monitoring. However, we are often interested in reverse
tasks in practice, e.g., obtaining the minimum distance between two
subjects (in terms of their gravity centers) to guarantee a desired
RINR. To find such a minimum distance for the scenarios studies in
Section 5.2, we maintain the same coordinates of subject 𝐴, fix the
𝑥-coordinate to be 0m for subject 𝐵 but let its 𝑦-coordinate varying
from 1.3m to 2.1m, so as to obtain the resulted RINR in Figure 14a
(with legend indicating the bandwidth and antenna number). We
also fix the 𝑦-coordinate of 𝐵 to be 1m and move its 𝑥-coordinate
from 0.5m to 1.3m to obtain the RINR results in Figure 14b.
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(a) 𝐵 moves in the 𝑦 direction.
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(b) 𝐵 moves in the 𝑥 direction.

Figure 14: The smaller RINR between subjects 𝐴 and 𝐵 as a
function of their Euclidean distance.
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One may readily observe that, given an RINR threshold of 100,
which is shown as red dashed lines in the figures6, the minimum
distances between the subjects under 0.75GHz and 8 antennas (the
worst resolution given this specific type of radar [48]) are slightly
below 0.6m and 0.7m along the𝑦 and 𝑥 directions, respectively. The
more stringent requirement along the 𝑥 axis is actually reflected
in the top panel of Figure 13a: the dark-blue forbidden area spans
a larger distance along the 𝑥-axis. Moreover, distances along both
𝑥- and 𝑦-axis decrease with the radar bandwidth; they respectively
drop below 0.3m and 0.5m eventually. As these are the closest
distances two subjects can ever reach (given the dimension of a
human body), physical separability alone is proven sufficient. It is
noticeable in Figure 14a that the smaller RINR between two sub-
jects first increases with the distance due to weaker interference
then drops slightly because the respiration power attenuates with
one subject moving further from the radar. Therefore, to achieve
high-quality monitoring for both subjects, we have to consider
both the subjects’ positions and their separation. Furthermore, one
may readily observe from Figure 14b that the RINR under different
antenna numbers is similar, but shows distinctions under different
bandwidth of 3GHz and 0.75GHz. This later observation implies
that, though both range and angle resolutions may help improve
the physical separability of multi-person respiration signals, the
former plays a more prominent role than the latter.

6 EVALUATION
In this section, we first demonstrate the efficacy of employing our
RINR model as a guideline for conducting multi-person respiration
monitoring, by studying the relationship between RINR and two key
respiration indicators. Then we investigate how practical factors
(e.g., multipath and LoS) affect the performance of the RINR model.
Finally, we show how proper radar placement, guided by RINR, can
help improve the quality of multi-person respiration monitoring.
Though only three of the authors (healthy adults) are involved as
the subjects, we still strictly follow the approved IRB procedure of
our institute. During the evaluation, all subjects sit statically and
breathe naturally without extra interference. For each scenario, we
conduct corresponding experiments 30 times.

6.1 Respiration Rate Error vs RINR
To demonstrate the effectiveness of RINR in reflecting the perfor-
mance of respiration monitoring, we verify the relation between
respiration rate error and RINR generated by our model. We con-
duct experiments in a 30m2 empty room, and use the same radar
configuration and placement as in Section 5.2. We employ a Neu-
Log respiration monitor belt logger sensor NUL-236 [36] to collect
ground truth respiration signals; its sampling rate is set to the same
50fps as the radar and the Precision Time Protocol [21] is used to
synchronize the clocks so as to align the ground truth and radar-
sensed signal. Furthermore, to estimate the respiration rate from
the waveform, we apply a sliding window of 1000 sampling points,
then perform FFT with interpolation to find the frequency peaks in
the desired respiration range of 0.16Hz to 0.6Hz [68]. Finally, we
obtain the respiration rate error as the absolute difference between
the estimated and actual respiration rates.
6This RINR threshold will be further explained in Sections 6.1 and 6.2.

We employ two subjects and present the target’s error heatmaps
in Figures 15a, 15b, and 15c, while depicting the close error-RINR
correlation in Figure 15d for each subject in a more generalized
3-subject scenario. The heatmaps differ from Figure 13a in two
aspects: i) only the target errors are shown here by moving an
interfering subject to scan across the 𝑥-𝑦 plane, and ii) the color
scale is chosen to maintain a consistent relationship between color
and monitoring quality (i.e., blue and yellow indicate high and
low errors, respectively). It is intuitive to observe from the three
heatmaps that the high-error (blue) zones are all surrounding the
target, yet their shapes keep changing when the target moves from
(0, 1)m to (0, 3)m. This change in shape can be explained by the
fact that the resolution of the angle bin becomes more dominating
than the range bin, since the same angle bin covers a larger distance
along the 𝑥-axis with an increasing distance between the target and
the radar. It is also worth noting that these high-error zones are not
symmetric along the 𝑦-axis: since an interfering subject closer to
the radar causes stronger interference, its distance from the target
subject should be larger to maintain the same level of error.

To further quantify the relation between respiration rate error
and RINR, we perform a more general experiment by employing
three mutually interfering subjects, meanwhile recording their re-
spective rate errors and randomly changing their positions after
each recording. We show the measured respiration rate error as a
function of the corresponding RINR in Figure 15d. One may readily
observe that the error and its variance are both decreasing func-
tions of RINR. When RINR is at 30, the median respiration rate error
is 3.5 bpm, which is too large to render the respiration monitor-
ing useful. However, as RINR increases, the median error steadily
decreases and it drops below 1rpm (sufficiently accurate for respi-
ration monitoring purpose) after RINR reaches 100: this value can
hence be deemed as a threshold of physical separability, which will
be corroborated later. The results evidently confirm that i) RINR can
effectively indicate respiration rate error and ii) our RINR model
(albeit mostly illustrated for two subjects) can be readily extended
to multi-subject scenarios.

(a) Target at 𝑥 = 0m, 𝑦 = 1m. (b) Target at 𝑥 = 0m, 𝑦 = 2m.

(c) Target at 𝑥 = 0m, 𝑦 = 3m.
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(d) Error vs RINR.

Figure 15: Respiration rate error heatmaps of a target (a-c)
and the relation between errors and RINR (d).
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6.2 Waveform Similarity vs RINR
We further investigate whether RINR can be used for reflecting
the waveform similarity, which is a more fine-grained respiration
indicator than respiration rate. Given the same experiment setup as
in Section 6.1, we first employ a Savitzky-Golay filter [41] to process
the captured RF respiration signal 𝑟 (𝑛) and obtain the smoothed
signal 𝑟 ′(𝑛). To measure the similarity between 𝑟 ′(𝑛) and 𝑟gt (𝑛),
we first map both signals to the range [0, 1], and then leverage the
cosine similarity metric S(𝑟 ′, 𝑟gt) to quantify how much the two
signals resemble each other:

S(𝑟 ′, 𝑟gt) =
𝑟 ′ · 𝑟gt

∥𝑟 ′∥∥𝑟gt∥
=

∑𝑁
𝑛=1 𝑟

′(𝑛)𝑟gt (𝑛)√︃∑𝑁
𝑛=1 𝑟

′2 (𝑛)
√︃∑𝑁

𝑛=1 𝑟
2
gt (𝑛)

. (10)

Essentially, the cosine similarity is calculated by measuring the
cosine of the angle between two vectors 𝑟 ′(𝑛) and 𝑟gt (𝑛), and then
determines to what extent the two vectors point to the same “di-
rection” in a high dimensional space. A higher cosine similarity
indicates better fidelity of the estimated waveform.

Similar to the experiments in Section 6.1, we employ two subjects,
and move the interfering subject to scan across the plane and obtain
three similarity heatmaps of the target subject; the results are pre-
sented in Figures 16a, 16b, and 16c, where yellow and blue indicate
high and low similarities, respectively. It can be observed that the
patterns of the heatmaps roughly follow those in Figure 15, yet the
relatively larger blue areas (especially in Figure 16b and 16c) seem
to suggest that the performance in terms of waveform similarity
is much worse than that of respiration rate. However, the seeming
enlargement of the blue area is actually caused by the separate
normalizations: the same color scale does not necessarily represent
the same value across subfigures. To indicate the actual sizes of
the low-similarity zones, we draw red contours in the heatmaps
corresponding to a similarity of 0.8. One may readily observe that
as the target subject moves away from the radar, the size of the
low-similarity zone first decreases and then increases. The size
change can be explained as follows. First, when the target is near
the radar, the stronger interference nearby enlarges the area, as
shown in Figure 16a. Moreover, when the subject moves further to
3m (Figure 16c), the target signal quality is degraded, leading to an
enlarged low-similarity zone again.

To further quantify the relation between waveform similarity
and RINR, we perform a more general experiment by employing
three mutually interfering subjects, and meanwhile recording their
respective respiration waveform similarities. We show waveform
similarity as a function of the corresponding RINR in Figure 16d,
where the two quantities clearly exhibit a monotonic relation, i.e.,
the waveform similarity increases with RINR. When RINR takes on
a small value of 30, the median cosine similarity can be as small as
0.62, indicating a failed recovery of the respiration waveform. The
similarity increases above 0.8 (suggesting a strong positive correla-
tion between the estimated and ground truth waveform) after RINR
exceeds 100: this value corroborates the same threshold of physical
separability identified in Section 6.1, and again verifies that our
RINR model can be readily applied as a guideline for conducting
multi-subject respiration monitoring.

(a) Target at 𝑥 = 0m, 𝑦 = 1m. (b) Target at 𝑥 = 0m, 𝑦 = 2m.

(c) Target at 𝑥 = 0m, 𝑦 = 3m.
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(d) Similarity vs RINR.

Figure 16: Waveform similarity heatmaps of a target (a-c)
and the relation between similarities and RINR (d).

6.3 Does Multipath Matter?
The RINR model in Eqn. (9) is developed without taking multipath
into account, because we conjecture that it holds true even in a
multipath environment given that typical multipath reflections are
much weaker and with longer paths to be well separated in range
bins. To prove this point, we repeat the experiments in Section 6.1
and 6.2 in another two rooms, i.e., a small room of 5m2 cluttered
with furniture and a medium-sized room of 10m2 with a desk and a
cabinet, to represent different levels of multipath severity. We plot
the respiration rate error and waveform similarity of the target in
the three rooms in Figure 17. As shown in Figure 17a, the respiration
rate errors start respectively for large, medium, and small rooms
at 3.2, 3.5, and 3.9 rpm, when RINR is at its minimum of 30. As
RINR increases to 330, the rate errors gradually drop to three close
values of 0.2, 0.2, and 0.45. Similarly, in Figure 17b, it can be seen
that when the RINR is 30, the waveform similarity starts at three
nearby values of 0.61, 0.63, and 0.66, respectively. As RINR increases,
the similarities gradually reach their respective saturated values
of 0.82, 0.88, and 0.92. To sum up, we conclude that although the
same RINR manifests as slightly different respiration rate errors
and waveform similarities in different environments (i.e., better in
a spacious room and worse in a cramped room), the two quantities
as functions of RINR follow environment-independent trends and
are largely insensitive to the existence of multipath.
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(b) Waveform similarity.

Figure 17: Effect of multipath on respiration rate error (a)
and waveform similarity (b).
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Figure 18: Waveform similarity heatmaps of a target under
different LoS path lengths (a-c) and the relation between
similarities and LoS path length (d).

6.4 How about LoS Interference under Wi-Fi?
As stated in Section 5.2, the denominator in the RINR expression
for Wi-Fi involves not only the noise and interference from other
subjects, but also the strength of the LoS path signal. To study how
LoS path affects the performance of Wi-Fi-based multi-person mon-
itoring, we conduct similar experiments as in Section 6.1, but place
the Wi-Fi receiver (with 4 Rx antennas) instead of the radar at the
origin. In the meantime, the Wi-Fi transmitter (with 2 Tx anten-
nas) is placed at different LoS distances along the 𝑥-axis. Moreover,
we fix the distance between the target subject (marked as a red
cross in the heatmap) and the Tx-Rx center to be 1m, and their
connecting line to be perpendicular to the 𝑥-axis. By moving the
interfering subject and varying the length of the LoS path from 1m
to 3m at a step size of 1m, we measure waveform similarities under
different LoS path lengths and plot their respective heatmaps in Fig-
ures 18a, 18b, and 18c. One may readily observe that the heatmaps
do not display regular ribbon-like patterns of high- and low-RINR
regions as in Figure 15, since the respiration signals are basically
interfered with everywhere due to the low range and angle resolu-
tions of Wi-Fi. Moreover, due to the bistatic nature of Wi-Fi-based
respiration sensing, the heatmaps become more complicated and
cannot be directly compared to the ones in Figure 16.

To further quantify the effect of LoS path, we show the measured
waveform similarities under different LoS path lengths as a boxplot
in Figure 18d. Apparently, the relation between waveform similarity
and LoS path length is not monotonic anymore, as a LoS path length
of 2m seems to result in the best performance in similarity. In fact,
the increase of the similarity from 1m LoS path length to 2m is
evidently the result of a reduced LoS signal strength as expressed
in Eqn. (9), but the latter similarity drop has to be the joint effect
of i) a reduced LoS signal strength and ii) a reduced reflection
signal (representing respiration) strength due to a diminishing cross-
section (of a human body). In general, the current sensing mode
offered by Wi-Fi is always subject to the LoS interference. This can

(a) 2 subjects separated by 1m. (b) 2 subjects separated by 0.5m.

(c) 3 subjects separated by 1m. (d) 3 subjects separated by 0.5m.

Figure 19: RINR heatmaps of a target obtained by moving a
radar across the plane, under one (a-b) or two (c-d) interfering
subjects separated by different distances.

be readily addressed by switching to the monostatic radar sensing
or explore our recent proposal to integrate monostatic sensing with
Wi-Fi communications [9].

6.5 Guidance to Radar Placement
In the previous sections, we have discussed how the subject dis-
tance can be adjusted to obtain a sufficient RINR, thus guaranteeing
sufficient physical separability indicated by low respiration rate
error and high waveform similarity. However, we are often not al-
lowed to change the subject positions in practice due to the specific
environment layout (e.g., two subjects sleeping in bed and passen-
gers sitting in a vehicle). Essentially, we are more concerned about
the reverse problem, i.e., given fixed subject positions, how should
we place the radar to mitigate the interference in multi-person
respiration monitoring. We perform the following experiment to
investigate the optimal placement of the radar. In the experiment,
we fix the positions of 2 to 3 subjects (the target and interfering
subject(s) are shown as red and black crosses, respectively), move
the radar to scan the RINR value of the target subject, and illustrate
the resulted heatmaps in Figure 19. We omit the plots for corre-
sponding rate errors and waveform similarities as they have been
depicted in Figures 15d and 16d.

It is noticeable that RINR takes on the maximum and minimum
values when the radar is placed very close to the target subject and
interfering subject(s), respectively. Specifically, there is a bright
yellow high-RINR parabolic region around the target where the
radar can be placed to achieve high RINR. By comparing the top
and bottom panels of Figure 19, it is evident that increasing the
number of subjects will suppress the high RINR region by decreas-
ing the eccentricity of contours. Similarly, by comparing the results
in the left and right panels of Figure 19, it becomes clear that a
closer distance between the subjects further shrinks the high-RINR
region, and pushes the optimal position for radar placement to the
opposite directions of the interfering targets. Furthermore, most of
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the time we aim to perform respiration monitoring for all subjects
simultaneously. Consequently, the radar placement has to take the
RINR of multiple subjects into account. By inspecting the space
symmetry of the subjects, it is intuitive that the radar should not
be placed in the vicinity of any single subject (and not within the
convex hull defined by all subjects due to the directionality), as
doing so will result in a low RINR for other subjects. All in all, the
radar position optimizing RINR for all subjects should i) fall in the
yellowish-green region outside by the strong-interference region
roughly bounded by an ellipse, and ii) not too far from all subjects
to maintain sufficient reflected signal strengths for each of them.

7 CONCLUSION
We study the conditions under which multiple respiration signals
can be physically separated by RF sensing in this paper. To this end,
we propose a novel metric RINR to quantify not only the quality
of respiration signal but also the physical separability of mutually
interfering respiration signals. Employing a carefully designed deep
learning model, we fit the spread function of respiration signals in
order to numerically characterize the RINR model; this in turn leads
to a concrete indication on the limit of physical separability of multi-
person respiration signals. As a by-product, we have also found out
that, with an adequate radar, physical separability alone is sufficient
for separating respiration signals from two side-by-side subjects.
With extensive experiments, we have firmly validated the RINR
model, and demonstrated the potential of employing this model as
a guideline for conducting multi-person respiration monitoring. We
foresee that integrating the RINR metric and physical separability
concept into future system design will substantially push RF-based
respiration monitoring towards real-life deployments.
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