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Abstract—The contact-free sensing nature of Wi-Fi has been leveraged to achieve privacy breaches such as keystroke inference (KI).
However, the use of CSI (channel state information) in existing attacks is highly questionable due to its signal instability and hardness to
acquire. Moreover, such Wi-fi-based attacks are confined to only one victim because Wi-Fi sensing offers insufficient range resolution
to physically differentiate multiple victims. To this end, we propose MuKI-Fi to enable, for the first time, multi-person KI, leveraging
BFI (beamforming feedback information), a new feature offered by latest Wi-Fi hardware, transmitted in clear-text by smartphones.
BFI’s characteristics, clear-text communication and signal stability, make it readily acquirable and usable by any other Wi-Fi devices
switching to monitor mode without the need for low-level hacking on hardware. Moreover, to improve upon existing KI methods offering
very limited generalizability across diversified application scenarios, MuKI-Fi innovates in an adversarial learning scheme to enable
its inference generalizable towards unseen scenarios. Finally, we discover that, as a smartphone is in close proximity to a victim, the
variations of BFI caused by that victim’s keystrokes in such near-field substantially outweigh those caused by other distant victims; this
phenomenon naturally allows for multi-person KI. Our extensive evaluations clearly demonstrate that MuKI-Fi can effectively eavesdrop
on the keystrokes of multiple subjects, achieving 87.1% accuracy for individual keystrokes and up to 81% top-100 accuracy for stealing
passwords from mobile applications(e.g., WeChat) on average.

Index Terms—Keystroke inference attack, password-stealing, Wi-Fi sensing, multi-person sensing, beamforming feedback
information, wireless security.
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1 INTRODUCTION

In modern societies, mobile devices like smartphones
and tablets, along with their software applications, are com-
monly adopted to identify users, making password theft
almost equivalent to identity theft [1], [2]. Consequently,
diversified eavesdropping attacks have emerged, either di-
rect [3], [4] or indirect [5], [6], [7], [8], [9], [10], [11]. Bearing
no need to have a visual on the target screen, the indirect
attacks are particularly threatening as they leverage side-
channels to infer passwords in a stealthy manner. Typi-
cal side-channels include acoustic [6], [7], electromagnetic
emission [12], indirect vision [8], [9], [13], [14], and motion
sensors [10], [11], [15]. In addition to these, recently, Wi-Fi
CSI (channel state information) has been exploited for side-
channel attacks [16], [17]. Essentially, since keystrokes affect
wireless channels as shown in Fig. 1, the “twisted” CSIs
can be used to infer individual keys involved in typing a
password, without the need for external devices close to the
victim device or any compromise of the victim device itself.
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Fig. 1. Vision of MuKI-Fi: in multi-person scenario, eavesdropping on
clear-text BFI (representing downlink channel states) transmitted to the
AP, Eve can readily infer any Bob’s password typing that physically “hits”
the Wi-Fi channel.

However, CSI-based attacks suffer from two critical is-
sues. Firstly, though CSI was hacked1 from Wi-Fi hard-
ware more than a decade ago [20], only a handful of
such hardware have been hacked by far while Wi-Fi stan-
dards/technologies are constantly getting upgraded every
two or three years,2 which limits the feasibility to obtain

1. Instead of high-level software/code hacking, here we refer to a
low-level hacking, including firmware patching [18] and driver modifica-
tion [19], on Wi-Fi hardware.

2. As a matter of fact, most research proposals driven by Wi-Fi CSIs
are still leveraging the 15-year-old Wi-Fi 4 hardware [21].
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CSI. Secondly, Wi-Fi signal usually suffers severe cross-
technology interference [22] in addition to co-channel and
adjacent channel interference [23], [24], leading to signal
instability of CSI. This instability degrades the performance
of CSI-based sensing applications, and we will delve into
this phenomenon further in Sec. 2. Therefore, the practicality
of CSI-based side-channel attacks is highly questionable,
posing a substantial obstacle to the development of a Wi-
Fi keystroke inference (KI) system.

Moreover, there is an inherent challenge in password-
stealing scenarios: passwords lack linguistic structure in
natural languages (e.g., word structure and occurrence fre-
quency of letters) to serve as prior information and features;
this has forced existing password inference methods to ei-
ther rely on independent keystroke features [16] or leverage
transition features between two keystrokes [17]. Nonethe-
less, as these features have strong environment dependency,
the resulting inference methods can hardly be generalized to
unseen scenarios. Although supervised learning techniques
may address this issue with sufficient training data, gather-
ing such a labeled dataset can be prohibitively difficult due
to diversified smartphones and human typing habits.

Besides, even if feasible under certain conditions, prior
CSI-based attacks are limited to scenarios involving only
one single victim, due to an inherent obstacle in Wi-Fi sens-
ing. Specifically, the contention-based multi-access nature of
Wi-Fi communication does not provide a sufficiently wide
bandwidth to offer a range resolution capable of distin-
guishing different sensing subjects. To overcome this limi-
tation, two approaches have been attempted. On one hand,
many distributed antennas can be used to achieve enhanced
spatial resolution for separating subjects [25], at the cost of
messing up with the Wi-Fi communication functions. On
the other hand, signal processing techniques for separating
subjects at the CSI level have been attempted [26], but there
is a lack of theoretical guarantee on the success of such
signal-level separation [27]. Despite these efforts, the special
requirements for Wi-Fi devices and the long processing time
have rendered these approaches impractical for keystroke
eavesdropping, thus multi-person KI remains a challenge.

To tackle these challenges, we propose MuKI-Fi, the first
multi-person KI system, to steal passwords by eavesdrop-
ping on keystroke-induced BFI (beamforming feedback infor-
mation) variations. In order to overcome the impracticality
of using CSI, we pioneer the use of such a new feature
that is piggybacked by new Wi-Fi hardware (starting from
Wi-Fi 5 [28]) and trasmitted in clear-text on control frames.
Thanks to BFI’s clear-text nature, no low-level hacking is
needed on Wi-Fi hardware. Basically, in the form of com-
pressed digital version of analog CSI, BFIs are used to feed
downlink channel states back to an access point (AP), for the
sake of guiding AP beamforming [29]. Though they only
account for part of the downlink CSIs concerning the AP
side, the fact that on-screen typing directly impacts the Wi-
Fi antennas (hence channels) right behind the screen (see
Fig. 1) allows BFIs to contain sufficient information about
keystrokes. Consequently, any device capable of overhear-
ing Wi-Fi traffic (under the monitor mode [30]) may obtain
BFIs for free: in fact, MuKI-Fi may even use a mobile device.
As shown in Fig. 1, when the victim types password, our
MuKI-Fi eavesdrops on the BFI and makes use of this new

vulnerability to realize password inference without the need
for hacking the constantly evolving Wi-Fi hardware.

Given the lack of linguistic structure in passwords,
we follow the canonical way of identifying individual
keystrokes, but we leverage a deep learning model with
a natural segmentation as input to get rid of the artifacts
introduced by rule-based segmentation and environment
interference. Then, we exploit adversarial learning [31] to
extract features relevant only to individual keystrokes; such
a cross-domain training method is capable of generaliz-
ing keystroke inference to unseen scenarios with limited
amount of training data.

For multi-person scenarios, MuKI-Fi exploits two funda-
mental factors in such a realistic multi-user communication
setting shown in Fig. 1: i) each AP-smartphone link uniquely
identifies the victim’s keystroke to be sensed, and ii) since
the victim’s finger is within the near-field (less than 0.1m
in range) of his/her own Wi-Fi device, the channel variation
caused by the keystroke to the AP-smartphone link could be
so strong as to push the interference from other keystrokes
down to the noise floor. Thus, MuKI-Fi explores the poten-
tial of the default multi-user communication setting of Wi-Fi
and naturally applies it to multi-person KI.

In summary, our main contributions are:
• We propose MuKI-Fi as the first WiFi-based multi-person

keystroke eavesdropping system; leveraging the clear-
text BFI, it allows a wide range of Wi-Fi devices to
eavesdrop on passwords at ease.

• We innovate in leveraging adversarial learning to re-
move environment dependencies, rendering MuKI-Fi’s
inference model generalizable to unseen scenarios.

• We exposes the potential of multi-user communication
system for sensing; it is exploited by MuKI-Fi to achieve
multi-person KI.

• We implement a prototype of MuKI-Fi and conduct
extensive evaluations. The results indicate that MuKI-Fi
achieves 87.1% accuracy for identifying single numeri-
cal keys, and a top-100 accuracy of 81% for inferring a
6-digit numerical password.

The paper is structured as follows. Sec. 2 introduces the
background and motivation of our work. Sec. 3 presents the
attack design of MuKI-Fi in detail. Sec.s 4 and 5 respectively
explain MuKI-Fi’s implementation and report the extensive
evaluations on MuKI-Fi, followed by a discussion on exten-
sion from numerical to general keystroke inference. Related
works are briefly captured in Sec. 6. Finally, we conclude
our paper in Sec. 7.

2 BACKGROUND AND MOTIVATION

In this section, considering MuKI-Fi is based on Wi-Fi
sensing, we first briefly introduce the basic principles of
Wi-Fi human sensing. Next, we present our attack scenario
of multi-person KI and identify the limitations of existing
approaches in addressing this scenario. Finally, we demon-
strate the advantages of BFI over CSI for realizing the attack.

2.1 Wi-Fi Human Sensing Basics

We start by introducing a Wi-Fi sensing system with an AP
and user equipment (UE) pair aiming to sense the physical



3

Downlink

(CSI)

AP (Alice)

Attacker
(Eve)

Password
“12345678”

Victim(Bob3)

Victim (Bob1) 

Victim(Bob2)

(a) Existing method.

0 2 4 6 8 10

Time(s)

20

40

60

80

100

120

A
m

p
li

tu
d
e

Bob 2

Bob 3Bob 1

(b) Mixed CSI of keystrokes.

Fig. 2. Existing CSI-based KI method: (a) system architecture and (b)
entangled CSI signals of keystrokes from different users.

motion of a victim denoted by V . Additionally, there are
N − 1 other individuals denoted as Ij (∀j ∈ 1, ...N − 1)
within the system, serving as interference to V . At a certain
time t, we can model the wireless channel gain between the
AP and the UE as:

h̃A,E(t) = hA,V,E(t) +
N−1∑
j=1

hA,Ij ,E(t) + hS
A,E + hD

A,E(t), (1)

where hS
A,E and hD

A,E(t) represent the static and dynamic
channel gains between the AP and UE due to, respectively,
the direct communication path and interfering motions
along it, and hA,V,E(t) and hA,Ij ,E(t) indicates the channel
gain from the AP to UE via the reflection of V and Ij
respectively. hA,V,E(t) can be expressed as:

hA,V,E(t) =
λ2
√
GA,V,Ee

−i2π(dA,V (t)+dV,E(t))/λ

(4π)2(dA,V (t)dV,E(t))α/2
, (2)

where λ is the carrier wavelength, GA,V,E represents the
product of Tx and Rx antenna gains and the reflection
coefficient of V, dA,V (t) denotes the distance between the
AP, dV,E(t) denotes the distance between V and the UE and
α is the path loss exponent [32]. Typically, α ∈ [2, 4] with
α ≈ 4 for indoor environments [33]. hA,Ij ,E(t) can also be
modeled in a similar manner as Eqn. (2). To this end, Wi-
Fi human sensing can be described as follows: the physical
motion of a human subject results in changes of dA,V (t)
and dV,E(t), which in turn lead to the changes of channel
gain hA,V,E(t) over time. Therefore, if other interference
items can be reasonably handled, by analyzing the time
series of h̃A,E(t) obtained from the Wi-Fi frames, both AP
and UE are able to sense the motion of V, which can be
subsequently utilized for KI purposes.

2.2 Attack Scenarios and Existing Methods’ Failure
We consider a scenario where some potential victims, Bobs
(as shown in Fig. 1, there are 3 Bobs), use their mobile
devices (smartphones or tablets) to connect to a nearby
Wi-Fi assess point (AP) with a shared password or even
no password protection; this is a reasonable assumption in
public places such as shopping malls, office buildings, air-
ports, and restaurants, because such a Wi-Fi access is often
provided for the convenience to customers or visitors. After
connecting to the AP for accessing the Internet, one Bob
happens to have the need to access a sensitive account (e.g.,
online payment) protected by a password3. The keystroke
of typing the password by the Bob induces changes in the

3. We follow the convention [16], [17] to mainly focus on numerical
passwords, but we also consider an extension to general KI in Sec. 5.4.2.

channel gain hA,V,E(t) over time, which makes him become
the victim, a target of attack launched by the attacker Eve
(see Fig. 1). It is important to note that in this multi-person
attack scenarios, any of the Bobs can become a target at any
given time. This significantly enhances both the practicality
and the degree of risk associated with MuKI-Fi.

However, existing methods proposed in [17] is not suit-
able for multi-person attack scenarios. This method employs
a system architecture depicted in Fig. 2(a), which requires
Eve to create a separate channel irrelevant to Bob, using
Eve’s Wi-Fi NIC and another device (e.g., an AP). Eve
then infers Bob’s keystrokes by observing the CSIs of this
channel. Fig. 2(b) illustrates the CSI waveforms collected
using the existing system architecture, where in a three-
person scenario, each individual inputs a six-digit pass-
word. It is evident that the CSI waveforms of each individ-
ual’s password are entangled and indistinguishable, which
demonstrates the failure of such methods in multi-person
scenarios. Another endeavor, as described in [16], imposed
more stringent prerequisites; it demands hacking the AP
in Fig. 1 in the hope of tricking users into connecting to
this rogue AP and then extracting the keystroke-introduced
CSI. This approach may not be feasible in practice, because
while the feasibility of hacking the continuous evolving Wi-
Fi NICs cannot be guaranteed (see Sec. 1), effectively de-
ploying rogue AP has been made extremely challenging due
to the increasing alerts raised by individuals and companies
on such attacks [34], [35], [36].

2.3 Why BFI instead of CSI?
BFI actually offers other advantages over CSI in terms of
KI attack, apart from its easy acquirement explained earlier.
To be specific, BFI behaves less sensitive to channel variation
than CSI, rendering the sensing outcome more stable espe-
cially upon the close impact (from on-screen keystrokes) on
Wi-Fi channels. This stability stems from the way BFI is gen-
erated. Given the downlink CSI represented as H = Y/X ,
where X and Y respectively denote the transmitted (Tx) and
received (Rx) signals [16], BFI is generated by partitioning
H (hence the channels it represents) into separated Tx and
Rx components; only the Tx component is fed back to the
AP for guiding AP beamforming [29].

To showcase the superiority of BFI over CSI in KI,
Fig.s 3(a) and 3(b) respectively depict the BFI time series
and spectrograms for clicking numerical keys ‘1’ and ‘5’ four
times. One may readily observe that the BFI patterns remain
consistent for clicking the same keys at different times, while
the distinctions between two keys are also pronounced.
Additionally, Fig.s 3(c) and 3(d), presenting BFI time series
and spectrograms for clicking four different keys, again
confirm the remarkable distinctions across these keys. In
short, BFI is well-suited for KI with minimal preprocessing.

As a comparison, Fig.s 3(e) and 3(f), with contents
similar to 3(a) and 3(b) but for CSIs collected simultane-
ously with the aforementioned BFIs, fail to indicate either
remarkable consistence for the same key or pronounced
distinctions between two different keys. Meanwhile, the
four-key tests shown in Fig.s 3(g) and 3(h) also suggest
the need for some heavy denoising before using CSIs for
KI, as the distinctions between certain keys (e.g., ‘4’ and
‘6’) appear to be overwhelmed by noises. We suspect that
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Fig. 3. BFI-KI (a)-(d) vs. CSI-KI (e)-(h): whereas BFIs exhibit both consistency for the same key and distinction for different keys, CSI’s irregular
patterns may cause ambiguities for keystroke inference.

such noises cannot be easily eliminated using conventional
signal processing techniques, since their wide spectrum may
confuse themselves with CSI features, as confirmed by the
following KI test with denoised CSI and raw BFI.

We collect both BFI and CSI samples from 20 subjects
typing numerical keys ‘0’ to ‘9’. The same denoising tech-
nique in [16] is applied to the CSI samples, while the
BFI samples are kept raw. We then use a one-dimensional
convolutional neural network (1-D CNN) [37] to perform
classification for the sake of KI and evaluate the KI accuracy
by cross-validation. Fig.s 4(a) and 4(b) present the confusion
matrices for BFI- and CSI-based KIs, respectively; these
results evidently demonstrate that BFI achieves higher accu-
racy for individual keys, as indicated by the diagonal of the
confusion matrix. Overall, the average accuracy achieved
by BFI is 78.9%, notably higher than 64.5% achieved by CSI,
hence clearly confirming the benefit of BFI’s stability over
even denoised CSI in terms of realizing KI.

3 THE DESIGN OF MUKI-FI

In this section, we introduce the attack strategy of MuKI-Fi.
As shown in Fig. 5, we present single-person KI workflow
which consists of four steps: i) identifying the victim, ii)
determining the attack time when the victim accesses the
targeted application service, iii) capturing and parsing the
victim-associated BFI time series, and finally iv) segmenting
the BFI series and performing KI to recover the intended
password. Then, we conduct a theoretical analysis of MuKI-
Fi in multi-person scenarios in Sec. 3.4.

(a) BFI-KI. (b) CSI-KI.

Fig. 4. Confusion matrices for BFI- vs. CSI-based keystroke inference,
demonstrating the superiority of BFI over CSI in completing this task.

3.1 Victim Identification and Attack Timing
Following an implicit assumption of [16], we also allow
Eve to have prior knowledge of Bob’s device identity (e.g.,
MAC address). In reality, Eve can acquire this information
beforehand by conducting visual and traffic monitoring
concurrently: correlating network traffic originating from
various MAC addresses with users’ behaviors should al-
low Eve to link Bob’s physical device to his digital traffic,
thereby identifying Bob’s MAC address. It is worth noting
that victim identification is not possible in [17] since Bob’s
device does not communicate with the AP or Eve.

Once locked onto Bob’s MAC address, Eve waits for the
right time (when Bob is about to enter his password) to
launch attack. This timing issue can be readily addressed if
visual hints are presented (e.g., Bob scan the WeChat Pay QR
code or Bob’s screen shows the payment page); otherwise,
Eve can inspect the requests made to a payment service.
Consider the case of WeChat [38], though most of its traffic
is secured via application-layer encryption [39], IP addresses
are not encrypted for the public Wi-Fi networks targeted by
MuKI-Fi. To exploit this vulnerability, Eve creates a database
of IP addresses associated with the payment service: though
such IP addresses can be dynamic, our experiments reveal
that users from the same region are directed to the same
IP address within a certain period. Subsequently, upon
detecting an IP address recorded in the database, the attack
can be launched; the recording of BFI series will be stopped
once no more requests to the IP can be observed.

Fig. 5. The workflow of MuKI-Fi’s single-person attack strategy.
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3.2 BFI Analysis and Parsing
We hereby provide more details on how password typing
can manifest in BFI to facilitate later developments. As
explained in Sec. 2.3, BFI is the Tx component of CSI H and
is fed back to guide AP beamforming. This is accomplished
by SVD (singular value decomposition) [40] that decom-
poses the channel as H = USV . Among these components,
only the right matrix V is chosen as BFI, while the other
two matrices U and S (representing Rx beamforming and
channel gains, respectively) are not. As illustrated in Fig. 6,
Bob’s password typing affects the diffraction pattern of the
Wi-Fi signals around the phone body. This altered pattern is
then reflected in downlink CSI that is in turn decomposed
with SVD to obtain BFI V .

As BFI is transmitted in clear text, Eve can easily in-
tercept it using a Wi-Fi device in monitor mode, along
with Wireshark [41]. The frame structure of 802.11ac can be
followed to locate BFI in the “VHT beamforming report”
field within the Wi-Fi Action frames [29]. To completely
extract BFI, the length of the field can be calculated based
on the number of Tx and Rx antennas, as outlined in [28].
By continuously recording the BFIs in the Wi-Fi frames from
Bob during the time window of Bob’s password typing, Eve
can obtain a time series of BFI samples correlated with the
password.

3.3 Keystroke Inference
In this section, we elaborate on how MuKI-Fi conducts BFI-
KI. We first discuss the drawbacks of previous proposals
and explain possible improvements upon them. After that,
we specify the signal segmentation on BFI series to kick off
KI, which is then followed by the design of the KI neural
model and its adversarial learning framework to generalize
KI towards unseen scenarios.

3.3.1 What’s Wrong with Prior Art?
Two previous works have exploited Wi-Fi side-channels to
steal passwords. The seminal proposal of WindTalker [16]
performs classification upon individual keystrokes with
rule-based CSI series segmentation. Intuitively, such seg-
mentation should not perform well because it can result
in information loss or introduce artifacts. To confirm this
suspicion, we ask two subjects to type passwords on their re-
spective smartphones, and Fig. 7(a) shows their correspond-
ing CSI series. Apparently, the duration of the keystrokes
and the amount of overlap between them vary significantly
due to the subjects’ distinct typing habits. While rule-based
segmentation may be effective for Subject A who types
more steadily, it most likely fails for Subject B whose inter-
keystroke patterns appear rather messy. In attempting to
forcibly assign different sections of the BFI series to indi-
vidual keys, the segmentation process introduces artifacts

Rx antenna in 
smartphone

AP
Tx!Tx"

SmartphoneFinger movement

Fig. 6. Finger movements cause diffraction on the downlink path, which
is manifested in BFI variations.
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Fig. 7. Two cases where previous methods fail.

(e.g., clipping) to each keystroke, potentially harming the KI
performance.

A recent proposal WINK [17] claims to improve the
KI performance via series learning. However, it inherits
the rule-based segmentation adopted by [16] and hence
the same weakness too. Additionally, as linguistic structure
cannot be exploited for series learning, WINK argues that
transition features between keystrokes may serve as replace-
ments for improving KI accuracy. Unfortunately, factors
such as typing habits and smartphone types can affect CSI
during the transition period, resulting in different features
for the same password. To illustrate this, we ask two subjects
to type two keys ‘1’ and then ‘9’ on their phones, and
Fig. 7(b) shows significant morphological and temporal
differences in these two transitions. Therefore, it is very
questionable if transition features can ever replace linguistic
structure.

To overcome the disadvantages in previous proposals,
the rule-based segmentation needs to be replaced with a
more intelligent method, preferably a data-driven one. Also,
as using transition features to replace linguistic structure
cannot be reliable, MuKI-Fi falls back to the canonical ap-
proach of inferring individual keystrokes as executed by
WindTalker. To prevent information loss in segmentation.
MuKI-Fi deems the environment-dependent transition peri-
ods as different “domains” of the same numerical keystroke.
Consequently, an adversarial learning is exploited to train
the KI model, aiming to remove domain interference (i.e.,
environment dependency) and hence generalize KI to un-
seen scenarios. Note that the data-driven nature of MuKI-Fi
also prevents it from taking a series learning perspective,
as it would otherwise demand a prohibitively large training
dataset whose size grows exponentially with the password
length.

3.3.2 Signal Segmentation

In reality, BFI series may not show distinct boundaries
between consecutive keystrokes, significantly complicating
signal segmentation. Fig. 8 provides an example for such
a case, where the BFI series displays prominent peaks
corresponding to Bob’s finger hitting the screen, as well as
fluctuations between two peaks representing the transition
movement of his fingers. Since the transitions carry informa-
tion about both the preceding and succeeding keystrokes,
segments of neighboring keystrokes should contain the
transition. Therefore, we propose to employ an overlapping
segmentation method that incorporates all data samples
located between two consecutive peaks, instead of the non-
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overlapping segmentation achieved by windows of rule-
defined sizes [5], [17].

Our segmentation method starts with utilizing the Con-
stant False Alarm Rate (CFAR) algorithm [42] to identify
peaks in a BFI series. Suppose Bob typing a K-digit nu-
merical password to produce a BFI series of length L, the
CFAR algorithm conducts statistical analysis on the series
to determine an adaptive threshold and selects the peaks
exceeding this threshold as the targets. Among these target
peaks, we further select the top-K peaks corresponding
to the K numbers in the password, assisted by an inter-
peak distance of W sampling points, where W = α × L

K .
For each peak, we include all the data samples between
itself and its two neighboring peaks into the segment cor-
responding to a single keystroke; since the first and last
numbers in the password have no preceding and succeeding
numbers, we choose to extend N points before and after
as the segment boundaries, where N = β × L

K . We shall
empirically determine the values of α and β in Sec. 4. As
demonstrated in Fig. 8, this approach effectively partitions
a BFI series (for password “175249”) into segments cor-
responding to individual keystrokes, while preserving the
feature-rich transitions between keystrokes caused by finger
movements.

3.3.3 Adversarial Learning Framework
This section explains how adversarial learning is employed
to generalize KI to unseen domains. Prior to that, we briefly
describe the basic design of KI network. The classification of
time series is a well-established task that can be effectively
addressed using a 1-D CNN. However, as discussed in
Sec. 3.3.2, the BFI segments may differ in length, posing
a challenge to conventional 1-D CNNs. To overcome this
issue, we employ an adaptive average pooling layer [43] to
enhance the flexibility of 1-D CNNs. To be specific, this layer
automatically calculates the appropriate kernel size required
to yield a fixed-size output feature map, thus enabling 1-D
CNNs to accommodate inputs of varying lengths.

In fact, the direct deep learning approach mentioned
above overlooks the impact of the domain on each
keystroke. Here domain refers to the context arising from
the diversified transitions from the preceding and to the
succeeding keystrokes; it includes the distinctions caused
by, for example, typing speed, inter-typing irregularities,
and the adjacent keystrokes. To illustrate this, we consider
the numerical key ‘1’ in three different domains: ‘5-1-3’,
‘6-1-8’, and ‘4-1-2’, and present their segments and corre-
sponding feature maps in Fig. 9. Although the segments of
key ‘1’ under different domains, in Fig. 9(a), exhibit a high
degree of similarity near the peak, the ‘1’ in ‘6-1-8’ displays
drastic fluctuations during transitions between neighboring
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Fig. 9. Difference in BFI segments and features maps of key ‘1’ indicates
the domain dependency of KI.

keystrokes, while those in ‘5-1-3’ and ‘4-1-2’ have rather
smooth transitions. Such differences can be attributed to
larger channel variations induced by finger movements over
greater distances between the keys in ‘6-1-8 ’. Additionally,
we show the feature heatmaps for different ‘1’s after the
adaptive average pooling layer in Fig. 9(b): the same key
‘1’ in different domains exhibit distinct feature maps, thus
posing significant challenges to the subsequent keystroke
classifier.

The aforementioned domain interference entails the
need for a method ensuring KI’s invariance to such inter-
ference, so we employ the idea of domain adaptation [44]
to learn keystroke representations invariant across different
domains. Given the complexity of BFI segment features
due to the diversity of inter-keystroke transition patterns,
employing an explicit feature space transformation as in [45]
could be challenging. Instead, MuKI-Fi aims to achieve a
consistent feature space representation in different domains,
by harnessing the power of adversarial learning [31] to in-
tegrate domain adaptation with KI in a unified training
process. To incorporate adversarial learning, we revamp the
training strategy of 1-D CNN as illustrated in Fig. 10, whose
training and inference processes are introduced as follows.

During the training phase, we first prepare a dataset
consisting of randomly paired BFI segments corresponding
to the same key (e.g., ‘1’) but under different domains,
e.g., two ‘6-1-8’ from different passwords or a pair of ‘4-
1-2’ and ‘5-1-3’. We concatenate the pair as input x and
process them through the feature extractor Gf . The resulting
features are then fed into both the keystroke classifier Gc

and domain discriminator Gd: Gc infers the key y shared
by both segments within the pair, and Gd predicts the
domain discrepancy ∆ ∈ {0, 1}, with 0 and 1 denoting
the keys from the two segments are and are not from the
same domain, respectively. While Gd aims to improve the
accuracy of predicting ∆, the adversarial learning strategy

1D Conv

Adaptive average pooling

GRL

Keystroke classifier ��

Domain discriminator ��Linear layer Gradient reversal layer

CE 
loss

CE 
loss

Feature 
extractor ��

Input

“4-1-2”

“5-1-3”
�

∆

Fig. 10. The training strategy enabled by adversarial learning removes
domain-specific information.
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“cheats” Gd by inverting its loss via reversing the gradient
during backpropagation using the Gradient Reversal Layer
(GRL) [46]; this procedure tends to suppress domain-specific
features from the output of Gf and thus allows the 1-D CNN
to learn keystroke representations invariant across domains.
Denoting the parameters of Gf , Gc, and Gd as θf , θc, and θd,
respectively, the training procedure can be formulated as:

(θ̂f , θ̂c) = argminθf ,θcL(y,∆,x), θ̂d = argmaxθdL(y,∆,x),

L(y,∆,x) = Lc (y,Gc(Gf(x)))− λLd (∆, Gd(Gf(x))

where Lc and Ld are respectively the cross-entropy losses
for Gc and Gd, and λ, a balance factor controlling the trade-
off between Lc and Ld, should have its value empirically
determined in Sec. 4. Gd is discarded during the inference
phase, and the input of segment pair x is emulated by
replicating the original BFI segment.

3.4 How MuKI-Fi works in multi-person scenarios?
In the context of multi-person scenarios, each victim is
equipped with a mobile device (i.e.,UE). Consequently, for
each victim, there exists a distinct Access Point (AP)-UE
pair, which corresponds to its specific channel gain h̃A,E(t).
For illustrative purposes, we select one of the victims along
with their associated UE for further discussion and the
corresponding h̃A,E(t) follows Eqn. (1). Considering V is
close to or in the near-field of his own UE (i.e., distance
below 0.2 m, empirically), the variation of the channel
gain is dominated by the V’s physical motion; in other
words, ∂|hA,V,E(t)|/∂t ≫ ∂|hA,Ij ,E(t)|/∂t. We term this
phenomenon near-field domination effect, and we provide
its theoretical analysis as follows.

To quantify the variation of hA,V,E(t), we evaluate it by
the squared amplitude of the partial derivative of hA,V,E(t)
w.r.t. t, which is referred to as the power of channel varia-
tion. To simplify the analysis, we assume ∂dA,V (t)/∂t =
∂dV,E(t)/∂t = vV . The value of vV can be interpreted as
the intensity of V’s motion in terms of speed. The power of
channel variation of V can then be calculated as:

PV =

∣∣∣∣∂hA,V,E(t)

∂t

∣∣∣∣2
≈ GA,V,Eλ

4v2V
(4π)4(dA,V dV,E)α

[
α2

4

(dA,V + dV,E
dA,V dV,E

)2
+

16π2

λ2

]
(⋆)
≈ G̃A,V,E · v2V · (dA,V dV,E)

−α, (3)

where we omit symbol t in the distance notations and let
G̃A,V,E = (λ/4π)2GA,V,E for the sake of brevity. (⋆) holds
because, in typical 5 GHz Wi-Fi sensing systems with V in
the near-field of UE (e.g., dA,V ∼ 3 m, dV,E ∼ 0.1 m, and
λ ∼ 0.06m), the first term inside the bracket is much smaller
than the second term and thus can be omitted.

In order to quantify the influence of the number and
location of interferers on the domination of PV at the
UE, we propose an novel metric variation to interference
ratio (VIR); it evaluates the variation power ratio between
hA,V,E(t) and the sum of hA,I,E(t) and dynamic channel
hD
A,E(t). Based on [47], hD

A,E(t) can be also treated as an
interference, whose power Pd is in linear proportion to that
of the static channel gain. Therefore, assuming a LoS path
between the AP and UE, we have Pd = ηλ2dA,E

−α + b,

where η and b are fixed for a given pair of AP and UE.
Then, we have:

VIRV =
PV

PI+Pd
=

v2V G̃A,V,E(dA,V dV,E)
−α

ηλ2d−α
A,E+b+ v2I G̃A,I,E(dA,IdI,E)−α

. (4)

Intuitively, the number and location of interferers are indi-
cated by VIRV value being greater than a threshold γth. To
this end, we consider two symmetric distribution cases, i)
how many people can multiperson MuKI-Fi support? and
ii) how close can adjacent people be? To simplify the pre-
sentation, we no longer distinguish between the positions
of the victim and its UE.

To answer question i), we analyze the case where victim
V and N − 1 other victims stay at distance r from the AP
and are uniformly spaced, as shown in Fig. 11(a). After
extending Eqn. (4) and normalizing vV , vIj to 1, we have:

VIR
(i)
V =

G̃(∆r)−α

ηλ2+brα+(2r)−αG̃ ·
∑N−1

j=1 sin−α(j · π/N)
, (5)

where G̃ represents the identical values of G̃A,V,E and
G̃A,Ij ,E , and ∆r denotes the short distance from V to its UE.
Generally, the series summation in Eqn. (5),

∑N−1
j=1 sin−α(j ·

π/N), has no closed-form expression w.r.t. N . Fortunately,
given N ∈ [3, 60] and α ∈ [2, 4], the series summation can be
numerically fitted by a function in the form of p1Np2 + p3
with R-square ≈ 1, where parameters p1, p2, and p3 are
dependent on α: p1 = 0.0230, p2 = 3.99, p3 = 38.0 for
α = 4. Now given γth, the upper bound on the number of
subjects that can be accommodated becomes:

Nmax=

((2r)α
p1

· G̃(∆r)−α− ηλ2γth−brαγth

G̃γth
− p3
p1

) 1
q2

. (6)

Moreover, based on (6), given vV , vIj , η, b, G̃ being nor-
malized to 1, ∆r = 0.015m and α = 4, we can also
derive the minimum and maximum distances (resp. rmin

and rmax) between tar and the AP for the considered case to
be feasible by solving the inequality Nmax ≥ 3 in the field
of real number. As shown in Fig. 11(c), Nmax first increases
and then decreases in r; it reaches its maximum 51 when
r ∈ [2.94, 3.35] m.

To answer question ii), we consider the case as shown in
Fig. 11(b), where 2K(K = 1, 2, 3, ...) interferers are evenly
distributed on both sides of the victim(then, N = 2K + 1).
Denote the distance and angle between each pair of neigh-
boring people by ∆d and ϕ, we have ϕ = 2·arcsin(∆d/(2r)).
It is clear that the middle victim suffers from the worst
interference (among all people) when 2π − (2K + 1)ϕ > 0,
equivalent to ∆d < 2r sin(π/(2K + 1)). Using Eqn. (4)
again, we have:

VIR
(ii
V =

G̃∆r−α

ηλ2 + brα + 2G̃(2r)−α
∑K

j=1 sin
−α(jϕ/2)

. (7)

Again, the series summation
∑K

j=1 sin
−α(jϕ/2) can be fitted

by function q1(sin(ϕ/2))
q2 + q3 given α ∈ [2, 4], K ∈ [1, 10],

and ϕ ∈ [π/180, π/(2K + 1)] with R-square ≈ 1, where
parameters q1, q2, and q3 depend on K and α: q1 = 1.06,
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(a) Radial symmetry case. (b) Mirror symmetry case.
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Fig. 11. Two symmetric cases considered for multi-person sensing sce-
narios. (a)&(c) N subjects uniformly spaced and (b)&(d) 2K+1 subjects
closely located.

q2 = −4, and q3 = 6.57 for α = 4 and K = 2. Consequently,
we obtain the lower bound of ∆d as follows:

∆dmin= 2r

(
(2r)α

q1
·G̃(∆r)−α−ηλ2γth − brαγth

2G̃γth
−q3
q1

) 1
q2

. (8)

Furthermore, by solving ∆dmin ≤ 2r sin(π/(2K + 1)) in
the field of real number, we can obtain the boundary for
the distance between the AP and the subjects, i.e., rmin and
rmax. As shown in Fig. 11(d), ∆dmin remains around 0.34 m
for r ∈ [0.32, 3.30] m but increases steeply to 3.49 m for
r ∈ [3.30, 3.76] m.

Through the above analysis, we can deduce that in a
multi-person scenarios, the near-field channel variation(i.e.
the variation of BFI) caused by the victim significantly
overwhelms variations caused by other distant Bobs. Thus,
this dominating effect of near-field sensing illustrates that
MuKI-Fi can implement KI for multiple victims, and where
they are close to each other.

4 IMPLEMENTATION AND SETUP

In this section, we elaborate on MuKI-Fi’s implementation,
as well as introduce the experiment setup and metrics.

4.1 System Implementation
Though a rooted smartphone under the monitor mode
can act as Eve, Android systems offer minimal support in
capturing Wi-Fi traffic at application layer. Therefore, we
focus on a laptop implementation in our experiments. We
use an Acer TravelMate laptop [48] with an Intel AX210 Wi-
Fi NIC [49] supporting 802.11b/g/n/ac as the basis; setting
the NIC to the monitor mode, we then use WireShark to
capture the BFI series contained in Action No-ACK frames.
The captured BFIs are analyzed using Matlab and Python,
with the neural models built upon PyTorch 1.7.1 [50]. For
the segmentation, the two parameters α and β are set to 0.6
and 0.5, respectively. In the adversarial learning framework,
the balance factor λ is set to 0.5.

Bob Eve

Baseline

AP

(a) Experiment scene.

AP
Laptop

Smartphone

(b) Adopted hardware.

Fig. 12. Evaluative MuKI-Fi: (a) experiment scene in a conference room
and (b) hardware configurations.

4.2 Experiment Setup
We recruit 20 subjects, of 12 males and 8 females, between
the ages of 20 and 53. All subjects are right-handed and use
their own smartphones of various models, including iPhone
13 [51], OnePlus 10T [52], Xiaomi 13 Pro [53], Huawei P40
Pro [54], and Samsung Galaxy S20 [55]. The subjects type a
total of 1,500 predefined passwords of 4, 6, and 8 digits, with
each length having 5,000 passwords. During typing, back-
ground apps remain active to emulate daily smartphone
usage. The subjects adopt different postures while typing on
the smartphones, such as holding it with one or both hands
or placing it on a stand or table. The typing speed of the
subjects ranges from 0.5 to 2cps (characters per second).These
experiments have strictly followed our IRB.

We conduct experiments and collect BFI series in six en-
vironments, including a library, bookstore, auditorium, cafe-
teria, corridor, and conference room. In each environment, a
Wi-Fi router working as an AP for the subjects to connect.
Besides BFI collection, we simultaneously obtain CSIs from
the AP and another laptop to respectively serve as compari-
son baselines of WINK [17]. The distance between a subject
and the AP ranges from 1 to 10m, and the distance between
the attacker and the subject ranges from 3 to 10 m. Fig. 12
shows an example experiment scene and the hardware we
use. For multi-person scenarios, Fig. 13(a) illustrates our
experiment setup, where the AP, subjects, UEs, and baseline
device are all exhibited and annoted in Fig. 13(b). MuKI-
Fi segments the BFI series using the overlapping scheme
described in Sec. 3.3.2, while the baseline conducts its rule-
based segmentation. We use 70% of the collected data for
training and the remaining 30% for testing.

4.3 Metrics
We adopt two metrics for our evaluations, namely keystroke
classification accuracy and top-N password inference accu-
racy. For single keystroke classification, the classification
accuracy measures the percentage of correctly classified
keystrokes. For password inference, since an attacker may
try multiple passwords to increase the success rate, we

AP

Eve

UEs

Bobs Bobs

(a) Multi-person experiment scene.
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Bob
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(b) Layout.

Fig. 13. Experiment scene (a) and layout of subject arrangement (b) for
multi-person scenario
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adopt the top-N accuracy as the evaluation metric: the prob-
ability of a candidate password is computed as the product
of the probability of each key present in the password, then
the top-N accuracy is measured by checking if any of the
candidates within top-N probability matches the true one.

5 EVALUATION

We start with micro-benchmark studies of domain adapta-
tion to demonstrate the effectiveness of MuKI-Fi’s adver-
sarial learning framework. It is followed by evaluations
on overall performance and the impact of practical factors.
Finally, we conduct real-world experiments to showcase
how MuKI-Fi steals passwords of WeChat Pay, while also
extending it to general KI on QWERTY keyboards.

5.1 Domain Adaptation Micro-benchmark
To demonstrate the effectiveness of MuKI-Fi’s adversar-
ial learning framework in Sec. 3.3.3, we use t-SNE (t-
Distributed Stochastic Neighbor Embedding) [56] to visu-
alize the feature maps of 10 numerical keys segmented from
100 random passwords in Fig. 14. As shown in Fig. 14(a),
the normal feature extractor Gf fails to find a domain-
invariant feature map: features of different keys apparently
get mixed together due to domain interference. In contrast,
Fig. 14(b) demonstrates that, with adversarial learning, the
features of the same keys are consistent across domains
and form distinct clusters, indicating that domain-invariant
representations have been successfully learned.
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Fig. 14. t-SNEs of the features output by the feature extractor Gf

evidently confirm that adversarial learning results in domain-invariant
representations.

5.2 Overall Performance
5.2.1 Classification Accuracy
In this section, we present the accuracy of classifying nu-
merical keys of MuKI-Fi in single person scenarios and
multi-person scenarios. We do not compare MuKI-Fi with
baseline WINK [17] in terms of keystroke classification
accuracy because WINK is based on series learning that
predicts the password as a whole. As shown in Fig. 15(a), the
classification accuracy of MuKI-Fi’s two different scenarios
for keys ‘0’ to ‘9’ remains steady at around 88.9% and 87.1%,
respectively. To further analyze the classification accuracy
for each key, we present the confusion matrix of MuKI-Fi in
multi-person scenarios in Fig.s 15(b). It is intuitive that each
key is most commonly confused with adjacent keys (e.g., the
key ‘5’ is most commonly confused with ‘2’, ‘4’, ‘6’, and ‘8’).
Despite the inevitable confusion, the high success rate of
classifying individual keys lays a solid foundation for later
password inference.
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Fig. 15. Comparing the classification accuracy of MuKI-Fi in single
person scenarios and multi-person scenarios.

5.2.2 Password Inference Accuracy
Let us further evaluate MuKI-Fi’s password inference ca-
pability, focusing on 6-digit numerical passwords due to
their widespread usage in daily scenarios, but leaving the
performance assessment for different password lengths to
Sec. 5.3.6. Fig. 16(a) compares the top-1 to -10 accuracy
of MuKI-Fi in single person scenarios and multi-person
scenarios and WINK: while WINK only reach 12% for top-
10 accuracy, MuKI-Fi’s accuracy in single person scenarios
varies from about 40% to 65% for top-1 to -10 candidates,
with tiny deduction of its accuracy in multi-person scenar-
ios. Fig. 16(b) indicates that MuKI-Fi’s two accuracy can
infer passwords with about an 85% success rate and 81%
success rate in 100 attempts, yet WINK can only achieve a
rate of 31% at the same number of attempts.
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Fig. 16. Comparison for password inference accuracy under different
numbers of password candidates.

5.2.3 Performance Analysis
The superior performance of MuKI-Fi can be attributed to
several reasons. As discussed in Sec. 2.3, BFI dampens the
close impact from on-screen keystrokes, making MuKI-Fi
more stable than CSI-based approaches. This allows MuKI-
Fi to extract consistent features effectively learnable by its
neural models. WINK, on the contrary, suffers from CSI
noises possibly confused with useful features. Moreover, the
overlapping segmentation technique proposed in Sec. 3.3.2
endows MuKI-Fi with richer domain “context” for its adver-
sarial learning framework. In contrast, WINK’s rule-based
segmentation can not make full use of essential parts of
the CSI features already overwhelmed by noises. MuKI-Fi
has an edge over WINK because our design has a higher
SNR, and the digital nature of BFI prevents fidelity loss of
sensing signal. One may notice the performance discrepancy
of WINK from that reported in [17]. This may stem from its
design failing to properly take into account the influence
of domain, thereby limiting its ability to effectively handle
diverse data collected from various domains in our exper-
iment setup. At the same time, our experiment of single-
person and multi-person scenarios fully demonstrates the
effectiveness and practicality of MuKI-Fi’s near-field sensing
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to achieve multi-person KI. It is worth noting that the
likelihood of each Bob’s password being inferred can be
measured by top-N accuracy. In multi-person scenarios, as
the number of Bobs increases, the probability of at least
one Bob’s password being inferred significantly rises. This
unequivocally underscores the fact that MuKI-Fi poses a
severe threat in KI.

5.3 Impact of Practical Factors
5.3.1 Environments and Subjects
We use the “leave-one-out” strategy [57] to study the im-
pacts of different environments and subjects. This means
that the test set consists of all data from one of the 6
environments or one of the 20 subjects, leaving the rest to
the training set. Fig. 17(a) and 17(b) respectively show the
top-100 password inference accuracy for each environment
and each subject. Although the testing environments and
subjects are unseen during training, MuKI-Fi’s top-100 ac-
curacy across all cases is consistently above 75%, thanks to
the generalizability of the adversarial learning. Moreover,
MuKI-Fi is robust across environments since our design
relies on the diffraction pattern around the phone body that
are rarely influenced by environment-specific interference.
In contrast, the average top-100 accuracy of WINK drops
from that in Fig. 16(b) to less than 18%, due to its limited
generalizability to unseen environments and subjects.
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Fig. 17. Top-100 accuracy under the impact of different environments
and subjects.

5.3.2 Device Diversity
We again use the “leave-one-out” strategy to evaluate the
performance of MuKI-Fi on 6 smartphones specified in
Sec. 4.2. Fig. 18(a) shows that MuKI-Fi can reliably identify
keystrokes on different devices, with an average keystroke
classification accuracy of over 80%. Furthermore, Fig. 18(b)
indicates that the top-100 password inference accuracy of
MuKI-Fi and WINK is respectively above 76% and below
27%. The consistently high accuracy of MuKI-Fi across
different smartphone devices confirms that our adversarial
learning framework can generalize to unseen devices. In
contrast, the low accuracy of the baseline(evidently worse
than the results in Fig. 16(b)) highlights its failure on unseen
devices. One may also observe some accuracy variations
among smartphones, which we attribute to different screen
sizes. Specifically, MuKI-Fi achieves the highest accuracy on
Xiaomi 13 Pro having the largest screen size (6.73 inch),
while on Google Pixel 6a, with the smallest screen size
(6.1 inch), it achieves the lowest accuracy. A possible ex-
planation is smartphones with larger screens tend to have
larger key distances that result in longer transition periods,
thus making the incurred BFI features more distinguishable.
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Fig. 18. Impact of device diversity.

Due to the consistently worse performance of the baseline,
we do not compare MuKI-Fi with WINK in subsequent
experiments.

5.3.3 Distance

We evaluate the effect of distances on MuKI-Fi, i.e., the
distances from Bob to the AP and from Eve to Bob. Fig. 19
presents the top-20, 50, 80, and 100 password inference accu-
racy at various distances. Fig. 19(a) shows that the average
accuracy decreases by about 23% as the distance between
Bob and the AP increases from 1m to 10m, because a longer
distance from Bob to the AP weakens the Wi-Fi signal and
takes in more interference. On the contrary, Fig. 19(b) con-
firms that the distance between Eve and Bob barely affects
the performance of MuKI-Fi, as the digital nature of BFI
makes it robust to long-range transmission. Consequently,
Eve can eavesdrop stealthily from a long distance without
compromising inference accuracy, clearly demonstrating the
advantage of BFI’s digital nature of MuKI-Fi.
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Fig. 19. Impact of different distances.

5.3.4 Typing Speed

In this section, we examine how MuKI-Fi’s performance
varies with typing speeds. Fig.s 20(a) and 20(b) respec-
tively show the keystroke classification and top-[1, 100]
accuracy for tying speed ranges of [0.5, 1.0], [1.0, 1.5], and
[1.5, 2.0] cps. As expected, both metric values decrease
with higher typing speeds, probably due to stronger inter-
typing irregularities. Nevertheless, MuKI-Fi still achieves
sufficiently good performance in fast typing case with speed
from [1.5, 2.0]cps, with only a minor decrease of around 3%

(a) Keystroke classification.
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Fig. 20. Impact of typing speed.
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in keystroke classification and less than 7% in password in-
ference accuracy when compared with those in slow typing
case with speed from [0.5, 1.0]cps. The relatively consistent
performance of MuKI-Fi across different typing speeds is
also the consequence of adopting adversarial learning.

5.3.5 Typing Scenarios
We further investigate the performance of MuKI-Fi across
different typing scenarios, including holding the phone with
one or both hands and placing the phone on a stand or a
table. Fig.s 21(a) and 21(b) show that when the smartphone
is placed on a stand or a table, MuKI-Fi achieves higher
keystroke classification and password inference accuracy,
likely due to the stability inherent to these scenarios. De-
spite the accuracy differences across scenarios, keystroke
classification and password inference accuracy variations
are less than 2.5%. These consistent results demonstrate
that MuKI-Fi is robust to various occlusions and different
typing scenarios, further validating the effectiveness of our
adversarial learning framework.
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(a) Keystroke classification.
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Fig. 21. Comparison of 4 different typing scenarios.

5.3.6 Password Length
We finally examine how password length affects MuKI-
Fi’s performance. Fig. 22(a) demonstrates that the password
length does not affect the accuracy of keystroke classifica-
tion because MuKI-Fi treats each keystroke independently
regardless of how many keys are typed. However, it sig-
nificantly impacts password inference accuracy, as shown
in Fig. 22(b). For instance, the top-20 and top-100 accuracy
for 4-digit numerical passwords is 69% and 89%, respec-
tively, yet it becomes 64% and 83%, respectively, for 8-digit
numerical passwords. The accuracy loss is attributed to
the increased uncertainty caused by involving more keys.
Nevertheless, even for an 8-digit numerical password, the
remarkable success rate of 64% after 20 attempts still poses
a severe threat to smartphone users.

(a) Keystroke classification.
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Fig. 22. Impact of 3 different password lengths.

5.4 Real-World Experiment
5.4.1 WeChat Pay Password Inference
To showcase the practicality of MuKI-Fi, we conduct a
real-world experiment by acting as Eve to steal password

(a) Attack timing identification.
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(b) Targeted keystroke extraction.

Fig. 23. Real-world experiment with WeChat Pay.

from WeChat Pay, a digital payment service integrated into
WeChat [38]. The victim Bob uses an iPhone 13 for his
daily activities, typically including WeChat usage, and he
is supposed to make a mobile payment transaction with
WeChat Pay, for which a numerical password is required,
in a conference room of size 5 m × 8 m. The AP is placed
on a table and the distance between Bob and the AP ranges
from 1.5 to 5m, as confined by the room layout. Meanwhile,
Eve leverages MuKI-Fi to achieve a stealthy eavesdropping
at a distance of 3m from Bob.

Following the method in Sec. 3.1, MuKI-Fi first identifies
Bob’s Wi-Fi traffic; this is followed by detecting an IP
address “43.156.222.205” coinciding with an entry in a pre-
recorded IP database, as shown in Fig. 23(a), which in turns
starts BFI recording. The recording is stopped once no more
requests to that address are made. Subsequently, MuKI-Fi
performs SRA on the BFI time series, and the resulting non-
sparse BFI series is shown in Fig. 23(b). It appears that the
BFI series includes not only the 6-digit numerical password
but also other keys entered beforehand (e.g., the transfer
amount and confirmation), so we extract the last six peaks
corresponding to the password specifically for WeChat Pay,
as highlighted by the red box.

After segmenting the signal, MuKI-Fi initiates the pass-
word inference. Since WeChat Pay freezes after five incorrect
password inputs, we focus on identifying correct passwords
among the top 5 candidates. In the experiment shown in
Fig. 23(b), the actual password entered by Bob is “517294”,
and the top 5 candidates are “547294”, “517204”, “517294”,
“517594”, and “517394”, indicating a successful password
stealing. We conduct 40 such experiments of 8 different
people in total, each with a different password. The results
indicate that, out of these 40 input passwords, MuKI-Fi
achieves a top-5 accuracy of 47.5%, which is quite close
to that shown in Fig. 16(a), albeit with a potentially biased
statistics given only a small amount of trials. These experi-
ments evidently demonstrate the practicality of MuKI-Fi in
real-world scenarios.

5.4.2 Extending to Virtual QWERTY Keyboard
Many applications need more diversified characters than
what a numerical keyboard can offer. Typically, banking
applications (e.g., the popular Chase Mobile [58]) handling
sensitive financial transactions and identity information
demand using a virtual (on-screen) QWERTY keyboard
for users to create more secure alphanumeric passwords.
To test the applicability of MuKI-Fi in such scenario, we
conduct keystroke classification experiments on the QW-
ERTY keyboard of Chase Mobile. We collect a dataset of
4,000 pre-defined passwords with varying lengths: 1,500
with 6 characters, 1,500 with 8 characters, and 1,000 with
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Fig. 24. Performance on QWERTY keyboards.

10 characters. The passwords consist of lowercase letters
from ‘a’ to ‘z’ and numbers from ‘0’ to ‘9’. Except for the
larger dataset size, we adopt the same experiment settings
in Sec. 4. Fig. 24(a) shows that MuKI-Fi achieves an aver-
age keystroke classification accuracy of 40%. Additionally,
Fig. 24(b) indicates that MuKI-Fi’s top-[1, 100] accuracy of
6-character alphanumeric password ranges from 12% to
32%, surpassing WINK whose top-100 accuracy is only 11%,
respectively. Although the accuracy is lower than those
in Sec. 5.2.2, it still poses a severe threat to smartphone
users. The performance drop on QWERTY keyboards can
be attributed to these keyboards having approximately four
times more keys than numerical keyboards within the same
area. Consequently, the BFI features of clicking different
keys are less distinguishable due to their proximity. Addi-
tionally, shorter distances (hence shorter transition periods)
among keys increase inter-keystroke interference, thereby
decreasing KI accuracy.

We also find that KI on a QWERTY keyboard demands a
much larger training dataset than on a numerical keyboard.
According to Fig. 25, MuKI-Fi performs similarly to the
baselines when the training set is small. Fortunately, as
the training set size increases from 1,000 to 4,000, MuKI-
Fi begins to show its strengths: it improves the keystroke
classification accuracy from 6% to 40%, and the top-100 ac-
curacy from 6% to 32%, outperforming the baseline by large
margins. The need for a large training set can be explained
(again) by the drastic increase in the number of keys on
QWERTY keyboards, along with the corresponding increase
in the number of domains. By employing the adversarial
learning framework, MuKI-Fi can fully utilize the training
data and perform adequate KI under domain interference.
In contrast, WINK struggles with interference and artifacts
caused by a large number of domains, barely improving KI
performance.

This experiment also reveals a few challenges to be tack-
led in future for general KI on QWERTY keyboards. First,
more diversified password length should be considered,
as over 20% of user may have passwords longer than 10
characters [59]. Second, handling more general passwords
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Fig. 25. Extending MuKI-Fi to QWERTY keyboards requires more train-
ing data.

containing special characters and uppercase letters is also a
crucial aspect: typing these characters may require combina-
tions of multiple keys (e.g., “shift” and its paired keys) and
thus complicating the BFI series. Third, certain applications
have separate keyboard layouts for distinct groups of keys,
requiring users to switch between layouts while entering
passwords. Performing KI for such applications requires
accurate detection of the layout switching, as well as train-
ing two separate neural models for each layout, potentially
increasing system complexity. Instead of increasing training
data in a brute-force manner, other side-channel attacks
and social engineering techniques [60] may be combined
with MuKI-Fi to enhance its KI capability in tackling these
challenges.

6 RELATED WORKS

We classify existing KI proposals related to MuKI-Fi into the
following five different categories:

6.1 Radio-Frequency
WiKey [5] pioneers in leveraging Wi-Fi CSI distortions in-
duced by keystrokes to conduct KI, but the design used by
WiKey is soon exceeded (in SNR) by WindTalker [16] for
password inference, WINK [17] also leverages simliar de-
sign of WiKey but claims that spatiotemporal analysis could
enhance the performance of password inference. Recently,
WiKI-Eve [61] pioneers the use of Wi-Fi BFI to eavesdrop
keystrokes on smartphones without the need for hardware
hacking; it serves as the basis of MuKI-Fi, but it targets only
attacks on a single Bob.

6.2 Acoustic
Liu et al. [6] propose to classify keys on a keyboard based
on the time difference of arrival of the acoustic signals
(generated by pressing and releasing a key) at the two
microphones on a smartphone. Similarly, KeyListener [62]
performs KI on touchscreen based on different attenuation
of the signals (generated by phone speaker) at the two
microphones. PatternListener [7] compromises pattern locks
by using acoustic signals reflected from fingertips to mea-
sure their relative movement and infer the pattern lines.
These methods can be deemed as acoustic version of method
proposed in [17].

6.3 Vision
Early vision-based KI attacks depend on directly observing
the contents displayed on a screen [3], [4]. To make it
more practical, later works explore side-channel visual cues.
KI can be achieved by analyzing changes in the device’s
physical appearance, such as shadows and deformations on
the screen [9], as well as backside motions of tablet comput-
ers [13]. Moreover, capturing videos of the victim’s biomet-
ric features during typing, such as finger [8] and eye [14]
movements, may also enable KI. Recent work [63] claims
to achieve KI even when victims cover the typing hand
with the other hand. Although vision-based side-channel
attacks have shown a high success rate, the corresponding
defense strategies [64], [65] have also grown mature and
effective. Compared with the action features required by
vision-based KI attacks, MuKI-Fi only requires visual hints
(e.g., actions before starting input) rather than the complete
input process, as explained in Sec. 3.1.
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6.4 Motion Sensors
TouchLogger [15] uses the accelerometer and gyroscope on
smartphones to capture phone body movement and infer
numerical keys typed on its touchscreen. (sp)iPhone [11]
leverages the accelerometer on a nearby phone to detect
vibrations from a physical keyboard for enabling KI. Liu et
al. [10] further exploit the accelerometer on a smartwatch
to capture hand movement and infer keystrokes on POS
terminals or QWERTY keyboards.

6.5 Electromagnetic Emission
Vuagnoux et al. [66] propose to eavesdrop on keystrokes
from wired and wireless keyboards by capturing elec-
tromagnetic emissions during their communications. A
later work Periscope [12] extends this idea to a broader
range of mobile devices by exploiting human-coupled
emission from touchscreens to estimate finger movement
trajectories and infer numerical passwords. Vulnerabili-
ties in USB data transfers have also been exploited for
password-stealing [67] and malicious command execu-
tion [68]. Charger-Surfing [69] further demonstrates that,
even without any data transfer over USB, variations of con-
sumed power can be exploited to extract private information
such as user passwords.

7 CONCLUSION

In this paper, we have introduced MuKI-Fi as the pio-
neering multi-person KI system. By harnessing the new
feature BFI, MuKI-Fi accomplishes KI without resorting
to low-level hacking. Furthermore, MuKI-Fi’s innovative
adversarial learning framework empowers KI to generalize
effectively across unseen domains, thereby enhancing its
practical significance. Additionally, through the utilization
of near-field domination effect, MuKI-Fi successfully man-
ages multi-person KI scenarios. Our extensive evaluations
validate MuKI-Fi’s capability to achieve notably high in-
ference accuracy for both individual keystrokes and nu-
merical passwords. We also explore potential extensions to
general keyboards, encompassing both single-person and
multi-person scenarios. The outcomes of our research reveal
critical vulnerabilities in widely-used applications, such as
WeChat, underscoring the urgent need for enhanced secu-
rity measures to mitigate these risks.

REFERENCES

[1] R. Cover, Digital Identities: Creating and Communicating the Online
Self. Academic Press, 2015.

[2] T. W. Bank, “Mobile ID,” https://id4d.worldbank.org/guide/
mobile-id, 2023, online; accessed 25 March 2023.

[3] F. Maggi, A. Volpatto, S. Gasparini, G. Boracchi, and S. Zanero, “A
Fast Eavesdropping Attack against Touchscreens,” in Prof. of the
7th IAS. IEEE, 2011, pp. 320–325.

[4] Q. Yue, Z. Ling, X. Fu, B. Liu, W. Yu, and W. Zhao, “My Google
Glass Sees Your Passwords,” Proceedings of the Black Hat USA, 2014.

[5] K. Ali, A. X. Liu, W. Wang, and M. Shahzad, “Keystroke Recogni-
tion using WiFi Signals,” in Proc. of the 21st ACM MobiCom, 2015,
pp. 90–102.

[6] J. Liu, Y. Wang, G. Kar, Y. Chen, J. Yang, and M. Gruteser,
“Snooping Keystrokes with mm-level Audio Ranging on a Single
Phone,” in Proc. of the 21st ACM MobiCom, 2015, pp. 142–154.

[7] M. Zhou, Q. Wang, J. Yang, Q. Li, F. Xiao, Z. Wang, and X. Chen,
“PatternListener: Cracking Android Pattern Lock using Acoustic
Signals,” in Proc. of the 25th ACM CCS, 2018, pp. 1775–1787.

[8] D. Shukla, R. Kumar, A. Serwadda, and V. V. Phoha, “Beware, Your
Hands Reveal Your Secrets!” in Proc. of the 21st ACM CCS, 2014,
pp. 904–917.

[9] Q. Yue, Z. Ling, X. Fu, B. Liu, K. Ren, and W. Zhao, “Blind
Recognition of Touched Keys on Mobile Devices,” in Proc. of the
21st ACM CCS, 2014, pp. 1403–1414.

[10] X. Liu, Z. Zhou, W. Diao, Z. Li, and K. Zhang, “When Good
Becomes Evil: Keystroke Inference with Smartwatch,” in Proc. of
the 22nd ACM CCS, 2015, pp. 1273–1285.

[11] P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp)iPhone:
Decoding Vibrations from Nearby Keyboards using Mobile Phone
Accelerometers,” in Proc. of the 18th ACM CCS, 2011, pp. 551–562.

[12] W. Jin, S. Murali, H. Zhu, and M. Li, “Periscope: A Keystroke Infer-
ence Attack Using Human Coupled Electromagnetic Emanations,”
in Proc. of the 28th ACM CCS, 2021, pp. 700–714.

[13] J. Sun, X. Jin, Y. Chen, J. Zhang, Y. Zhang, and R. Zhang, “Visible:
Video-assisted Keystroke Inference From Tablet Backside Motion,”
in Proc. of the IEEE NDSS, 2016.

[14] Y. Chen, T. Li, R. Zhang, Y. Zhang, and T. Hedgpeth, “EyeTell:
Video-assisted Touchscreen Keystroke Inference from Eye Move-
ments,” in Proc. of the 39th IEEE S & P, 2018, pp. 144–160.

[15] L. Cai and H. Chen, “TouchLogger: Inferring Keystrokes on Touch
Screen from Smartphone Motion,” in Proc. of the 6th USENIX Hot
Topics, 2011, pp. 1–9.

[16] M. Li, Y. Meng, J. Liu, H. Zhu, X. Liang, Y. Liu, and N. Ruan,
“When CSI Meets Public WiFi: Inferring Your Mobile Phone
Password via WiFi Signals,” in Proc. of the 23rd ACM CCS, 2016,
pp. 1068–1079.

[17] E. Yang, Q. He, and S. Fang, “WINK: Wireless Inference of Nu-
merical Keystrokes via Zero-Training Spatiotemporal Analysis,”
in Proc. of the 29th ACM CCS, 2022, pp. 3033–3047.

[18] M. Schulz, D. Wegemer, and M. Hollick. (2017) Nexmon: The
C-based Firmware Patching Framework. [Online]. Available:
https://nexmon.org

[19] Z. Jiang, T. H. Luan, X. Ren, D. Lv, H. Hao, J. Wang, K. Zhao,
W. Xi, Y. Xu, and R. Li, “Eliminating the Barriers: Demystifying wi-
fi Baseband Design and Introducing the Picoscenes Wi-Fi sensing
Platform,” IEEE Internet of Things Journal, vol. 9, no. 6, pp. 4476–
4496, 2021.

[20] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool Release:
Gathering 802.11n Traces with Channel State Information,” ACM
SIGCOMM Comput. Commun. Rev., vol. 41, no. 1, p. 53, 2011.

[21] I. Corporation, “Intel Ultimate N WiFi Link 5300,”
https://www.intel.com/content/dam/www/public/us/en/
documents/product-briefs/ultimate-n-wifi-link-5300-brief.pdf,
2008, online; accessed 28 March 2023.

[22] S. Gollakota, F. Adib, D. Katabi, and S. Seshan, “Clearing the Rf
Smog: Making 802.11 N Robust to Cross-Technology Interference,”
in Proc. of the 25th ACM SIGCOMM, 2011, pp. 170–181.

[23] J. Huang, G. Xing, G. Zhou, and R. Zhou, “Beyond Co-existence:
Exploiting WiFi White Space for Zigbee Performance Assurance,”
in Proc. of the 18th IEEE ICNP, 2010, pp. 305–314.

[24] K. Kosek-Szott, J. Gozdecki, K. Loziak, M. Natkaniec, L. Prasnal,
S. Szott, and M. Wagrowski, “Coexistence Issues in Future WiFi
Networks,” IEEE Network, vol. 31, no. 4, pp. 86–95, 2017.

[25] K. Qian, C. Wu, Y. Zhang, G. Zhang, Z. Yang, and Y. Liu,
“Widar2.0: Passive Human Tracking with a Single Wi-Fi Link,”
in Proc. of the 16th ACM MobiSys, 2018, p. 350–361.

[26] Y. Zeng, D. Wu, J. Xiong, J. Liu, Z. Liu, and D. Zhang, “Multi-
Sense: Enabling Multi-Person Respiration Sensing with Commod-
ity WiFi,” in Proc. of the 22nd UbiComp, 2020, pp. 102:1–29.

[27] S. Zhang, T. Zheng, Z. Chen, and J. Luo, “Can We Obtain Fine-
grained Heartbeat Waveform via Contact-free RF-sensing?” in
Proc. of the 41st IEEE INFOCOM, 2022, pp. 1759–1768.

[28] M. S. Gast, 802.11ac A Survival Guide: Wi-Fi at Gigabit and Beyond.
O’Reilly Media, Inc., 2013.

[29] “IEEE Standard for Information Technology–Telecommunications
and Information Exchange between Systems–Local and Metropoli-
tan Area Networks–Specific Requirements Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Speci-
fications Amendment 10: Mesh Networking,” IEEE P802.11s/D8.0,
December 2010, pp. 1–350, 2010.

[30] J. Bullock and J. T. Parker, Wireshark for Security Professionals: Using
Wireshark and the Metasploit Framework. John Wiley & Sons, 2017.

[31] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial
Nets,” in Proc. of NeurIPS, 2014, pp. 2672–2680.

https://id4d.worldbank.org/guide/mobile-id
https://id4d.worldbank.org/guide/mobile-id
https://nexmon.org
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ultimate-n-wifi-link-5300-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ultimate-n-wifi-link-5300-brief.pdf


14

[32] A. Goldsmith, Wireless Communications. Cambridge, U.K.: Cam-
bridge University Press, 2005.

[33] T. S. Rappaport, Wireless Communications: Principles and practice.
Pearson Education India, 2010.

[34] R. Beyah and A. Venkataraman, “Rogue-access-point Detection:
Challenges, Solutions, and Future Directions,” IEEE Security &
Privacy, vol. 9, no. 5, pp. 56–61, 2011.

[35] C. Wang, X. Zheng, Y. Chen, and J. Yang, “Locating Rogue Access
Point using Fine-grained Channel Information,” IEEE Transactions
on Mobile Computing, vol. 16, no. 9, pp. 2560–2573, 2016.

[36] I. Cisco Systems, “Cisco Wireless Controller Configuration
Guide, Release 8.4,” https://www.cisco.com/c/en/us/td/
docs/wireless/controller/8-4/configguide/b cg84/wireless
intrusion detection system.html#rogue-ap-classification, 2023,
online; accessed 25 March 2023.

[37] S. Kiranyaz, T. Ince, O. Abdeljaber, O. Avci, and M. Gabbouj, “1-D
Convolutional Neural Networks for Signal Processing Applica-
tions,” in Proc. of IEEE ICASSP, 2019, pp. 8360–8364.

[38] WeChat, “WeChat - Free Messaging and Chatting App,” https:
//www.wechat.com/, 2023, online; accessed 28 March 2023.

[39] S. Wu, Y. Zhang, X. Wang, X. Xiong, and L. Du, “Forensic Analysis
of WeChat on Android Smartphones,” Digital Investigation, vol. 21,
pp. 3–10, 2017.

[40] G. W. Stewart, “On the Early History of the Singular Value
Decomposition,” SIAM Review, vol. 35, no. 4, pp. 551–566, 1993.

[41] A. Orebaugh, G. Ramirez, and J. Beale, Wireshark & Ethereal Net-
work Protocol Analyzer Toolkit. Elsevier, 2006.

[42] R. Nitzberg, “Constant-false-alarm-rate Signal Processors for Sev-
eral Types of Interference,” IEEE Transactions on Aerospace and
Electronic Systems, no. 1, pp. 27–34, 1972.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial Pyramid Pooling
in Deep Convolutional Networks for Visual Recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 37,
no. 9, pp. 1904–1916, 2015.

[44] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and
J. W. Vaughan, “A Theory of Learning from Different Domains,”
Machine Learning, vol. 79, pp. 151–175, 2010.

[45] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain Adaptation
via Transfer Component Analysis,” IEEE Transactions on Neural
Networks, vol. 22, no. 2, pp. 199–210, 2010.

[46] Y. Ganin and V. Lempitsky, “Unsupervised Domain Adaptation by
Backpropagation,” in Proc. of the 32nd ICML, 2015, pp. 1180–1189.

[47] X. Wang, K. Niu, J. Xiong, B. Qian, Z. Yao, T. Lou, and D. Zhang,
“Placement Matters: Understanding the Effects of Device Place-
ment for WiFi Sensing,” Proc. of the ACM IMWUT, vol. 6, no. 1, pp.
32:1–25, 2022.

[48] A. Inc., “Acer TravelMate Laptops for Business,” https://www.
acer.com/sg-en/laptops/travelmate, 2023, online; accessed 25
March 2023.

[49] I. Corporation, “Intel® Wi-Fi 6 AX201,” https://www.
intel.sg/content/www/xa/en/products/sku/130293/
intel-wifi-6-ax201-gig/specifications.html, 2023, online; accessed
25 March 2023.

[50] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “PyTorch:
An Imperative Style, High-Performance Deep Learning Library,”
arXiv preprint arXiv:1912.01703, 2019.

[51] Apple Inc., “Buy iPhone 13,” https://www.apple.com/sg/shop/
buy-iphone/iphone-13, 2023, online; accessed 12 February 2023.

[52] OnePlus, “OnePlus 10T 5G,” https://www.oneplus.com/sg/10t,
2023, online; accessed 10 April 2023.

[53] Xiaomi, “Xiaomi 13 Pro,” https://www.mi.com/sg/product/
xiaomi-13-pro/, 2023, online; accessed 10 April 2023.

[54] Huawei Device Co., Ltd., “HUAWEI P40 Pro,” https://consumer.
huawei.com/en/phones/p40-pro/, 2023, online; accessed 10
April 2023.

[55] Samsung, “Samsung Galaxy S20 Series,” https://www.samsung.
com/sg/news/local/galaxy-s20-launch/, 2023, online; accessed
10 April 2023.

[56] L. v. d. Maaten and G. Hinton, “Visualizing Data Using t-SNE,”
Journal of Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605,
2008.

[57] T.-T. Wong, “Performance Evaluation of Classification Algorithms
by k-fold and Leave-one-out Cross Validation,” Pattern Recogni-
tion, vol. 48, no. 9, pp. 2839–2846, 2015.

[58] J. C. . Co., “Mobile Banking Features with Chase Mobile App,”
https://www.chase.com/digital/mobile-banking, 2023, online;
accessed 25 March 2023.

[59] statista, “Average Number of Characters for a Password in
the United States in 2021,” https://www.statista.com/statistics/
1305713/average-character-length-of-a-password-us/, 2023, on-
line; accessed 25 March 2023.

[60] C. Hadnagy, Social Engineering: The Art of Human Hacking. John
Wiley & Sons, 2010.

[61] J. Hu, H. Wang, T. Zheng, J. Hu, Z. Chen, H. Jiang, and J. Luo,
“Password-Stealing without Hacking: Wi-Fi Enabled Practical
Keystroke Eavesdropping,” 2023, to appear.

[62] L. Lu, J. Yu, Y. Chen, Y. Zhu, X. Xu, G. Xue, and M. Li, “Keylistener:
Inferring keystrokes on qwerty keyboard of touch screen through
acoustic signals,” in Proc. of the 38th IEEE INFOCOM, 2019, pp.
775–783.

[63] M. Cardaioli, S. Cecconello, M. Conti, S. Milani, S. Picek, and
E. Saraci, “Hand Me Your PIN! Inferring ATM PINs of Users
Typing with a Covered Hand,” in Proc. of the 31st USENIX Security,
2022, pp. 1687–1704.

[64] Z. Liu, F. Lin, C. Wang, Y. Shen, Z. Ba, L. Lu, W. Xu, and K. Ren,
“CamRadar: Hidden Camera Detection Leveraging Amplitude-
modulated Sensor Images Embedded in Electromagnetic Emana-
tions,” Proc. of the 23rd ACM UbiComp, vol. 6, no. 4, pp. 1–25, 2023.

[65] S. Sami, S. R. X. Tan, B. Sun, and J. Han, “LAPD: Hidden Spy
Camera Detection Using Smartphone Time-of-flight Sensors,” in
Proc. of the 19th ACM SenSys, 2021, pp. 288–301.

[66] M. Vuagnoux and S. Pasini, “Compromising Electromagnetic Em-
anations of Wired and Wireless Keyboards,” in Proc. of the 18th
USENIX Security Symposium, vol. 8, 2009, pp. 1–16.

[67] J. V. Monaco, “SoK: Keylogging Side Channels,” in Proc. of the 39th
IEEE S&P, 2018, pp. 211–228.

[68] D. J. Tian, G. Hernandez, J. I. Choi, V. Frost, C. Raules, P. Traynor,
H. Vijayakumar, L. Harrison, A. Rahmati, M. Grace et al., “At-
tention spanned: Comprehensive vulnerability analysis of at com-
mands within the android ecosystem,” in Proc. of the 27th USENIX
Security, 2018, pp. 273–290.

[69] P. Cronin, X. Gao, C. Yang, and H. Wang, “Charger-surfing:
Exploiting a power line side-channel for smartphone information
leakage,” in Proc. of the 30th USENIX Security, 2021, pp. 681–698.

PLACE
PHOTO
HERE

Hongbo Wang is a currently pursuiting Ph.D.
student with the School of Computer Science
and Engineering, Nanyang Technological Uni-
versity, Singapore. He received the MS degree in
Comunications Engineering from Nanyang Tech-
nological University in 2021 and the BS degree
in Electrical Engineering from University of Elec-
tronic Science and Technology of China in 2020.
He has published papers in ACM Sensys, ACM
MobiCom, ACM CCS, etc. His research interests
include Integrated Sensing and Communication

(ISAC) and deep learning.

PLACE
PHOTO
HERE

Jingyang Hu is currently pursuiting Ph.D. stu-
dent with the College of Computer Science
and Electronic Engineering, Hunan University,
China. From 2022 to 2023, he works as a joint
Ph.D. student at the School of Computer Sci-
ence and Engineering at Nanyang Technolog-
ical University (NTU), Singapore. He has pub-
lished papers in ACM Ubicomp, ACM CCS, IEEE
ICDCS, IEEE TMC, IEEE JSAC, IEEE IoT-J, etc.
His research interests include wireless sensing
and deep learning.

https://www.cisco.com/c/en/us/td/docs/wireless/controller/8-4/config guide/b_cg84/wireless_intrusion_detection_system.html#rogue-ap-classification
https://www.cisco.com/c/en/us/td/docs/wireless/controller/8-4/config guide/b_cg84/wireless_intrusion_detection_system.html#rogue-ap-classification
https://www.cisco.com/c/en/us/td/docs/wireless/controller/8-4/config guide/b_cg84/wireless_intrusion_detection_system.html#rogue-ap-classification
https://www.wechat.com/
https://www.wechat.com/
https://www.acer.com/sg-en/laptops/travelmate
https://www.acer.com/sg-en/laptops/travelmate
https://www.intel.sg/content/www/xa/en/products/sku/130293/intel-wifi-6-ax201-gig/specifications.html
https://www.intel.sg/content/www/xa/en/products/sku/130293/intel-wifi-6-ax201-gig/specifications.html
https://www.intel.sg/content/www/xa/en/products/sku/130293/intel-wifi-6-ax201-gig/specifications.html
https://www.apple.com/sg/shop/buy-iphone/iphone-13
https://www.apple.com/sg/shop/buy-iphone/iphone-13
https://www.oneplus.com/sg/10t
https://www.mi.com/sg/product/xiaomi-13-pro/
https://www.mi.com/sg/product/xiaomi-13-pro/
https://consumer.huawei.com/en/phones/p40-pro/
https://consumer.huawei.com/en/phones/p40-pro/
https://www.samsung.com/sg/news/local/galaxy-s20-launch/
https://www.samsung.com/sg/news/local/galaxy-s20-launch/
https://www.chase.com/digital/mobile-banking
https://www.statista.com/statistics/1305713/average-character-length-of-a-password-us/
https://www.statista.com/statistics/1305713/average-character-length-of-a-password-us/


15

PLACE
PHOTO
HERE

Tianyue Zheng (zhengty@sustech.edu.cn) is
currently an assistant professor at the School of
Computer Science and Engineering, Southern
University of Science and Technology, China.
He received his Ph.D. degree from Nanyang
Technological University, Singapore, M.Eng. de-
gree from the University of Toronto, Canada, and
B.Eng. degree from Harbin Institute of Technol-
ogy, China. His research interests include mobile
and pervasive computing, the Internet of Things,
and machine learning. More information can be

found at https://tianyuez.github.io.

PLACE
PHOTO
HERE

Jingzhi Hu (Member, IEEE) received the B.S.
degree at the School of Electrical Engineering
and Computer Science and the Ph.D. degree at
the School of Electronics at Peking University, in
2017 and 2022, respectively. He is currently a
research fellow at School of Computer Science
and Engineering, Nanyang Technological Uni-
versity. His main research interests are machine
learning, Wi-Fi sensing systems, and reconfig-
urable intelligent surface-aided RF sensing tech-
niques for the Internet of Things, and has pub-

lished papers in prestigious venues such as IEEE Journal on Selected
Areas in Communications, Transactions on Wireless Communications,
Wireless Communications, and ACM MobiCom. He served as a TPC
Member for IEEE/CIC ICCC in 2017 and 2018.

PLACE
PHOTO
HERE

Zhe Chen is an associate professor within the
School of Computer Science at Fudan Univer-
sity, and the Co-Founder of AIWiSe Ltd. Inc. He
obtained his Ph.D. degree in Computer Science
from Fudan University, China, with a 2019 ACM
SIGCOMM China Doctoral Dissertation Award.
Before joining Fudan University, he worked as
a research fellow in NTU for several years, and
his research achievements, along with his efforts
in launching products based on them, have thus
earned him 2021 ACM SIGMOBILE China Ris-

ing Star Award recently.

PLACE
PHOTO
HERE

Hongbo Jiang is now a full professor in the
College of Computer Science and Electronic En-
gineering, Hunan University. He was a professor
at Huazhong University of Science and Tech-
nology. He received a Ph.D. from Case West-
ern Reserve University in 2008. He has been
serving on the editorial board of IEEE/ACM ToN,
IEEE TMC, ACM ToSN, IEEE TNSE, IEEE TITS,
IEEE IoT-J, etc. He was also invited to serve
on the TPC of IEEE INFOCOM, ACM WWW,
ACM/IEEE MobiHoc, IEEE ICDCS, IEEE ICNP,

etc. He is an elected Fellow of IET (The Institution of Engineering and
Technology), Fellow of BCS (The British Computer Society), Senior
Member of ACM, Senior Member of IEEE, and Full Member of IFIP TC6
WG6.2. Now his research focuses on computer networking, especially,
wireless networks, data science in Internet of Things, and mobile com-
puting.

PLACE
PHOTO
HERE

Yuanjin Zheng received the B.Eng. and M.Eng.
degrees from Xi’an Jiaotong University, Xi’an,
China, in 1993 and 1996, respectively, and the
Ph.D. degree from Nanyang Technological Uni-
versity, Singapore, in 2001. From 1996 to 1998,
he was with the National Key Laboratory of Op-
tical Communication Technology, University of
Electronic Science and Technology of China. In
2001, he joined the Institute of Microelectron-
ics (IME), Agency for Science, Technology and
Research (A∗STAR), and had been a Principle

Investigator and Group Leader. With the IME, he has led and devel-
oped various projects like CMOS RF transceivers, baseband system-
on-a-chip (SoC) for wireless systems, ultra-wideband, and lowpower
biomedical ICs. In 2009, he joined Nanyang Technological University,
as an Assistant Professor and Program Director. He has authored or
coauthored over 300 international journal and conference papers, 26
patents filed/granted, and several book chapters. His research interests
are gigahertz RFIC and SoC design, biosensors and imaging, and
SAW/BAW/MEMS sensors.

PLACE
PHOTO
HERE

Jun Luo received his BS and MS degrees in
Electrical Engineering from Tsinghua Univer-
sity, China, and the Ph.D. degree in Computer
Science from EPFL (Swiss Federal Institute of
Technology in Lausanne), Lausanne, Switzer-
land. From 2006 to 2008, he has worked as a
postdoctoral research fellow in the Department
of Electrical and Computer Engineering, Univer-
sity of Waterloo, Waterloo, Canada. In 2008, he
joined the faculty of the School Of Computer Sci-
ence and Engineering, Nanyang Technological

University in Singapore, where he is currently an Associate Profes-
sor. His research interests include mobile and pervasive computing,
wireless networking, machine learning and computer vision, applied
operations research, as well as security. More information can be found
at http://www.ntu.edu.sg/home/junluo.


	Introduction
	Background and Motivation
	Wi-Fi Human Sensing Basics
	Attack Scenarios and Existing Methods' Failure
	Why BFI instead of CSI?

	The design of MuKI-Fi
	Victim Identification and Attack Timing
	BFI Analysis and Parsing
	Keystroke Inference
	What's Wrong with Prior Art?
	Signal Segmentation
	Adversarial Learning Framework

	How MuKI-Fi works in multi-person scenarios?

	Implementation and Setup
	System Implementation
	Experiment Setup
	Metrics

	Evaluation
	Domain Adaptation Micro-benchmark 
	Overall Performance
	Classification Accuracy
	Password Inference Accuracy
	Performance Analysis

	Impact of Practical Factors
	Environments and Subjects
	Device Diversity
	Distance
	Typing Speed
	Typing Scenarios
	Password Length

	Real-World Experiment
	WeChat Pay Password Inference
	Extending to Virtual QWERTY Keyboard


	Related works
	Radio-Frequency
	Acoustic
	Vision
	Motion Sensors
	Electromagnetic Emission

	Conclusion
	References
	Biographies
	Hongbo Wang
	Jingyang Hu
	Tianyue Zheng
	Jingzhi Hu
	Zhe Chen
	Hongbo Jiang
	Yuanjin Zheng
	Jun Luo


