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ABSTRACT
The intention of leveraging Radio-Frequency (RF) resources for
diverse sensing purposes has grown increasingly keen, thanks to
the ever-expanding deployment of IoT devices using RF communi-
cations to maintain connectivity. To this end, we propose ISACoT
as the framework for enabling Integrated Sensing and Communica-
tion (ISAC) over IoT devices. ISACoT extends over existing devices
via four aspects, namely time, frequency, space, and protocol. We
argue that, as the multistatic communication infrastructure of IoT
is adverse to device-free sensing (e.g., lack of precise time synchro-
nization), the keystone of ISACoT should be to operate sensing in
a monostatic mode (like radar). We tackle the fundamental time
aspect based on Wi-Fi first, then explore the other three aspects
with both preliminary proposals made and potential challenges
raised for future extensions.

CCS CONCEPTS
• Hardware → Signal processing systems; • Human-centered
computing→Ubiquitous andmobile computing systems and
tools; • Networks → Wireless access networks.
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1 INTRODUCTION
Internet of Things (IoT) enables a variety of “things” pervasively
present around us to interact with each other [1]. Unlike the Inter-
net, IoT is not only a data-exchanging network, but also in charge
of capturing information by sensing the physical world [1]. Ex-
isting IoT often implements the two fundamental functionalities
(i.e., sensing and communication) independently: sensors collect
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data and networks route data [19, 25]. However, the concept of IoT
should not be hardened to only “networked sensors”, as the radio-
frequency (RF) communication may embrace Integrated Sensing and
Communication (ISAC) [7] to serve sensing purposes too.

While involving specialized sensors as the front-end of IoT might
be inevitable, the RF resources substantially leveraged for the (wire-
less) connectivity in IoT should not be neglected. In fact, device-free
sensing exploiting a variety of RF communication devices has been
heavily studied in the past [13, 14, 23], but they mostly attempt to
use RF signals directly for sensing purposes without attending to
the mutual interactions between sensing and communication (thus
their integration). Meanwhile, many emerging IoT services call for
new sensing modalities, and ISAC can cater to such needs without
adding extra cost to system construction. To enable ISAC, we have
to tap into the RF connectivity of spatially separated IoT nodes,
which is multistatic in nature. However, this multistatic setting is
adverse to device-free sensing for three major reasons:

Inaccurate Ranging due to Asynchrony. The synchronization pro-
tocols used by IoT often fail to correct nanosecond offsets inherent
to different devices not sharing the same clocks and other pro-
cessing units [15]. For example, a local oscillator not synchronized
with a received carrier causes carrier frequency offset. Since 10ns
implies roughly a 3m ranging error, the asynchrony of several
nanoseconds is intolerable to sensing. This has forced existing pro-
posals (e.g., [6, 22]) to only measure variations along or between
the line-of-sight (LoS) and non-line-of-sight (NLoS) paths.

Dominating Interference from LoS Path. In a multistatic IoT net-
work, wireless signals travel from a transmitter to a receiver via
both LoS and multiple NLoS paths. Whereas the LoS path mostly
carries communication data, NLoS paths are where sensing often
happens. However, the LoS signal strength is much stronger and
tends to overwhelm those of NLoS paths. The dominating LoS in-
terference leads to a high quantization noise in NLoS signals [12],
rendering the IoT RF signals less useful for sensing purposes.

Ambiguity in Motion Sensing. Motion sensing is another crucial
capability of RF signal, as it captures the distance variation of a
reflector. Due to the multistatic nature of IoT, distance variations
take place along the gradient direction of the Fresnel field [26]
whose contours are ellipsoids. However, since the direction of a
gradient (tangent to a hyperbola) cannot be determined without
knowing the reflector’s range, the sensed variation magnitude can
be meaningless as severe ambiguity exists in interpreting motion
sensing results.

Aiming to combat the adverse effects of multistatic IoT, we pro-
pose to fundamentally overhaul IoT architecture so that sensing
is conducted in monostatic mode: the antenna(s) of each IoT node,
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while transmitting data packets, simultaneously capture the re-
flected signals induced by these transmissions. Apparently, this
overhaul may largely eliminate the adverse effects because i) the
transmitter (Tx) and receiver (Rx) are co-located and share the
same clock and processing units, ii) LoS interference disappears,
and iii) sensed motion direction is well determined by the Tx and
reflector regardless of the range. To fulfill these promises, ISACoT
is developed to contain a novel RF front-end capable of effectively
separating concurrent Tx and Rx signals. While this basic prototype
enables a single IoT device to operate in an ISAC manner, several
challenges remain towards a full-fledged ISACoT for all kinds of
IoT devices. Therefore, we expand the exploration on ISACoT along
the perspectives of frequency, space, and protocol, by stating the
challenges and putting forward tentative solutions.
• Bandwidth Expansion: Modern IoT may span across multiple
frequency bands, which should be better exploited to increase
sensing resolution and combat interference.

• MIMO for ISAC: The spatial diversity introduced by the MIMO
(multiple-input and multiple-output) technology is often utilized
by IoT to enhance communication performance, so ISACoT needs
to leverage MIMO for sensing.

• Protocol Compatibility: IoT encompasses a variety of wire-
less communication protocols, with which ISACoT needs to be
integrated, better via a one-size-fits-all design.
The rest of the paper is organized as follows. We present a time-

domain design of ISACoT based on Wi-Fi in Section 2. In Sections 3,
4, and 5, we respectively discuss how to expand the capabilities of
ISACoTwith respect to frequency, space, and protocol, accompanied
by brief experiment evaluations. We finally conclude the paper in
Section 6.

2 ISACoT FORWi-Fi: A BASIC DESIGN
We adopt Wi-Fi to implement our basic ISACoT prototype due to
its wide adoption and bountiful development support.

2.1 Background on Wi-Fi Sensing
Modern Wi-Fi sensing proposals rely on CSI (channel state infor-
mation) to capture signals propagation from Tx to Rx via distinct
carrier frequencies and along multiple paths. Mathematically, CSI
of the 𝑘-th subcarrier (𝑘 = 0,±1,±2, · · ·) and ℓ-th data packet can
be expressed as:

𝐻ℓ (𝑘, 𝜏) = ∑𝑀
𝑝=0𝛼𝑝,ℓ𝑒

−𝑗2𝜋 (𝑓c+𝑘∆𝑓 )𝜏𝑝,ℓ , (1)

where𝑀 is the path cardinality, 𝛼𝑝,ℓ and 𝜏𝑝,ℓ denote the amplitude
and propagation delay along the 𝑝-th path, 𝑓c and ∆𝑓 represent
the centre frequency and subcarrier spacing, respectively. In reality
(see Section 1), the asynchrony between bistatic Tx and Rx results
in temporal uncertainties, leading to a CSI measurement𝐻 ′

ℓ
(𝑘) with

contaminated phases:

𝐻 ′
ℓ (𝑘, 𝜏) = 𝐻ℓ (𝑘, 𝜏)𝑒−𝑗2𝜋 (ℓ𝛾c+𝜙c)𝑒−𝑗2𝜋𝑘𝛽𝑒−𝑗2𝜋𝑘𝜖 , (2)

where 𝛾c, 𝜙c, 𝛽 , 𝜖 denote the CFO (carrier frequency offset), CPO
(carrier phase offset), SFO (sampling frequency offset), and PDD
(packet detection delay), respectively. Though derived for Wi-Fi,
these phase offsets apply to most IoT devices given the generic
design in RF front-end. In fact, switching to the monostatic design

that co-locates the Tx and Rx for sensing would naturally solve
the synchronization issue, thus substantially reducing all the phase
offsets. It is worth noting that, as CPO is caused by the random ini-
tialization phase, it can be changed by resetting a device and hence
requires a specific calibration; we shall revisit CPO in Section 3.

2.2 Challenges to Monostatic Wi-Fi Sensing
Though adopting monostatic sensing addresses all major problems
caused by the multistatic setting of Wi-Fi, the cost of removing the
LoS-interference indicated by 𝑝 = 1 in Eqn. (1) is the newly appeared
Tx-interference represented by 𝑝 = 0 in Eqn. (1); it was avoided
in multistatic Wi-Fi communications by the temporal separation
imposed by a MAC protocol. A naive solution to this problem is
reusing the idea of full duplex radios (FDR) [2]. Essentially, FDR is
trained under a “quiet” situation (no incoming transmissions) so
that the Rx signal 𝑅(𝑘, 𝜏) = 𝐻 (𝑘, 𝜏)𝑆(𝑘) is purely induced by the Tx
signal 𝑆(𝑘); it aims to generate a cancelling CSI 𝐻C (both analog
and digital) so as to eliminate 𝑅(𝑘, 𝜏), by minimizing:

𝑍 (𝑘, 𝜏) = 𝐻C(𝑘, 𝜏) · 𝑆(𝑘) + 𝑅(𝑘, 𝜏). (3)

Unfortunately, this FDR design does not work for ISACoT, because
it removes the multipath components (𝑝 > 1 contained in 𝑅(𝑘, 𝜏))
crucial to monostatic sensing.

2.3 Tx-Interference Removal for ISACoT
Our key design for ISACoT is a Tx-Rx separator shown in Figure 1a.
This separator contains both analog and digital cancellators. We
first introduce the basic principle behind these cancellators, then
we discuss their detailed constructions. Different from FDR, our
separators aim to minimize only the 1st term in 𝑍 (𝑘, 𝜏):

𝑍 (𝑘, 𝜏) =
[
𝐻C(𝑘, 𝜏)𝑆(𝑘)+𝐻 (𝑘, 𝜏)𝑝=0𝑆(𝑘)

]
+ 𝐻 (𝑘, 𝜏)𝑝>1𝑆(𝑘), (4)

achieved by adding a switch to toggle between an antenna and
a dummy load (shown in Figure 1b), so as to train the separator
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(a) ISACoT architecture: from normal switching to separating.
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(b) Analog cancellator: an in-depth view.

Figure 1: ISACoT replaces switch with separator to enable
concurrent Tx and Rx access (a). The key component of
the separator is the analog cancellator (b) that mitigates Tx-
interference to the Rx chain.
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Figure 2: The USRP-based prototype of ISACoT.

under an even “quieter” situation free of the 2nd term in 𝑍 (𝑘, 𝜏) by
switching to the dummy load.

As illustrated in Figure 1b, we adopt a direct quadrature mod-
ulator (DQM) to realize the analog cancellator; it is trained to ap-
proximate the inverse of 𝐻 (𝑘, 𝜏 )𝑝=0 (comprised of the internal prop-
agation path within the RF front-end) given the dummy load and
thus to mitigate the 1st term in 𝑍 (𝑘, 𝜏). Built over USRP X310 [9]
shown in Figure 2, ISACoT further contains a general purpose I/O
controller to toggle an RF switch between the antenna and dummy
load. Signals from antennas are first fed to a circulator to roughly
split Tx and Rx, then the outcome is taken by the analog cancellator
to filter the Tx-interference. The output may still have residue Tx-
interference, but the dynamic range has been significantly reduced
to the level that sampling it with the ADC of the USRP results in
neither saturation nor large quantization errors. Consequently, the
samples are taken by a digital cancellator (a programm) to further
cleanse the Tx-interference. Though sharing the same principle as
Eqn. (4), the digital cancellator differs from its analog counterpart
in that 𝐻C is trained as an adaptive filter whose coefficients are
obtained via an LMS (least mean squares) algorithm.

2.4 Microbenchmarking on ISACoT
We first depict the performance of Tx-Rx separation with the Tx
power set to 5dBm in Figure 3.1 It can be observed that, while the
circulator results in a 12dB reduction, the analog and digital cancel-
lators further reduce the Tx-interference by 40dB and 25dB, respec-
tively. The total cancellation brings the residue Tx-interference very
close to the noise floor. To demonstrate the ranging and motion
1This choice of Tx power is rather arbitrary, as what really matters here is how much
reduction can be brought by Tx-Rx separation, which is largely independent of the
absolute Tx power. Moreover, this relative reduction is conditioned on the noise floor
that differs from device to device; in other words, any claim on reduction below the
noise floor is meaningless.
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Figure 3: Power spectrum of the received baseband signal
after various components of Tx-Rx separators.
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Figure 4: Ranging (a) and motion sensing (b) error compar-
isons between ISACoT and a baseline.

sensing performance of ISACoT, we take USRP without our Tx-Rx
separator as the baseline, and we adopt the MUSIC algorithm [18]
for parameter estimations. We fix a metal cylinder (radius 0.1m
and height 1.2m) on a robot car and control the car remotely to
move from 1m to 15m, with a 1m step size in a corridor and a
speed ranging from 0.6m/s to 3.5m/s. We obtain the ranging and
speed errors shown in Figure 4a and 4b: the median ranging errors
are 2.84m and 14.14m for ISACoT and the baseline, while median
speed errors are 0.37m/s and 1.92m/s. Whereas the advantage of
our separator is evident, the MUSIC algorithm cannot make the
best out of our design, for the reason to be elaborated in Section 5.1.

3 FREQUENCY: ULTRA-WIDEBAND
Existing radar-based sensing platform leverages an ultra-wide band-
width to achieve centimeter-level range resolution [5] (hence excel-
lent accuracy in conducting human activity recognition [3, 8] and
vital signs monitoring [4, 28]), but IoT devices do not enjoy such a
luxury. Theoretically, two solutions may potentially extend ISACoT
towards ultra-wideband: i) wideband Tx-interference removal and
ii) channel hopping with narrowband removal for individual sub-
bands. Whereas the former solution suffers an increasingly unstable
frequency response given a growing bandwidth, the latter faces the
interference from random CPOs, 𝜙c in Eqn. (2), after each hopping.
In practice, relying on wideband IoT is nearly impossible because
certain channels may not be available when in need. Therefore, we
decide to leverage channel hopping to utilize discontinuous but idle
channels, by rising to the challenge of calibrating CPOs.

Channel Hopping Calibration. To calibrate the CPOs caused by
channel hopping, we rewrite the Rx phase of the 𝑘-th subcarrier
(within the 𝑖-th channel with centre frequency 𝑓 𝑖c ) and ℓ-th packet in
Eqn. (2) as𝜓𝑖,𝑘,ℓ = 𝛿𝑖,𝑘,ℓ +𝜙𝑖c, where 𝛿𝑖,𝑘,ℓ = 2𝜋 (𝑓 𝑖c +𝑘∆𝑓 )𝜏𝑝,ℓ denotes
the phase caused by a physical channel. We propose to leverage a
two-way transmission along the circuit to cancel 𝛿𝑖,𝑘,ℓ . Basically,
after each channel hopping, both Tx and Rx chains are toggled to a
short circuit and then transmit to each other. We have𝜓Tx

𝑖,𝑘,ℓ
= 𝛿𝑖,𝑘,ℓ +

𝜙𝑖c when the Tx chain transmits and 𝜓Rx
𝑖,𝑘,ℓ

= 𝛿𝑖,𝑘,ℓ − 𝜙𝑖c otherwise.

This allows the CPO to be calibrated as 𝜙𝑖c =
(
𝜓Tx
𝑖,𝑘,ℓ

−𝜓Rx
𝑖,𝑘,ℓ

) /
2.

Sparse Recovery for Non-Continuous Channels. After the CPO
calibration, we obtain a CSI tensor 𝐻ℓ (𝑖, 𝑘, 𝜏 ) whose individual com-
ponents 𝐻ℓ (𝑘, 𝜏) are CSI matrices for respective channels. To esti-
mate the delay 𝜏𝑝,ℓ under discontinuous channels, we formulate
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Figure 5: Ranging performance of wideband sensing.

the problem as a sparse optimization:

min ∥q∥1 (5)

s.t.
∑I

𝑖=1
∑𝐾
𝑘=1 𝐻ℓ (𝑘, 𝜏) − 𝑧(𝛼, 𝜏)


2

= 0, (6)

𝑧(𝛼, 𝜏) = ∑I
𝑖=1

∑𝐾
𝑘=1

∑𝑀
𝑝=1𝛼𝑝,ℓ𝑒

−𝑗2𝜋 (𝑓 𝑖c +𝑘∆𝑓 )𝜏𝑝,ℓ ,

where q = [𝛼1,ℓ , 𝛼2,ℓ , · · · , 𝛼𝑀,ℓ , 𝜏1,ℓ , 𝜏2,ℓ , · · · , 𝜏𝑀,ℓ ]𝑇 , ∥·∥1 and ∥·∥2
refer to 𝐿1 and 𝐿2 norms, respectively. We conduct experiments
to validate these solutions using the setting in Section 2.4, with 10
arbitrary 20Mhz channels in the range from 5.160GHz to 5.885GHz
for ISACoT and MUSIC [18] as the baseline. The results illustrated
in Figure 5a show median errors of 0.41m and 0.95m respectively
for ISACoT with and without calibration (resp. wc and woc), while
that of the baseline (0.65m) is worse than ISACoT-wc, because our
algorithm refines its estimation with multiple iterations. We also
show the performance improvement of ISACoT-wcwhile increasing
channel numbers from 1 to 10 in Figure 5b.

4 SPACE: MIMO SENSING
Acquiring a finer spatial resolution demands MIMO sensing with
multiple antennas, whose design entails a much higher degree of
freedom, hence offering more opportunities.

4.1 Approaching ISAC-MIMO
Three major architectures exist to enable ISAC-MIMO, namely
time-division, digital beamforming, and analog beamforming [5].
Time-Division (TD) MIMO enforces different antennas to be in
Tx/Rx states at non-overlapping time slots; it is cheap and easy to
implement, but it incurs non-negligible time delays. Digital Beam-
forming (DB) employs multiple RF chains each equipped with a
single antenna. It transmits or receives signals simultaneously, and
hence has the most flexible and fast beam steering capability. Un-
fortunately, large-scale DB can be too costly for IoT devices. Analog
Beamforming (AB) consists of two RF chains (respectively for Tx
and Rx similar to TD) each with multiple antennas driven by phase
shifters (a.k.a. phased antenna array). It selects different beamform-
ing patterns (via different phase shifter paths) to steer Tx and Rx
towards pre-defined directions. Apparently, AB’s performance and
cost sit between TD and DB, and building high quality shifters can
be highly nontrivial.

4.2 A Preliminary TD Implementation
We choose to realize a preliminary ISAC-MIMO implementation
based on a hybrid TD-AB architecture with two RF chains: one for
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(a) Antenna architecture.
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Figure 6: A hybrid TD-AB ISAC-MIMO for ISACoT.

Tx (and concurrent Rx enabled by the Tx-Rx separator introduced
in Section 2.3) while another for pure Rx. Since our separator is
calibrated only for internal Tx-interference within a chain circuit,
it may not properly handle the interference cancellation across
different chains. Consequently, we exploit the phase cancellation
idea of a simple AB architecture. As illustrated in Figure 6a, the Tx
chain retrofits the right side of the circulator in Figure 1 to drive
two symmetrically placed antennas via a (phase) splitter, and the Rx
chain employs a switch to receive from three Rx antennas separated
by half wavelength 𝑑𝑟 . These five antennas are strategically placed
so that the axis of the later three is perpendicular to that of the
first two, so that the 180◦ phase splitter causes the Tx-interference
to have a zero sum at the Rx chain. We verify the performance
of this design by placing a rotary robot 1.5m from ISACoT with
six different bearings: 0◦, 30◦, 45◦, 60◦, 75◦, 90◦. We apply MUSIC
to estimate the AoA (angle of arrival) and compare the two designs
with and without the phase splitter. According to Figure 6b, it is
evident that the simple AB upgrade (with its phase cancellation)
outperforms the one without it, since the cross-chain interference
is better suppressed.

4.3 Challenges to ISAC-MIMO
Our hybrid TD-AB design is only a taste of ISAC-MIMO, so it leaves
plenty of challenges for further studies.

From Hybrid to AB MIMO. Our preliminary design incurs a tech-
nical issue: a target close to the axis of the Rx antennas can barely be
detected due to the mutual cancellation of the two Tx signals, and
the sensing resolution can be affected by the distance between the
target and the axis. While a direct solution to this issue is adopting
phased antenna array for the Tx chain to avoid the “dead angle”,
switching to pure AB MIMO implementation may yield a much bet-
ter spatial resolution leveraging the beam scanning algorithms used
for mmWave sensing [11, 16, 20]. Nonetheless, how to suppress
cross-chain Tx-interference via intelligent beamforming scheduling
remains to be a challenge.

Aliasing Layout MIMO. Instead of the expensive phased array,
specially designed TD antenna layout is much cheaper while avoid-
ing the cross-chain interference by relying on only one RF chain.
Consider the equally spaced antennas in our preliminary design,
the spacing sequence of the virtual array becomes [0, 2𝑑𝑟 , 2𝑑𝑟 ] [21].
Since this layout leads to aliasing beamforming patterns preventing
a target to be distinguished, we upgrade it with a special strat-
egy where the spacing sequence of physical and virtual arrays are
respectively set as [0, 𝑑𝑟 /2, 𝑑𝑟 ] and [0, 𝑑𝑟 , 2𝑑𝑟 ]. Consequently, one
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anti-aliasing and two alisasing beamforming patterns are gener-
ated by three antennas pairwisely, thus a target can be detected
by combining these patterns. However, this layout may not handle
nearby targets with only one anti-aliasing pattern, and it can be
too strict for hardware design.

Large-scale DB MIMO. If cost is not an issue, large-scale (i.e.,
more than 10 antennas in an array [24]) DB MIMO can be adopted
to deliver high spatial resolution; it may even drop the need for the
analog cancellator shown in Figure 1b, by leveraging part of its RF
chains (hence antennas) to transmit phase-complementing signals
and hence to null the cross-chain Tx-interference at the remaining
Rx chains [10]. However, as the Tx-interference is blended with
the reflected signals (similar to the FDR situation in Section 2.2),
DB MIMO may face challenges in acquiring qualified monostatic
sensing information. One may argue for a directional beamforming
solution to avoid the cross-chain interference (as opposed to the
above nulling scheme), yet this virtually degenerates DB to AB; we
hence leave a new beamforming algorithm design for DB ISAC-
MIMO as another challenge.

5 TOWARDS GENERALIZED ISACoT
We herein discuss two levels of protocol compatibility for ISACoT:
i) between sensing and communication and ii) with other IoT pro-
tocols beyond Wi-Fi.

5.1 Communications during Sensing
Although our Tx-Rx separator allows for currently sensing and
communication at hardware level, the resulting hardware opera-
tions may not be compatible with Wi-Fi at protocol level. As shown
in Figure 7, applying the Tx-Rx separator during normal packet re-
ceptions significantly reduces SNR and hence throughput: because
the MAC protocol prohibits Tx from transmitting, the separator
is reduced to a noise-driven filter. In fact, it is a waste of comput-
ing resource to apply the Tx-Rx separator on normal Rx signals.
In addition, as normal Wi-Fi traffic contains a series of irregular
packets, the sequence of CSIs contained in the reflected Rx signals
are also irregular. As a result, existing Wi-Fi sensing approaches
that implicitly assume regular CSI receptions [17, 22] may fail to
achieve an adequate performance. We conduct experiments with
the rotary robots and 80MHz bandwidth (similar settings already
adopted in Section 3): under irregular CSI receptions, the FFT base-
line algorithm barely delivers a reasonable resolution due to the
dispersed energy, as shown in Figure 8a upper panel.
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Figure 7: The Tx-Rx separator (Sep) heavily degrades normal
Wi-Fi packet reception quality.
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Figure 8: Motion sensing performance comparison between
ISACoT and FFT baseline under irregular CSI receptions: (a)
range-frequency heatmap and (b) speed estimation error.

To avoid interfering normal receptions, we propose and imple-
ment a minor yet critical revision to the MAC protocol. In particular,
ISACoT starts with a C-state (for communications), and a DATA or
ACK message invokes the transition to an M-state (for monostatic
sensing), which respectively activates the analog and digital cancel-
lators by a hardware interrupt and a function call. A transition back
from theM-state to the C-state is controlled by a timer fine-tunable
to suit surrounding environments. As for handling the irregular
CSI receptions, we leverage NFFT (non-uniform fast Fourier trans-
form) to enhance the sparse optimization framework introduced
in Section 3. As shown in Figure 7, switching off the separator be-
fore packet reception does significantly improve the performance
of Wi-Fi communications. In addition, our NFFT enhanced sparse
optimization enables ISACoT to achieve speed estimation accuracy
far more superior to that achieved by the FFT baseline algorithm,
as shown in both Figure 8a lower panel and 8b.

5.2 ISAC beyond Wi-Fi
The final target of ISACoT is aiming for a general and protocol-free
ISAC architecture. Because it is a non-trivial task to tackle all kinds
of IoT devices in one paper, we only lay down a few opportunities
and challenges.

One-Size-Fits-All Design. Though ISACoT is currently designed
only Wi-Fi, its plug-and-play and protocol-independent architec-
ture should allow it to be smoothly migrated to other IoT protocols
for two reasons. On one hand, ISACoT only utilizes CSIs for sensing
while almost all IoT protocols offer such a feature in their firmware.
On the other hand, the frequency range of ISACoT coincides with
most IoT protocols. Interestingly, we also find that certain mod-
ulations, e.g., chirp spread spectrum adopted by LoRa, may help
improving the Tx-interference suppression, since frequency mod-
ulation scheme concentrates energy into a single frequency com-
ponent at any given point in time, standard low pass filter may be
sufficient to handle Tx-interference.

Encompassing Other SensingModes. In fact, ISACoT does not have
to be confined to only monostatic sensing mode; it is certainly com-
patible with the well-studied multistatic sensing mode [13, 14, 23].
This is because, when bypassing the Tx-interference separator un-
der the C-state, an IoT device simply works under the normal
communication mode and multistatic sensing can directly piggy-
back on it, while exploiting our proposals on bandwidth expansion
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(Section 3) and protocol compatibility (Section 5.1) to improve sens-
ing performance. Combining monostatic sensing with multistatic
sensing should significantly expand the distributed collaborative
sensing involving many IoT devices.

6 CONCLUSION
Bearing the ambition of making all IoT devices ISAC-ready, we pro-
pose ISACoT as a general framework encompassing time, frequency,
space, protocol aspects of the problem. While our preliminary pro-
totype has largely addressed the time domain aspect of ISACoT
under Wi-Fi, we are still on the way to extending it towards wider
bandwidth, higher spatial diversity, and broader protocol compat-
ibility. We present our preliminary studies and implementations
for each aspect, while leaving a few critical issues as challenges,
expecting our research community to join forces in fully tackling
them. In summary, we have raised the following challenges to
ISACoT: i) distributed collaborative sensing, ii) bandwidth expan-
sion, iii) MIMO implementation, and iv) compatible with general
IoT protocols. Currently, we are working towards tackling all the
challenges raised in this paper, as well as combining our ISACoT
framework with the novel signal processing techniques enabled by
deep learning [27] for improving the performance for both sensing
and communications
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