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Abstract

Positioning is an essential service for various applications and is expected to be integrated with exist-

ing communication infrastructures in 5G and 6G. Though current Wi-Fi and cellular base stations (BSs)

can be used to support this integration, the resulting precision is unsatisfactory due to the lack of precise

control of the wireless signals. Recently, BSs adopting reconfigurable holographic surfaces (RHSs)

have been advocated for positioning as RHSs’ large number of antenna elements enable generation of

arbitrary and highly-focused signal beam patterns. However, existing designs face two major challenges:

i) RHSs only have limited operating bandwidth, and ii) the positioning methods cannot adapt to the

diverse environments encountered in practice. To overcome these challenges, we present HoloFed, a

system providing high-precision environment-adaptive user positioning services by exploiting multi-

band (MB)-RHS and federated learning (FL). For improving the positioning performance, a lower bound

on the error variance is obtained and utilized for guiding MB-RHS’s digital and analog beamforming

design. For better adaptability while preserving privacy, an FL framework is proposed for users to

collaboratively train a position estimator, where we exploit the transfer learning technique to handle the

lack of position labels of the users. Moreover, a scheduling algorithm for the BS to select which users

train the position estimator is designed, jointly considering the convergence and efficiency of FL. Our

performance evaluation based on simulations confirms that HoloFed achieves a 57% lower positioning

error variance compared to a beam-scanning baseline and can effectively adapt to diverse environments.
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I. INTRODUCTION

In 5G and 6G wireless systems, positioning is an essential service fundamental to both user

location awareness and improved communication [2], [3], and thus has an ever-expanding range

of applications in civil and military scenarios [4]. Among all the available positioning techniques,

the satellite-based Global Positioning System (GPS) is the most widely used one and can achieve

high precision in ideal outdoor environments. Nevertheless, it has the drawbacks of consuming

a lot of energy and frequently loosing track when buildings block the satellite signals [5], [6].

The loss of GPS signals can take place in various outdoor, indoor, and underground scenarios,

creating many GPS-deprived regions where users receive poor positioning services.

To provide positioning services in GPS-deprived regions, many different GPS-free alternatives

have been studied, including video-based [7], radar-based [8], and radio frequency identification

(RFID)-based [9] positioning techniques. Though the above-mentioned positioning techniques

can achieve high precision, they all require additional infrastructure which can be cost-prohibitive

for realizing ubiquitous positioning [6]. To reduce the infrastructure cost, integrated sensing and

communications (ISAC) has been proposed as a key enabling technology for 6G, integrating

sensing and positioning functions into the existing communication infrastructures, e.g., Wi-Fi and

cellular base stations (BSs). Nevertheless, such piggyback positioning systems generally cannot

ensure high positioning precision, mainly due to their limited bandwidth and comparatively low

number of antenna elements.

Thanks to the recent development of metamaterial-based reconfigurable holographic surfaces

(RHSs), one may achieve a cost-efficient increase in communication rate, while potentially

enhancing the precision of the piggyback positioning services at the same time. This potential

is largely attributed to RHSs’ characteristic of comprising a massive number of metamaterial

antenna elements (meta-elements for short), which are densely arranged and have much smaller

spatial spacing than half of their operating wavelength. Such a dense arrangement enables RHSs

to synthesize arbitrary wavefronts and beam shapes [10], suggesting their strong capability in

manipulating electromagnetic (EM) waves [10]. Utilizing this capability, BSs equipped with an

RHS can focus transmitted signals into sharp beams to enhance the signal-to-noise ratio (SNR)

of users and to probe the region of interest with high resolution and precision.

A few RHS-based systems have been proposed for positioning in the literature [10], [11]: an

RHS-based ISAC system is proposed to generate signal beams for both sensing and communi-



cation with high gains in [10], and an RHS is leveraged for target detection with high accuracy

yet at low power and cost in [11]. In this context, it is also worthwhile to mention positioning

methods exploiting reconfigurable intelligent surfaces (RISs) [2], [12]–[17] due to their intrinsic

similarity. Although RISs differ from RHSs in i) the signal feeding scheme (RISs’ over-the-air

propagation as opposed to RHSs’ on-board propagation) and thus ii) take up a larger space,

the positioning methods for RIS- and RHS-based systems are largely comparable since they

both leverage massive numbers of meta-elements for analog beamforming. In [12], the authors

utilize an RIS to generate distinguishable signals at different positions and employ a positioning

method based on maximum likelihood estimation (MLE). The authors of [13], [14] also employ

MLE-based positioning methods, and they optimize the beamforming of the RIS by minimizing

the Cramer-Rao lower bound (CRLB) on the positioning error. The beamforming optimization

problem is then extended to scenarios involving multiple RISs and obstacles in [15]. In addition

to the MLE-based methods, the authors of [2], [16] propose positioning methods based on

estimating the time differences among the signals arriving from an RIS. Moreover, the authors

of [17] exploit supervised learning to determine the RIS beamformer and the position of user.

The positioning systems and methods discussed above, albeit promising, still have deficien-

cies in their hardware and software designs, preventing them from being deployed to diverse

practical environments. Firstly, in the hardware domain, most existing works have considered

positioning using signals with rather limited bandwidth, resulting in deficient range resolution

and low adaptivity to the frequency selectivity of diverse environments caused by multipath

fading. The limited operating bandwidth of existing designs is partially attributed to the physical

implementation of meta-elements, which is intrinsically highly frequency selective [18], [19],

leading to a severe beam-squinting problem for signals with wide and ultra-wide bandwidth [20].

This means that a single configuration of meta-elements cannot provide the desired beam patterns

over a large bandwidth simultaneously as the meta-elements’ signal radiation coefficients vary

largely across the band in terms of their phases and amplitudes. In this regard, multi-band (MB)

transmission [21], [22] is a promising alternative to ultra-wideband transmission. The feasibility

of MB-RHSs has been verified in [18], where an MB-RHS capable of operating in bands at 9.5,

10, 10.5, and 11 GHz is realized. Moreover, in [23], [24], the authors prototyped RISs employing

meta-elements capable of operating in two bands. Exploiting MB transmissions, RHS-based BSs

can leverage a larger bandwidth while concurrently realizing appropriate beam patterns.

Secondly, in the software domain, most positioning methods rely on raw received signals or
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Fig. 1. Application scenarios of HoloFed. (a) Outdoor vehicle positioning for GPS-deprived regions. (b) Indoor autonomous

vehicle (e.g., unmanned aerial vehicles (UAVs) and cleaning robots) positioning for large malls. (c) Underground vehicle

positioning for garage parking.

extracted features such as time-of-arrival (ToA) and angle-of-arrival (AoA). Such methods lack

environmental adaptivity as they cannot fully exploit the environment-specific features contained

in the received signals for precision maximization [25]. Although a few recent proposals have

started to leverage deep learning techniques for automatic and environmental-specific feature

selection and extraction [17], [26], they need massive data on received signals and position

labels for training. To obtain the required data and labels, crowd sensing techniques, where a

crowd of users gather the data collaboratively [3], [27], can be potentially exploited. Nevertheless,

it is nontrivial to provide effective incentives for users to disclose their position labels since these

labels can indicate personal interests and hence potentially compromise user privacy [28], [29].

To achieve high position precision and environmental adaptivity while preserving user privacy,

we propose HoloFed, an ISAC system with positioning capability specifically targeting a wide

range of outdoor, indoor, and underground GPS-deprived scenarios, as shown in Figs. 1(a)-(c).

HoloFed exploits MB-RHS and federated learning (FL) to provide the environmental adaptivity

in the hardware and software domains, respectively. We propose a positioning protocol under

the FL framework for HoloFed, allowing the users to collaboratively adapt HoloFed to diverse

environments while preserving the privacy of their own position labels. With the proposed

protocol, the BS first transmits signals to the users, utilizing the digital and analog (DA)

beamforming capability of MB-RHS. Each user then employs a position estimator function

distributed by the BS to process the received signals and estimate its position. Furthermore,

each user trains the position estimator with its local data, and the BS schedules the users to send

the trained position estimator in the uplink to perform global updates.

To optimize the performance of HoloFed, we derive a lower bound on the mean squared

error (MSE) of positioning considering the influence of MB multipath fading; this bound is then



exploited to optimize the DA beamforming. Besides, to facilitate FL in practice where users

have few position labels, we exploit the transfer learning technique to handle the insufficient

training data. Moreover, a user scheduling algorithm is designed for FL, jointly considering the

convergence and efficiency. The main contributions of this paper can be summarized as follows:

• We propose the first positioning system assisted by both MB-RHS and FL, delivering low

positioning error and high environmental adaptivity without compromising the users’ privacy.

• We derive a lower bound on HoloFed’s positioning error variance and utilize it for the

optimization of DA beamforming of MB-RHSs. Besides, in FL, we handle the lack of users’

position labels by exploiting the transfer learning technique and design a user scheduling

algorithm to optimize the convergence and efficiency of the training.

• We verify the effectiveness of HoloFed through extensive simulations. Our results confirm

that the proposed algorithm is more efficient compared to two benchmark algorithms for

beamforming optimization and user scheduling. The results also demonstrate that HoloFed

can effectively adapt to diverse environments and achieve low positioning errors.

Compared to its conference version [1], this paper proposes the application of FL for achieving

privacy-preserving environmental adaptivity. Furthermore, it provides new optimization algo-

rithms, which enhance the efficiency of the DA beamforming optimization by proximal stochastic

descent, handle the insufficiency of users’ local data by transfer learning, and improve the

efficiency of user scheduling in FL based on an new analytical result of the convergency rate.

The remainder of this paper is organized as follows: In Sec. II, the system model for HoloFed

is established. Then, for positioning error minimization, an optimization problem is formulated

in Sec. III. In Sec. IV, we propose an efficient algorithm for HoloFed to solve the formulated

problem. In Sec. V, simulation results are provided, and conclusions are drawn in Sec. VI.

Notations: (·), (·)⊤, (·)H, and (·)−1 are the conjugate, transpose, Hermitian transpose, and

inverse operators, respectively. ⊙ and ⊗ denote the Hadamard and Kronecker products, respec-

tively. RM×N and CM×N denote the sets of real and complex M × N matrices, respectively.

1M represents the M -dimensional all-ones column vector, and 1M×N is the M × N all-ones

matrix. Functions tr(·) and diag(·) return the trace and the main diagonal vector of a matrix,

respectively. Function Ex∼Γ (·) returns the expectation of the argument, given variable x follows

distribution Γ . Operators ∥·∥1 and ∥·∥2 denote the ℓ1- and ℓ2-norms, respectively. ∇xf represents

the gradient vector of function f with respect to x. Symbol i is the imaginary unit. [x]m, [X]m,



and [X]m,n denote the m-th element of vector x, the m-th row vector of matrix X , and the

(m,n)-th element of matrix X , respectively. {xi}i is the set of xi for all subscript i within its

range. x◦2 is the element-wise second power of x. ℜ(·) is the real part of the argument.

II. SYSTEM MODEL

The proposed HoloFed is an ISAC system with positioning functionality exploiting an MB-

RHS and FL. As in [13], we assume the system utilizes the orthogonal frequency division

multiplexing (OFDM) waveform, which is typically adopted for ISAC systems due to its high

spectral efficiency, robustness against multipath fading, and easy implementation [30]. As shown

in Fig. 2, the system comprises a BS equipped with an RHS and U users. Possible users include

cars, autonomous vehicles (UAVs and cleaning robots), and mobile phones. The BS provides

data and positioning services for the users in a time-division duplex (TDD) manner. In this paper,

we focus on developing the positioning function of HoloFed for a 3D region of interest (ROI).

Specifically, in HoloFed, the process for users to obtain their positions is referred to as the

positioning process. As the users’ positions constitute private information, they are not intended

to be known by the BS without users’ explicit acknowledgement. Thus, the users in HoloFed

estimate their positions by themselves, instead of relying on the BS to estimate their positions

and then inform them. This self-positioning is done by using a function referred to as position

estimator. Nevertheless, since it is hard for individual users to determine the exact characteristics

of the RHS and the environment, they cannot effectively derive the position estimator. To handle

this issue, the position estimator is provided to the users by the BS. Moreover, to make HoloFed

environment-adaptive, the users train the position estimator collaboratively. For the positioning

process, a federated positioning protocol is proposed as detailed in this section.
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Fig. 2. Illustration of the proposed HoloFed system.



In the following, the components of the system are described in Sec. II-A, the users’ received

signals are modeled in Sec. II-B, and the federated positioning protocol is provided in Sec. II-C.

A. System Components

The complete HoloFed system comprises an RHS-based BS and multiple users.

1) RHS-based BS: The BS is equipped with an RHS, which is a rectangular planar antenna

array composed of NE reconfigurable meta-elements and K signal feeds. Each meta-element

can be modelled as an electronic controllable micro-antenna element, which takes the input RF

signals from the feeds and radiates the signals into space. Besides, by electronically configuring

the different states of the meta-element, its signal radiation coefficient can be controlled, which

determines the ratio between the signals emitted by and fed into it. Based on [10], [31], the

radiation coefficient is assumed to be a real number from set1 R = [0, 1].

For positioning, the BS transmits OFDM signals in each of NB bands, where the spectral

interval between different bands is assumed to be large to exploit spectrum diversity. Each band

has NSB sub-bands, and the bandwidth of each sub-band is W . We assume that the radiation

coefficient of a meta-element in a certain state is constant within the sub-bands of the same

band as in [10]. Nevertheless, due to the large spectral interval between different bands and

the frequency selectivity of the meta-elements, the radiation coefficient of a meta-element in a

certain state varies across different bands [18], [19].

Besides, as for communication, since we focus on the positioning function of HoloFed, we

assume a simple setting where the BS employs an omnidirectional antenna and communicates

with the users by single-band OFDM2. With the omnidirectional antenna, the BS broadcasts

beaconing frames, receives data from the users, and sends control signals to the users.

2) Users: The users are assumed to have omnidirectional single Tx and Rx antennas, and

they can communicate with the BS in each of the NB bands. Nevertheless, due to bandwidth

limitation, a user can only transmit or receive signals over one of the NB bands at a time. Besides,

assuming each positioning process has a very short time duration, then the position of a user

during a positioning process can be considered fixed and denoted by vector p ∈ P ⊆ R3 with P

denoting the ROI. Moreover, we assume that the positioning processes take place periodically. In

1If R is a discrete set, the method proposed in this paper can still be employed by adding an extra quantization step.
2While the RHS can also be used for communication, this is beyond the scope of this paper. Furthermore, involving it will

incur additional complexity for the design of HoloFed’s positioning function, and thus it is not considered.



each positioning process, the positions of the users are assumed to be independent and identically

distributed random variables, each following a distribution ΓU, i.e., p ∼ ΓU.

B. Received Signal Model

We establish the model for the received signals for the frame transmission from the BS to user

n (n ∈ {1,..., U}), which is also referred to as the channel model. Without loss of generality,

we index the frame by q, and omit subscript n for the conciseness of presentation. The signals

transmitted by the BS and received by the user undergo three stages of propagation, which are

referred to as feed→meta-element, meta-element radiation, and meta-element→user.

1) Feed→meta-element: Denote the positions of feed k and meta-element m by pF
k and

pE
m (∀k ∈ {1,..., K},m ∈ {1,..., NE}), respectively. Then, based on [10] and [13], for sub-band

j of band i and frame q (∀i ∈ {1,..., NB}, j ∈ {1,..., NSB}, q ∈ {1,..., F}, where F is the

number of frames), the incident signals of meta-element m can be expressed as

ω
(q)
i,j,m =

K∑
k=1

s
(q)
i,j,k · g

F
i,j(φ

AoD
k,m ) · κ(fi,j,pF

k ,p
E
m) · gEi,j(φAoA

k,m ), (1)

where s
(q)
i,j,k denotes the digital symbol transmitted by the BS to the RHS via feed k, gFi,j(·) and

gEi,j(·) represent the gain patterns of the feed and the meta-element, respectively, φAoD
k,m ,φAoA

k,m ∈

R2×1 are the angle of departure (AoD) and the angle of arrival (AoA) between feed k and meta-

element m, respectively, fi,j is the center frequency of sub-band j of band i, and κ(fi,j,p
F
k ,p

E
m)

represents the gain of the on-board propagation from pF
k to pE

m at frequency fi,j (see [10]):

κ(fi,j,p
F
k ,p

E
m) = exp

(
− i · 2πnrfi,j

v0
· ∥pE

m − pF
k∥2

)
. (2)

Here, v0 is the speed of light and nr is the refractive index of the RHS board. Moreover, in

each frame q, the K digital symbols transmitted by the BS in each sub-band j are bounded by

a power constraint, i.e.,
∑K

k=1 ∥s
(q)
i,j,k∥22 = Pmax, where Pmax is the maximum transmit power3.

2) Meta-element radiation: Then, for frame q and band i, the incident signals to each meta-

element m are influenced by its radiation coefficient denoted by c
(q)
i,m, which is assumed to be

constant for the sub-bands of band i as described in Sec. II-A1. Thus, in sub-band j of band i,

the radiated signals of meta-element m in frame q can be expressed as

τ
(q)
i,j,m = c

(q)
i,m · ω(q)

i,j,m. (3)

3Assuming Pmax is fully utilized maximizes the received SNR of the users, which helps to minimize the positioning errors.



3) Meta-element→user: The radiated signals are then received by the users. For sub-band j

of band i, the received signal of the user in frame q can be expressed as

y
(q)
i,j =

NE∑
m=1

(hLoS
i,j,m + h

MP,(q)
i,j,m ) · τ (q)i,j,m + e

(q)
i,j , (4)

where e
(q)
i,j ∼ CN (0, σ2) is the thermal noise following the complex Gaussian distribution with

variance σ2, and hLoS
i,j,m and h

MP,(q)
i,j,m are the line-of-sight (LoS) and multipath gains, respectively.

Denoting the power spectral density of the noise by PN, the variance can be expressed as

σ2 = PNW . We note that, in (4), the BS and the users are assumed to be fully synchronized as

in [13]. Then, based on the signal propagation model in [2] and [32], hLoS
i,j,m can be modelled as

hLoS
i,j,m =

v0 · gEi,j(θAoD
m ) · gUi,j

4πfi,j · ∥p− pE
m∥2

· exp
(
−i

2πfi,j
v0

· ∥p− pE
m∥2

)
. (5)

Here, gUi,j denotes the gain of the user’s Rx antenna for sub-band j of band i. The Rx antennas

of the U users are assumed to have the identical gains. Besides, θAoD
m ∈ R2×1 is the AoD of the

signals from meta-element m to the user.

Based on [33], [34], we model multipath gains as complex Gaussian random variables satis-

fying wide-sense stationary condition. Defining h
MP,(q)
i,j = (h

MP,(q)
i,j,1 ,..., h

MP,(q)
i,j,NE

)⊤, based on [35],

h
MP,(q)
i,j ∼ CN (0,Vi), where covariance matrix Vi ∈ CNE×NE can be derived from the expectation

of the outer product of the RHS’s array response αi(θ) ∈ CNE over the angular domain4, i.e.,

Vi = E
(
αi(θ)αi(θ)

H
)
=

∮
αi(θ)αi(θ)

HPpap,i(θ) dθ. (6)

Here, [αi(θ)]m = exp(i2πfi
v0

(pE
m−pE

1 ) · n̂(θ)) ·gEi (θ), where fi is the center frequency of band i,

n̂(θ) is the unit normal vector for θ, and gEi (·) is the gain pattern of a meta-element at fi.

Besides, Ppap,i(θ) is the power-angle profile [34], which accounts for the angular distribution

of multipath gains. We note that Vi can also account for the passive interference among users,

i.e., the interference caused to a given user by signals passively scattered by the bodies of other

users; because the scattering paths can be modelled as random multipath components.

Based on [35], we model the covariance matrix between the multipath gain vectors for different

frames and sub-bands of band i as

E
(
h

MP,(q1)
i,j1

(
h

MP,(q2)
i,j2

)H)
=ρf,i(j1, j2)·ρt,i(q1, q2)·Vi, ∀j1, j2 ∈ {1,..., NSB} and q1, q2 ∈ {1,..., F},

4Here, we assume that Vi only depends on the multi-band index i since the multipath gains satisfy the wide-sense stationary

condition, and the sub-band frequencies are close to the center frequency of band i.



where ρf,i(j1, j2) and ρt,i(q1, q2) denote the coherence coefficients of sub-bands j1 and j2 and

frames q1 and q2, respectively. Based on [35], they can be expressed as follows:

ρf,i(j1, j2) =
1

1 + i2πσrms,i(fi,j1 − fi,j2)
, ρt,i(q1, q2) = J0(2πfD,i∆t · (q1 − q2)), (7)

where ∆t denotes the duration of a frame, σrms,i denotes the root mean square (RMS) power delay

spread of band i, J0(·) is the zeroth-order Bessel function of the first kind, and fD,i = vmaxfi/v0

is the maximum Doppler frequency with vmax being the users’ maximum speed.

Moreover, as the spectral intervals between different OFDM bands are large, the multipath

gain vectors of different bands are assumed to be not correlated, i.e.,

E
(
h

MP,(q1)
i1,j1

(
h

MP,(q2)
i2,j2

)H)
= 0, ∀i1 ̸= i2. (8)

In summary, for the F transmitted frames, we can arrange the digital symbols in (1) transmitted

in sub-band j of band i in a matrix Si,j ∈ CF×K with [Si,j]q,k = s
(q)
i,j,k and arrange the radiation

coefficients in (3) for band i in a matrix Ci ∈ CF×NE with [Ci]q,m = c
(q)
i,m. Since {Si,j}j and Ci

control the DA beamforming, we refer to them as the DA beamforming configuration for band

i. Based on (1), (3), and (4), the received signals of a user for band i are collected in vector

yi(·) ∈ RFNSB×1, which is a function of p, {Si,j}j , and Ci, and can be expressed as

yi(p; {Si,j}j,Ci) = diag
((
HLoS

i ⊗ 1F +HMP
i

)
Ti

⊤)+ ei. (9)

Here, ei ∼ CN (0, σ2IFNSB
) is the noise vector, and the elements of the matrices appearing in (9)

can be expressed as follows (∀j∈{1,..., NSB}, k∈{1,..., K},m∈{1,..., NE}, q∈{1,..., F}):

[HLoS
i ]j,m=hLoS

i,j,m, [HMP
i ](q−1)NSB+j,m=h

MP,(q)
i,j,m ,

[Ti]j = Ci ⊙
(
Si,jBi,j

)
, [Bi,j]k,m = gFi,j(φ

AoD
k,m ) · gEi,j(φAoA

k,m ) · κ(fi,j,pF
k ,p

E
m). (10)

Remark 1: In the established model, several parameters are highly sensitive to the hardware

implementation and environment and hard to obtain precisely. For instance, the actual gain

pattern of the meta-element, i.e., gEi,j(θ
AoD
m ), generally differs from the theoretical model due to

unexpected imperfections in the implementation. Besides, the power-angle profile, i.e., Ppap,i(θ),

is hard to obtain due to the complex influence of signal scatterers in diverse ROIs. We refer

to these parameters as the environmental characteristics. HoloFed achieves adaptivity to the

environmental characteristics via a federated positioning protocol, which is introduced next.

C. Federated Positioning Protocol

When a user needs to estimate its position, it requests the BS to conduct a positioning
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process. After receiving the request, the BS broadcasts a beaconing frame informing the users

of the beginning of the positioning process. To coordinate the positioning process and enable

HoloFed to adapt to diverse environments, we propose a federated positioning protocol. As

shown in Fig. 3, each positioning process is comprised of three phases, i.e., a MB multi-pattern

transmission (MMT) phase, a distributed position estimation phase, and a federated adaptation

phase. Without loss of generality, we index the positioning process by t = 0,..., T , and describe

the t-th positioning process in the following.

1) MMT Phase: In this phase, the BS generates multiple beam patterns in each band by using

the RHS, providing users with distinct received signals for position estimation. Since the BS

does not know the environmental characteristics or the users’ positions, it does not distinguish

between different positioning processes, and thus the generated beam patterns are independent

of t. Besides, as described in Sec. II-A1, the radiation coefficient of a meta-element in a certain

state varies across different bands. Thus, a state configuration that creates a desired beamforming

pattern in one band may lead to undesired beam patterns in other bands. Therefore, to design

favorable beam patterns in all bands, we assume that the OFDM transmissions in the NB bands are

performed sequentially, allowing the states of the meta-elements to be configured independently

in each band. This approach also reduces the hardware requirements for the BS and the users

as their RF chains do not have to support ultra-wideband signal transmission and reception5.

In each band i, the BS transmits F frames as shown in Fig. 3. Then, for positioning process

t, the received signals of user n in all the NB bands are arranged in matrix Y
(t)
Rx,n ∈ RNB×FNSB ,

whose i-th row is [Y
(t)
Rx,n]i = yi(p

(t)
n ; {Si,j}j,Ci) based on (9), with p

(t)
n denoting user n’s

5If the RHS can independently control the beam patterns in multiple bands, HoloFed can be modified to account for parallel

transmissions in these bands, assuming the hardware of both the BS and users is capable of supporting it.



position. To facilitate the presentation, we refer to {Si,j}j and Ci for all the NB bands collectively

as the DA beamforming configuration, denoted by {Si,j}i,j and {Ci}i, which has an impact on

HoloFed’s positioning precision since it determines the beam patterns probing the ROI. Based

on Fig. 3, the MMT phase has linear time complexity with respect to (w.r.t.) the number of

bands and the number of frames transmitted in each band. Besides, since the BS broadcasts the

frames to all users at the same time, the MMT phase has constant time complexity w.r.t. the

number of users. Consequently, its time complexity is given by O(NBF ).

2) Distributed Position Estimation Phase: In this phase, the BS first distributes the position

estimator to the users through downlink beacon transmission. The position estimator is modeled

as a multi-layer perceptron (MLP), which is a universal function approximator with high gener-

alization capability [36]. The MLP can be interpreted as a parameterized function with parameter

vector w ∈ RNpara , where w is comprised of the Npara connection weights and biases of the

MLP. Specifically, in positioning process t, the distributed position estimator can be denoted by

f(·;w(t)) : Y
(t)
Rx,n → p̃

(t)
n with p̃

(t)
n ∈ R3 denoting the estimated position of user n.

3) Federated Adaptation Phase: Due to the unknown environmental characteristics, the BS

cannot effectively determine the position estimator by itself. Thus, in this phase, the users help

the BS to adapt the position estimator to the environment by using their local datasets. Here,

the local dataset of a user contains the received signal matrices and their corresponding position

labels. To enable this adaptation while protecting the privacy of the users’ position labels, the

FL framework is employed, where the position estimator is trained in a distributed manner with

no position labels sent to the BS. Specifically, each user first calculates the gradient of the

positioning error for its local dataset w.r.t. w(t). Then, the BS schedules users to upload their

gradients, and updates the position estimator based on the received gradients.

More specifically, denote the local dataset gathered by user n by Dn, and assume that each

user has obtained the data-label pairs in Dn, i.e., (YRx,p) ∈ Dn, when it was near a few anchors

in the ROI6. Then, based on the error measure commonly used for positioning systems, e.g., [39],

we assume that user n evaluates its positioning error by the MSE loss, i.e.,

L̂n(w
(t)) =

∑
(YRx,p)∈Dn

∥p− f(YRx;w
(t))∥22. (11)

6Here, an anchor refers to a location where the users can obtain their position labels based on short-range positioning

techniques. Such short-range positioning techniques can be readily supported by near-field communication (NFC) of the users

with the existing Internet of Things (IoT) infrastructure [37], [38].



Based on (11), the gradient of user n’s local loss can be calculated as g(t)
n = ∇wL̂n(w

(t)), which

is referred to as its local gradient. Exploiting the local gradient of the positioning loss w.r.t. the

position labels collected near a small number of anchors, HoloFed adapts its position estimator

to the actual deployment environment for achieving large-range positioning with high precision.

Moreover, to prevent local gradients from compromising position privacy, the differentially

private (DP) training mechanism is employed in FL, i.e., noises are added to the local gradients.

For user n (∀n ∈ {1,..., U}), the noise term added to g
(t)
n is denoted by ς

(t)
n ∈ RNpara and follows

Gaussian distribution N (0, σ2
dp,nI). Based on [40], variance σ2

dp,n can be calculated as

σ2
dp,n =

L2

ϵ2dp,n
2 log(1.25/δdp), (12)

where ϵdp,n represents the privacy leakage bound of user n in terms of differential privacy, L

denotes the Lipschitz constant of the local gradient which can be enforced by having each user

rescale its local gradient to L in terms of ℓ2-norm, and δdp ≪ 1 is a small constant ensuring

σ2
dp,n to be finite by allowing a violation probability of the privacy leakage bound. Consequently,

the local update that user n prepares to upload can be expressed as ∆w
(t)
n = −g

(t)
n + ς

(t)
n .

Furthermore, as HoloFed also needs to provide communication services, we assume that in

each positioning process, only one user is selected to upload its local update over a single

band7, so that the occupation of the time-spectrum resources for FL is minimized. For the t-th

positioning process, denote the probability of selecting each user for uploading by scheduling

probability vector ξ(t) = (ξ
(t)
1 ,..., ξ

(t)
U ). The update of the parameter vector can be expressed as

w(t+1) = A(t)(w(t),∆w(t)
x )

∣∣
x∼M(ξ(t))

, (13)

where x is the index of the selected user, A(t)(·) denotes the adaptation function used by the

BS to update w(t) based on ∆w
(t)
x , and M(ξ(t)) denotes the multinomial distribution given ξ(t).

Remark 2: In HoloFed, users do not suffer from active user interference caused by signal

transmissions of other users because they only receive signals in the MMT phase and are

scheduled to transmit their local updates one at a time in the federated adaptation phase.

III. PROBLEM FORMULATION FOR POSITIONING ERROR MINIMIZATION

We formulate an optimization problem for HoloFed, targeting the minimization of the average

MSE of positioning experienced by the users over the ROI after adaptation. The degrees of

7The band used for uploading can be selected by the user for rate maximization. Even multiple bands can be used if the user

and the BS can support it. The proposed algorithm can be modified to accommodate such cases, as described in Sec. IV-C.



freedom for optimization include the DA beamforming configuration, i.e., {Si,j}i,j and {Ci}i,

the initial parameter vector of the position estimator, w(0), and the sets of adaptation functions

and scheduling probability vectors for the t = 0,..., T positioning processes, i.e., {A(t)}t and

{ξ(t)}t. The positioning error minimization problem is formulated as follows:

(P1) : min
{Si,j}i,j ,{Ci}i,

w(0),{A(t)}t,{ξ(t)}t

L(w(T )) =
U∑

n=1

E
pn∼ΓU

(
∥pn − f(YRx,n;w

(T ))∥22
)
, (14a)

s.t. [YRx,n]i = yi(pn; {Si,j}j,Ci), (14b)

diag(Si,jS
H
i,j) = Pmax1F , (14c)

[Ci]q,m ∈ R, (14d)

∆w(t)
n = −∇wL̂n(w

(t)) + ς(t)n , (14e)

w(t+1) = A(t)(w(t),∆w(t)
x )

∣∣
x∼M(ξ(t))

, (14f)

0 ⪯ ξ(t) ⪯ 1, ∥ξ(t)∥1 = 1. (14g)

∀i ∈ {1,..., NB}, j ∈ {1,..., NSB}, q ∈ {1,..., F}, m ∈ {1,..., NE},
n ∈ {1,..., U}, t ∈ {0,..., T},

In (14a), L(w(T )) denotes the expected MSE of positioning experienced by the U users after

the adaptation in the T positioning processes. Constraint (14b) indicates that the relationship

between the user position and the received signal matrix follows the channel model established

in (9). Constraints (14c) and (14d) indicate that the symbols for digital beamforming satisfy

the power constraint, and that the radiation coefficient value of each meta-element belongs to

set R, respectively. Besides, constraints (14e) and (14f) follow from the update of the parameter

vector of the position estimator in each positioning process according to the protocol proposed

in Sec. II-C3. Moreover, constraint (14g) ensures that ξ(t) is a valid probability vector.

The challenges of solving (P1) comprise the following three aspects: Firstly, as described in

the remark in Sec. II-B, channel models {yi(·)}i in (14b) contain undetermined environmental

characteristics, making them hard to evaluate the influence of the DA beamforming configuration

on the received signals. This hinders the optimization of {Si,j}i,j and {Ci}i.

Secondly, in (14e), as the local datasets only contain the position labels collected near a few

anchors, the loss function of user n, L̂n(·), is not identical to the objective function, L(·). Thus,

the update of the parameter vector in (14f) does not necessarily reduce the expected MSE of

positioning. To handle this problem, initial parameter vector w(0) and adaptation function set
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Fig. 4. Flow chart of the proposed positioning error minimization algorithm for HoloFed.

{A(t)}t need to be properly selected. However, the degrees of freedom of w(0) and {A(t)}t are

very high due to the large number of parameters in the MLP and the arbitrary forms of the

adaptation functions, making the search for w(0) and {A(t)}t very challenging.

Thirdly, as the BS does not know the users’ local datasets or local gradients when determining

the scheduling probability vectors, it is hard for the BS to evaluate the influence of ξ(t) let alone

to optimize it. Nevertheless, as {ξ(t)}t in (14f) has an impact on the convergence and efficiency

of FL, it has a fundamental influence on the objective function. Therefore, optimizing {ξ(t)}t is

both crucial for solving (P1) and very challenging.

In summary, solving (P1) is highly complex and challenging, and is beyond the capabilities of

conventional optimization algorithms. Hence, to solve (P1), novel algorithms that can effectively

handle the aforementioned three challenges are needed.

IV. POSITIONING ERROR MINIMIZATION ALGORITHM FOR HOLOFED

In this section, we handle (P1) by proposing a positioning error minimization algorithm for

HoloFed. Specifically, we tackle the three challenges arising when solving (P1) by decomposing

the problem into three sub-problems. The three sub-problems are: the DA beamforming optimiza-

tion by solving {S∗
i,j}i,j and {C∗

i }i, the initial point selection and adaptation function design

for w(0)∗ and {A(t)∗}t, and the user scheduling probability optimization by solving {ξ(t)∗}t. A

flow chart of the complete algorithm proposed for solving (P1) is provided in Fig. 4.

A. DA Beamforming Optimization

To overcome the challenge due to undetermined environmental characteristics, we substitute

the channel models in (P1), {yi(·)}i, with deterministic ones denoted by {ỹi(·)}i, where the

environmental characteristics such as the gain pattern of meta-elements and the power-angle

profile are obtained approximately. The reason why we can perform this substitution is that



the federated positioning protocol enables HoloFed to adapt to the environment, allowing the

position estimator to adjust to the difference between {yi(·)}i and {ỹi(·)}i via FL. Thus, we can

solve the DA beamforming optimization problem given {ỹi(·)}i and leave the adaptation to FL.

Besides, to facilitate the DA beamforming optimization, we consider that the optimal position

estimator for DA beamforming configuration is employed, which is denoted by f̃ ∗(·). Therefore,

the optimization of {Si,j}i,j and {Ci}i in (P1) is converted into a sub-problem:

(SP1) : min
{Si,j}i,j ,{Ci}i

E
p∼ΓU

(
∥p− f̃ ∗(YRx)∥22

)
, s.t. [YRx]i = ỹi(p; {Si,j}j,Ci), (14c)-(14d), ∀i, j.

Problem (SP1) is still challenging because: 1) f̃ ∗(·) is undetermined; 2) the noises and

multipath gains in the channel models are random variables; 3) the total dimension of {Si,j}i,j and

{Ci}i is very large, namely NBFNSBK +NBFNE, resulting in high computational complexity

for evaluating the objective function of (SP1) and its gradient.

To overcome the above challenges, we first convert (SP1) into a CRLB minimization problem,

addressing the challenges of the undetermined f̃ ∗(·) and the random noises and multipath gains.

Then, to avoid the high computational complexity caused by the large dimension of {Si,j}i,j and

{Ci}i, the gradient of the CRLB is obtained in closed form, based on which an efficient stochastic

gradient descent algorithm is proposed. The detailed steps for solving (SP1) are described below.

1) Deriving the CRLB on the MSE of Positioning: Given {Si,j}i,j and {Ci}i, we first analyze

the objective function value of (SP1), which can be obtained by solving optimization problem

minf̃(·) E(YRx,p)

(
∥p− f̃(YRx)∥22

)
. Supposing the solution to the optimization problem, f̃ ∗(·), is

unbiased, the optimum of the objective in (SP1) can be benchmarked by the average CRLB over

the ROI, since the CRLB is a valid lower bound for the variance of any unbiased estimator [41].

Specifically, the CRLB for position p can be calculated based on the following Proposition 1.

Proposition 1. Given {Si,j}i,j and {Ci}i, the CRLB for a user at p can be calculated as

CRLB(p) =
3∑

u=1

[
I−1
FIM(p)

]
uu
. (16)

Here, IFIM(p) is the Fisher information matrix (FIM) of YRx w.r.t. p, whose (u, v)-th ele-

ment (∀u,v∈{1,2,3}) is given by:

[IFIM(p)]u,v=2ℜ
( NB∑

i=1

(∂ŷi

∂pu

)H
Λ−1

i

(∂ŷi

∂pv

))
, (17)

where ŷi denotes the expectation of ỹi(p), pu is the u-th element of p, and Λi ∈ CFNSB×FNSB



is the covariance matrix of ỹi. The terms in (17) can be calculated as follows
∂ŷi

∂pu
= diag

(
(ḢLoS

i,u ⊗ 1F )Ti
⊤), Λi = Kft,i⊙(TiViT

H
i )+σ2I, (18)

where ḢLoS
i,u = ∂HLoS

i /∂pu, and Kft,i = (Kf,i⊗1F×F )⊙ (1NSB×NSB
⊗Kt,i) with [Kf,i]j1,j2 =

ρf,i(j1, j2) and [Kt,i]q1,q2 = ρt,i(q1, q2).

Proof: The FIM in (17) can be obtained by substituting the channel model in (9) into the

FIM formula in [42, Eq. (6.55)], and the CRLB can be obtained based on [13, Eq. (27)].

Based on Proposition 1, we use the expected CRLB over the ROI to substitute the objective in

(SP1). Moreover, to facilitate the calculation of expectation, we employ the Monte Carlo method

to approximate the expected CRLB by the average CRLB for a set of Nsam randomly sampled

positions following distribution ΓU, which is denoted by Ssam. Thus, (SP1) is converted into the

following CRLB minimization problem:

(SP1′) : min
{Si,j}i,j ,{Ci}i

∑
p∈Ssam

CRLB(p)

Nsam

, s.t. (14c)-(14d), ∀i, j. (19)

Remark 3: Based on (6) and Proposition 1, the impact of passive user interference on the

CRLB can be analyzed: If the magnitudes of all entries of Vi increase by a factor of X times

due to larger passive user interference (∀i ∈ {1,..., NB}), then based on (16)–(18), CRLB(p)

will increase approximately by a factor of X as well.

Remark 4: According to Proposition 1, the benefits of using multiple bands for positioning

are two-fold. Firstly, the Fisher information from multiple bands adds up, leading to a lower

value for the CRLB. Secondly, the fact that signals received in different bands are generally less

correlated (due to less correlated multipath gains) also contributes to a lower CRLB. This can

be shown by deriving the Fisher information of two correlated signals based on [41, Eq. (3.31)].

2) Solving CRLB Minimization: In (SP1′), there are a large number of optimization variables

in {Si,j}i,j and {Ci}i. Besides, to ensure the objective function in (SP1′) approximates the actual

expectation of the CRLB over the ROI, Nsam also needs to be large. Consequently, evaluating the

value and gradients of the objective function is highly computationally complex, which makes

traditional optimization algorithms inefficient. To solve (SP1′) efficiently, we design a proximal

stochastic gradient descent algorithm based on the ProxSARAH algorithm in [43], which is a

state-of-the-art proximal stochastic descent algorithm.

Similar to ProxSARAH, our algorithm involves an inner loop and an outer loop. In the outer

loop, the gradient of the objective function w.r.t. the optimization variables is coarsely estimated



for a set of sampling points in the ROI. Then, in the inner loop, the gradient estimate is itera-

tively refined based on the gradient deviation determined during the update of the optimization

variables. This method enhances the precision of gradient estimation for limited sampling points,

leading to an accelerated convergence rate [43]. Moreover, to efficiently handle the large number

of optimization variables, we optimize {Si,j}i,j and {Ci}i alternatingly.

The proposed algorithm is described as follows. In each iteration of the outer loop, the inner

loops for the DA beamforming variables are conducted sequentially. In the ℓout-th iteration (ℓout =

1,..., Nout) of the outer loop for instance, a gradient estimate is first generated as

V
(0)
S,i,j =

1

|B(ℓout)
S |

∑
p∈B(ℓout)

S

∇Si,j
CRLB(p;Si,j), ∀i, j, (20)

where B(ℓout)
S denotes a randomly selected batch of position samples in Ssam.

Then, the inner loop for digital beamforming starts with S
(0)
i,j = Si,j . In the ℓin-th itera-

tion (ℓin = 1,..., Nin) of the inner loop, the digital beamforming variables are updated as

S
(ℓin)
i,j = (1− γ)S

(ℓin−1)
i,j + γproxS(S

(ℓin−1)
i,j − βV

(ℓin−1)
S,i,j ), ∀i, j, (21)

where γ and β are coefficients controlling the step size of the update, and proxS(·) denotes

the proximal operator for the digital beamforming variables to ensure that constraint (14c) is

satisfied. Then, the gradient estimate is iteratively updated in the inner loop as

V
(ℓin)
S,i,j = V

(ℓin−1)
S,i,j +

∑
p∈B(ℓout,ℓin)

S

∇Si,j
CRLB(p;S

(ℓin)
i,j )−∇Si,j

CRLB(p;S
(ℓin−1)
i,j )

|B(ℓout,ℓin)
S |

, ∀i, j, (22)

where B(ℓout,ℓin)
S is a randomly selected batch of samples in Ssam to estimate the gradient

difference. The obtained V
(ℓin)
S,i,j is fed into (21) for the next iteration. After Nin iterations of

the inner loop, the current digital beamforming variables are updated as Si,j = S
(Nin)
i,j , ∀i, j.

Then, steps similar to (20)-(22) are carried out for the analog beamforming variables, substi-

tuting symbols Si,j , VS,i,j , BS, proxS(·), and ∇Si,j
CRLB(p;Si,j) with Ci, VC,i, BC, proxC(·),

and ∇Ci
CRLB(p;Ci), respectively. Moreover, based on [44], in (21), the proximal operators

for the DA beamforming variables can be expressed as

[proxS(Si,j)]q =
[Si,j]q

∥[Si,j]q∥2
Pmax, [proxC(Ci)]q,m = min(max([Ci]q,m, 0), 1), (23)

where q ∈ {1,..., F} and m ∈ {1,..., NE}. Furthermore, we derive the gradients of the CRLB

w.r.t. {Si,j}i,j and {Ci}i in (20) and (22) in close form in the following proposition.

Proposition 2. The gradient of the CRLB w.r.t. Si,j (∀i ∈ {1,..., NB}, j ∈ {1,..., NSB}) at



Algorithm 1 DA Beamforming Optimization Algorithm

1: Sample Nsam position samples following ΓU and obtain Ssam.

2: Set initial {S(0)
i,j }i,j = {Si,j |s(q)i,j,k =

√
Pmax/K} and {C(0)

i }i containing random elements within [0, 1].

3: for ℓout = 1,..., Nout do # Outer Loop

4: Generate an initial gradient estimate for the CRLB with (20), which is denoted by V
(0)
S,i,j , ∀i, j.

5: for ℓin = 1,..., Nin do # Inner Loop

6: Update S
(ℓin)
i,j based on (21) and (23) by using gradient estimate V

(ℓin−1)
S,i,j , ∀i, j.

7: Update the gradient estimate by (22) with the help of the gradient formulas given in Proposition 2.

8: Conduct steps similar to Steps 4 to 7 for analog beamforming variables {Ci}i, ∀i.

9: Return {S∗
i,j}i,j and {C∗

i }i as the current {Si,j}i,j and {Ci}i.

position p can be calculated by the formulas as follows:
∂CRLB(p;Si,j)

∂Si,j

= − tr
(∂IFIM(p)

∂Si,j

I−2
FIM(p)

)
, where (24)[

∂IFIM(p)

∂Si,j

]
u,v

=2ℜ
(
As

i,j,v,u +As
i,j,u,v +Bs

i,j,u,v +Bs
i,j,v,u

)
, ∀u,v∈{1,2,3}. (25)

Here, notations As
i,j,u,v and Bs

i,j,u,v are defined in Appendix A. Besides, the gradient of the

CRLB w.r.t. Ci (∀i ∈ {1,..., NB}) at p can be calculated in a similar manner as (24), (25)

by substituting As
i,j,u,v, Bs

i,j,u,v, and Si,j with Ac
i,u,v, Bc

i,u,v, and Ci, respectively. The complete

expressions of Ac
i,u,v and Bc

i,u,v are also given in Appendix A.

Proof: Please refer to Appendix A.

In summary, the algorithm for DA beamforming optimization is provided in Algorithm 1. In

the following subsections, {S∗
i,j}i,j and {C∗

i }i obtained by Algorithm 1 are employed as default.

B. Initial Point Selection and Adaptation Function Design

Now, we focus on the second challenge of (P1), i.e., the objective function cannot be effectively

minimized as the user’s local datasets only contain position labels for the areas around a few

anchors. To overcome this challenge, a proper adaptation function, {A(t)∗}t, and a suitable initial

parameter vector of the position estimator, w(0)∗, are needed. Nevertheless, due to their high

degrees of freedom, they are hard to obtain by traditional optimization algorithms. To tackle this

issue effectively, we employ the transfer learning technique to obtain w(0)∗ and {A(t)∗}t.

To begin with, we describe the initial point selection and adaptation function design sub-

problem of (P1) in the context of transfer learning as follows. The target environment, where we

aim to optimize HoloFed, constitutes target domain Dtar = {ΓU, {yi(·)}i}, which comprises the



distribution of user position ΓU and the set of exact channel models {yi(·)}i. Then, the objective

of (P1) can be considered as a task on Dtar denoted by T (Dtar), in which we aim to find the

optimal parameter vector for the minimization of the positioning error given ΓU and {yi(·)}i.

Due to the undetermined environmental characteristics and the insufficient local datasets of

the users, the solution to T (Dtar) cannot be obtained by conventional optimization techniques.

Fortunately, the transfer learning technique provides an effective means to handle T (Dtar).

Specifically, we resort to a domain similar to Dtar, where the task can be efficiently solved.

We refer to this domain as the source domain and denote it by Dsrc, and the solution to T (Dsrc)

is denoted by w∗′. To obtain w∗′, certain environmental characteristics need to be assumed for

Dsrc, which are generally different from those in Dtar. This results in different joint distributions

for the user positions and received signals in the two domains, and hence w∗′ is not valid in Dtar.

Nevertheless, due to the intrinsic similarities between Dtar and Dsrc (e.g., the underlying signal

propagation models and DA beamforming configurations are identical), transfer learning can be

used efficiently to adapt w∗′ to Dtar [45]. Therefore, T (Dtar) can be handled by selecting w∗′ as

the initial point, i.e., w(0), and adapting it to Dtar with {A(t)}t, which is designed to minimize

the positioning error of f(·;w(T )) over the users’ local datasets. In the following, we describe

the detailed procedures for selecting the initial point and designing the adaptation function.

1) Selection of Initial Point: We choose the source domain having channel model {ỹi(·)}i in

Sec. IV-A, i.e., Dsrc = {ΓU, {ỹi(·)}i}. Then, by using {ỹi(·)}i, the BS can generate sufficient re-

ceived signal matrices with position labels. Denote the generated dataset by Ssrc = {(YRx,ℓ,pℓ)}ℓ
with ℓ ∈ {1,..., Nsrc}, where Nsrc is the size of Ssrc. Then, T (Dsrc) can be handled by solving

the following optimization problem.

(SP2-1) : min
w′

1

Nsrc

∑
(YRx,ℓ,pℓ)∈Ssrc

∥pℓ − f(YRx,ℓ;w
′)∥22. (26)

The solution to problem (SP2-1), w′∗, can be obtained efficiently by using Adam algorithm [46],

and we select w(0)∗ = w′∗ as the proper initial point for the adaptation under the FL framework.

2) Design of Adaptation Function: Next, we design the adaptation function to adapt the

solution to T (Dsrc) to T (Dtar), so that the objective function in (P1) can be optimized. Specif-

ically, the adaptation function needs to satisfy two important conditions: First, the adaptation

should not overfit the position estimator to the limited local datasets of the users; otherwise, the

resulting position estimator may yield low positioning errors only around the anchors. Second,

the adaptation should not be biased towards the local dataset(s) of one or few users; otherwise,



the resulting position estimator may only get low positioning errors for part of the users.

To satisfy the first condition while fully utilizing the limited target domain data, we employ a

fine-tuning technique to set different adaptation rates for different parts of parameter vector w(t),

where the MLP of the position estimator is viewed as being composed of two components: The

output layer of the MLP constitutes a regressor deriving the user’s position from the features

extracted by the other layers; and the other layers jointly constitute a feature extractor. We denote

the parameters in w(t) ∈ RNpara corresponding to the feature extractor and the regressor by

w
(t)
feat ∈ RNfeat and w

(t)
reg ∈ RNreg , respectively, i.e., w(t) = (w

(t)
feat,w

(t)
reg) and Npara = Nfeat+Nreg.

We note that the feature extractor optimized for T (Dsrc) is also effective for T (Dtar) as the

channels in both domains follow the same structure, i.e., (1)-(9), and the same DA beamforming

configurations are employed. Therefore, the method for feature extraction needs little adaptation,

and w
(t)
feat can be frozen or adapted with a very low rate ηfeat. In contrast, the regressor has to

be adapted substantially to handle the differences in the extracted feature values caused by the

different environmental characteristics. Thus, we adapt the regressor with a large learning rate

denoted by ηreg. Though the amount of local user data collected in Dtar is small, the adaptation

of the regressor can still be done effectively since the regressor only contains the output layer

of the MLP with a small number of trainable parameters.

Besides, to satisfy the second condition, the aggregation function is expected to update the

parameter vector along an unbiased gradient direction for minimization of the loss functions of

all users, i.e., it should solve the following target domain adaptation optimization problem:

(SP2-2) : min
{A(t)}t

L̂(w(T )) =
U∑

n=1

L̂n(w
(T )), s.t. (14e)-(14f), w(0) = w∗

src, ∀t = 1,..., T, (27)

where L̂n(w
(T )) is defined in (11) and L̂(w(T )) denotes the total loss of all users w.r.t. w(T ).

Therefore, in each positioning process t, the selected adaptation function A(t)∗ should update

w(t) in the opposite direction of an unbiased estimate of ∇wL̂(w(t)), which is denoted by g(t).

To obtain this unbiased estimate, based on [47, Lemma 1], we can multiply the uploaded local

update from user x, i.e., ∆w
(t)
x , with a weight which is in proportion to the size of user x’s

local dataset, i.e., Qx, and in inverse proportion to its scheduling probability, i.e., ξ(t)x , so that

E
x∼M(ξ(t))

( Qx

Qξ
(t)
x

∆w(t)
x

)
= −∇wL̂(w(t)) = −g(t), (28)

where Q =
∑U

n=1Qn is the total size of all users’ local datasets.

In summary, based on the fine-tuning technique and (28), the set of adaptation functions to



solve (SP2-2) can be designed as

A(t)∗(w(t),∆w(t)
x ) = w(t) + η ⊙

( Qx

Qξ
(t)
x

∆w(t)
x

)
, ∀t = 1,..., T, (29)

where η = (ηfeat1Nfeat
, ηreg1Nreg) is the adaptation rate vector.

C. User Scheduling Probability Optimization

In the following, we handle the third challenge of (P1) by optimizing the user scheduling

probability in each positioning process. Specifically, when optimizing ξ(t), we consider two

important factors as follows. First, in order to achieve fast convergence in FL, we consider

the impact of ξ(t) on the expected convergence rate. Second, to efficiently utilize the spectrum

resource, we also evaluate the effect of ξ(t) on the efficiency of gradient uploading.

Here, the convergence rate can be analyzed by extending [47, Lemma 2] to the FL framework

under the proposed federated positioning protocol, as shown in the following proposition.

Proposition 3. Given A(t)∗(·) in (29), denote the optimal parameter vector for (SP2-2) by w∗.

The expected convergence rate for the t-th positioning process is characterized by

E
(
L̂(w(t+1))−L̂(w∗)

)
≤ E

(
L̂(w(t))−L̂(w∗)

)
− η⊤

(
1− L

2
η
)
⊙ g(t)◦2

+
L

2

U∑
n=1

1

ξ
(t)
n

·
(
Qn

Q

)2

·
(
η◦2⊤E(g(t)◦2

n ) + σ2
dp,n∥η∥2

)
− L

2
η◦2⊤g(t)◦2. (30)

Here, g(t) and g
(t)
n are the gradients of L̂(w(t)) and L̂n(w

(t)), respectively, as defined in (28)

and below (11), L is the Lipschitz constant of the gradient, and η is defined in (29).

Proof: Please refer to Appendix B.

In (30), the only term related to ξ(t) is the third term on the right-hand side of the inequality,

which reflects the influence of ξ(t) on the convergence rate and needs to be minimized. Propo-

sition 3 reveals that the convergence rate is dependent on the powers of the gradients of the

users and, to improve the rate of convergence, users having higher gradient powers should be

scheduled with higher probabilities. However, as E(g(t)◦2
n ) is difficult to estimate by the BS or

the users, we approximate it by g
(t)◦2
n as in [47]. Based on (30), for the scheduling probability

of user n uploading in positioning process t, i.e., ξ(t)n , we define its influence on convergence as

Z
(t)
IC,n =

(
Qn

Q

)2

·
(
η◦2⊤E(g(t)◦2

n ) + σ2
dp,n∥η∥2

)
. (31)

Besides, we evaluate the influence of ξ
(t)
n on the uploading efficiency by the ratio between

uploading duration and weighted uploading capacity. The uploading duration is the time duration



for the uplink transmission of user n’s local update, and the uploading capacity is the maximum

information on the optimization step of w(t) contained in the uploaded gradient. We measure the

uploading capacity based on the Shannon channel capacity formula [34]. Intuitively, the square

of the uploaded gradient can be considered as the “transmit power”, as a gradient with a larger

squared norm can contain more information regarding the optimization step. The variance of the

noise added to the gradient for DP training, i.e., σ2
dp,n, can be considered as the noise power of

the “channel”. Therefore, adding the weights for the learning rate and the data size, we define

the weighted uploading capacity of user n’s uploading in positioning process t as

Ξ(t)
n =

Qn

Q
· log

(
1 +

η◦2⊤E(g(t)◦2
n )

σ2
dp,n∥η∥22

)
. (32)

Then, the influence on uploading efficiency of ξ(t)n is calculated as

Z
(t)
IE,n =

Bpara

R
(t)
n Ξ

(t)
n

, (33)

where Bpara denotes the total size of the gradient vector in bits, and R
(t)
n denotes the uplink

transmission rate from user n to the BS8. Here, exploiting channel reciprocity, R
(t)
n can be

obtained by user n based on the downlink frames from the BS for distributing w(t).

To allow the BS getting enough information to optimize ξ(t) while minimizing the overheads,

during the federated adaptation phase, let each user n calculate Z
(t)
IC,n and Z

(t)
IE,n based on its local

gradient and send these values to the BS. Since Z
(t)
IC,n and Z

(t)
IE,n are scalars and contain only the

norms of the local gradients, the cost of uplink transmission and privacy leakage is negligible.

Jointly considering the convergence rate and uploading efficiency, we formulate a joint con-

vergence and efficiency scheduling optimization problem as follows:

(SP3) : min
ξ(t)

U∑
n=1

( 1

ξ
(t)
n

· 1

Ẑ
(t)
IC

· Z(t)
IC,n + ξ(t)n · 1

Ẑ
(t)
IE

· Z(t)
IE,n

)
, s.t. (14g). (34)

In (SP3), we employ two weight coefficients, i.e., Ẑ
(t)
IC and Ẑ

(t)
IE , to rescale the impact of

the convergence rate and the uploading efficiency. By this means, we prevent the optimization

objective of (SP3) from being overly biased to either the convergence rate or the uploading

efficiency given their different value ranges. Specifically, Ẑ(t)
IC and Ẑ

(t)
IE are set as follows:

Ẑ
(t)
IC =

U∑
n=1

Z
(t)
IC,n

(ξ
(t−1)
n )2

, Ẑ
(t)
IE =

U∑
n=1

Z
(t)
IE,n, ∀t = {1,..., T}, (35)

8As user n can calculate Z
(t)
IE,n in (33) with R

(t)
n being the uplink rate of the user, the proposed user scheduling algorithm

can be extended to arbitrary band selection schemes for uplink transmission of local gradients.



Algorithm 2 Positioning Error Minimization Algorithm for HoloFed

1: Obtain {S∗
i,j}i,j and {C∗

i }i with Algorithm 1.

2: Given {S∗
i,j}i,j and {C∗

i }i, generate the training data in the source domain, i.e., Dsrc.

3: Solve problem (SP2-1) with the Adam algorithm [46] and obtain w′∗ as w(0).

4: for t = 0, ..., T do

5: The BS distributes w(t) to all the users, and each user n determines its uplink rate R
(t)
n to the BS.

6: Each user n calculates its local gradient by g
(t)
n = ∇wL̂n(w

(t)).

7: Each user n calculates Z
(t)
IC,n and Z

(t)
IE,n based on (31) and (33) and sends them to the BS.

8: The BS obtains the optimized scheduling probabilities, i.e., ξ(t)∗, by solving (SP3).

9: The BS randomly selects user x to upload its local update according to distribution M(ξ(t)∗).

10: User x sends local update ∆w
(t)
n = −g

(t)
n + ς

(t)
n to the BS with ς

(t)
n being the noise for differential privacy.

11: The BS updates the global parameter vector as w(t+1) = A(t)∗(w(t),∆w
(t)
x ) based on (29).

with ξ
(0)
n = 1/U . It is straightforward to show that problem (34) is convex and has a unique

optimal solution, which can be efficiently found by using convex optimization algorithms.

Finally, integrating the DA beamforming optimization, the initial point selection and adaptation

function design, and the user scheduling probability optimization, the complete positioning error

minimization algorithm for HoloFed is summarized as Algorithm 2.

V. SIMULATION RESULTS

In this section, the simulation is described and then our key simulation results are provided.

A. Simulation Setup

We establish a 3D coordinate system with its origin at the center of the RHS, its x-axis along

the perpendicular direction of the RHS, and its z-axis pointing vertically upward. ROI P is a

cuboid region with its center at (10, 0, 0) m and 3D dimensions (lx, ly, lz) = (10, 10, 2) m. The

distribution of the user positions, ΓU, is a 3D uniform distribution within P .

The RHS board is made of FR-4, which is a typical dielectric material used for printed

circuit boards and has refractive index nr = 2.1. The NB bands of the system are centered at

fi = (2 + 0.5i) GHz (i ∈ {1,..., NB}) and the average wavelength of the center frequencies is

denoted by λavr. The spacing between adjacent meta-elements is set to be 0.3λavr.

As for position estimator f(·;w), a 5-layered MLP with (1024, 512, 128) nodes in the three

hidden layers is employed. Specifically, the output layer is treated as the regressor and the

other layers are treated as the feature extractor, whose learning rates are set to ηreg = 10−3



TABLE I

SIMULATION PARAMETERS

Parameter Value Parameter Value Parameter Value Parameter Value

NB 2 NE 10× 10 K 3 σrms,i 0.5 µs

NSB 8 vmax 20 km/h ∆t 4 µs PN −174 dBm/Hz

F 4 Pmax 1 mW W 125 kHz Nsam 104

T 400 U 2 Nsrc 105 |BS|, |BC| 40

Nout 500 Nin 5 γ 0.95 β 0.1

δdp 10−5 Bpara 2.7× 107 bits

and ηfeat = 10−6, respectively. We consider the case with U = 2 users, where each user has

Qn = 200 labeled data in its local dataset, as default. Each data-label pair comprises a received

signal matrix and the corresponding position label. A user obtains a position label when it is

within 0.25 m of one of 10 anchors. For simulation, the positions of the 10 anchors are drawn

from a uniform distribution within the ROI. The other default parameters are listed in Table I.

Besides, for the channel model in the source domain, the gains of each meta-element and user

antenna are normalized as gEi,j(·) = gUi,j(·) = 1 (∀i, j). Based on [35], we set Ppap,i(θ) in (6)

as a Laplacian function with zero mean and angular spread 10◦ in both azimuth and elevation,

scaled by the average LoS power within the ROI. As for the exact channel model in the target

domain, we assume a different gain pattern for the meta-elements, i.e., gEi,j(θ) = cos0.1(θ) and

different multipath characteristics, i.e., Ppap,i(θ) with mean angle 10◦ and angular spread 15◦.

B. Results and Analyses

Firstly, we validate the CRLB gradient formulas in Proposition 2. Fig. 5 (a) shows the computa-

tional time of the proposed formulas and the finite difference (FD) method [48] and the maximum

relative difference between them, which is calculated by maxℓ{|[x̃]ℓ−[x]ℓ|/max(|[x]ℓ|,1)}. Here,

x̃ and x denote the gradient vectors calculated by the proposed formulas and the FD method,

respectively. The FD method is implemented based on the function finitedifferences provided

by MATLAB®. As can be observed in Fig. 5, the proposed formulas can accurately determine

the CRLB gradient with a significantly smaller computational time compared to the FD method.

The maximum relative difference decreases with F since the CRLB decreases with F , and it

increases with NE since a larger number of variables incurs more numerical errors.

Secondly, we verify the efficiency of the proposed DA beamforming optimization algorithm

in terms of CRLB minimization. To this end, we compare it with the benchmark ProxSARAH

algorithm [43] through 30 independent trials. In each trial, Nsam = 104 random user positions
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The translucent and opaque lines show results for 30 individual trials and the average results, respectively.

within the ROI are sampled, where 90% of them are used for optimization and 10% of them

are used as test data to evaluate the average CRLB. In Fig. 5 (b), it can be observed that, for

the proposed algorithm, the average CRLB decreases with a faster rate than for ProxSARAH.

This indicates that the proposed algorithm is more efficient due to the alternation between the

DA variables. On average, the proposed algorithm saves 37.5% optimization time.

Thirdly, we verify the effectiveness of the proposed DA beamforming optimization in terms

of the resulting MSE of positioning in the source domain. We compare the DA beamforming

configuration optimized by Algorithm 1 with two baseline beamforming configurations from [14]:

• Directional Beams (DireBeam): The DA beamforming configuration generates focused beams

scanning the ROI during the frames in the MMT phase in Sec. II-C1.

• Random Beams (RandBeam): The elements of {Ci}i are randomly distributed within [0, 1],

and the elements of {Si,j}i,j take uniform values while satisfying the power constraint in (14c).

Fig. 6 shows the violin plot comparing the performance of different DA beamforming configu-

rations in terms of the resulting MSE of positioning. The MSE of positioning is evaluated by the

position estimator optimized for the source domain by solving (SP2-1) for each DA beamforming

configuration. To reduce randomness, for each configuration, we evaluate the position estimator

for 30 randomly generated test sets, and the resulting average MSE of positioning in each trial

is shown by a dot in Fig. 6. As can be observed from Fig. 6, by using the DA beamforming

configuration obtained with Algorithm 1, HoloFed can reduce the MSE of positioning by 57%
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and 78% on average compared to the DireBeam and RandBeam baselines, respectively.

Fourthly, we verify the efficiency of the proposed algorithm for user scheduling probability

optimization in Sec. IV-C. We compare the results of the proposed algorithm with a state-

of-the-art benchmark proposed in [47], which is referred to as channel-aware probabilistic

scheduling (CAPS) algorithm. To facilitate a meaningful comparison, we compare the two

scheduling algorithms for 6 typical situations, which are described in the caption of Figs. 7(a)-
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(f). Besides, to make the impact of scheduling on FL as prominent as possible, the parameters

of the regressors in the MLPs are re-initialized randomly before the first positioning process.

Figs. 7(a)-(f) show the adaptation performance in terms of the MSE of positioning in different

positioning processes, averaged over 30 independent trials. The proposed algorithm outperforms

the benchmark algorithm in all considered situations. Moreover, we calculate the average relative

gain in terms of the required number of epochs for the MSE of positioning to drop from its initial

value to below 0.5 m2. The corresponding values are provided in the sub-headings of Figs. 7(a)-

(f), e.g., ↓ 37.3% in Fig. 7(a). It can be observed that the gains of the proposed algorithm are

over 30% except for the imbalance rate situation. This verifies that the proposed algorithm is

more efficient than the benchmark algorithm in terms of training the position estimator to adapt

to the target domain.

Fifthly, we compare the MSE of positioning for the DA beamforming configurations obtained

by Algorithm 1 and the DireBeam and RandBeam baselines for different levels of deviation

between the source and target domains. We control the deviation by changing the multipath

coefficient ratio from 1 to 5, which represents the ratio between the angular spread of Ppap,i(θ)

for the target domain and that for the source domain. The comparison focuses on three values:

1) the MSE in Dsrc, 2) the potential MSE in Dtar, and 3) the MSE in Dtar after FL. Specifically,

we evaluate the MSE in Dsrc and the potential MSE in Dtar by using supervised learning to

train the position estimator with 105 labeled data in Dsrc and Dtar, respectively; and we evaluate

the MSE in Dtar after FL by using the position estimator adapted to Dtar with Algorithm 2.

Fig. 8 (a) verifies that the DA beamforming configuration obtained with the proposed algorithm

leads to the lowest potential MSE in Dtar and the lowest MSE in Dtar after FL.



Finally, we verify the performance of HoloFed in adapting to diverse environments by showing

that the MSE of positioning in different target domains can be effectively reduced through the

adaptation in the proposed protocol. Fig. 8 (b) shows the reduction of the MSE of positioning be-

fore and after the adaptation. It can be observed that for different levels of deviation between the

target and source domains, the federated adaptation consistently reduces the MSE of positioning

by around 95% for both the proposed and the DireBeam DA beamforming configurations.

VI. CONCLUSION

In this paper, we have proposed HoloFed, a user positioning system based on MB-RHS

and FL which can adapt to diverse practical environments. We have formulated a positioning

error minimization problem for HoloFed and solved it by decomposing the problem into three

subproblems. First, we derived the CRLB of the positioning error and utilized it for optimization

of the DA beamforming configuration of the RHS. Second, we exploited transfer learning to select

the initial point and adaptation function in FL. Third, we proposed a user scheduling probability

optimization algorithm, jointly considering the convergence rate and uploading efficiency of FL.

Simulation results have shown that the proposed DA beamforming optimization algorithm

can reduce the computation time required by ProxSARAH by 37.5% and result in a 57% lower

MSE of positioning compared to DireBeam baseline. Moreover, the proposed user scheduling

optimization algorithm achieves a 11% ∼ 37% lower average MSE in FL process compared to

the benchmark CAPS. Furthermore, we showed that HoloFed can adapt to diverse environments

via federated adaptation, which can reduce the MSE of positioning by around 95%.

APPENDIX A

COMPONENTS OF THE GRADIENTS OF THE CRLB

With the help of [49, Eqs. (36)-(40)], the notations in (25) can be derived as

As
i,j,u,v =([ζ̄i,u](j−1)F+1:jF ⊗ 1⊤

K)⊙RF×K
((
([ḢLoS

i,v ](j−1)F+1:jF⊙Ci)[⊙](Bi,j⊗1F )
)
1NE

)
,

Bs
i,j,u,v =−([ζ̄i,u](j−1)F+1:jF⊗1⊤

K)⊙RF×K
((
[Kft,i](j−1)F+1:jF [⊙]

(
(Ci[⊙]Bi,j ⊗ 1F )(ViT

H
i )

))
ζi,v

)
.

Here, ζi,u = Λ−1
i (ḢLoS

i,u ⊙Ti)1NE
∈ CNSBF×1, operator [⊙] denotes the penetrating face product,

and function RF×K(·) reshapes the vector in the argument to an F×K matrix. Similarly, the

corresponding notations for ∂IFIM(p)/∂Ci can be obtained as

Ac
i,u,v =

NSB∑
j=1

([ζ̄i,u](j−1)F+1:jF ⊗ 1⊤
NE

)⊙ [ḢLoS
i,v ](j−1)F+1:jF ⊙ (Si,jBi,j),



Bc
i,u,v =−

NSB∑
j

(
[ζ̄i,u](j−1)F+1:jF⊗1⊤

NE
⊙(Si,jBi,j)

)
⊙RF×NE

(
[Kft,i](j−1)F+1:jF [⊙]

(
(ViT

H
i )⊗ 1F

)
ζi,v

)
.

APPENDIX B

PROOF OF PROPOSITION 3

Based on [47, Lemma 2], given parameter vectors denoted by a and b, it can be derived that

L̂(a) ≤ L̂(b) +∇bL̂(b)⊤(a− b) +
L

2
∥a− b∥22. (36)

Substituting a = w(t+1), b = w(t), and ∇bL̂(b) = g(t) into (36), it can be shown that

L̂(w(t+1)) ≤ L̂(w(t)) + (g(t))⊤(−η ⊙ ĝ(t)) +
L

2
∥ − η ⊙ ĝ(t)∥2. (37)

where ĝ
(t)
x = −Qx∆w

(t)
x /(Qξ

(t)
x ). Taking the expectation of both sides of (37), we obtain

E
(
L̂(w(t+1))

)
≤E

(
L̂(w(t))

)
−

(
g(t)

)⊤
η ⊙ E

(
ĝ(t)
x

)
+

L

2
(η)◦2⊤ E

(
(ĝ(t)

x )◦2
)

=E
(
L̂(w(t))

)
− (η)⊤(g(t))⊙ E

(
ĝ(t)
x

)
+

L

2
(η)◦2⊤

( (
E
(
ĝ(t)
x

))◦2
+ V

(
ĝ(t)
x

))
(a)
=E

(
L̂(w(t))

)
− (η)⊤

(
1− L

2
η
)
⊙ (g(t))◦2 +

L

2
(η)◦2⊤V

(
ĝ(t)
x

)
, (38)

where (a) is because ĝ(t) is an unbiased estimate of g(t), and V
(
ĝ
(t)
x

)
is the covariance of ĝ(t)

x :

V
(
ĝ(t)
x

)
=E

(
(ĝ(t)

x −g(t))◦2
)
= E(ĝ(t)◦2

x )−g(t)◦2=
U∑

n=1

ξ(t)n

(( Qn

Qξ
(t)
n

)2

E(g(t)◦2
n )+

( Qn

Qξ
(t)
n

)2

E(ς(t)◦2n )
)

=
U∑

n=1

1

ξ
(t)
n

·
(Qn

Q

)2

· (E(g(t)◦2
n ) + σ2

dp,n1). (39)

Subtracting E
(
L̂(w∗)

)
from both sides of (38), then (30) in Proposition 3 is proven.

REFERENCES

[1] J. Hu, Z. Chen, and J. Luo, “Multi-band reconfigurable holographic surface based ISAC systems: Design and optimization,”

in Proc. IEEE Int. Conf. Commun., Rome, Italy, Jun. 2023, arXiv:2303.15686.

[2] D. Dardari, N. Decarli, A. Guerra, and F. Guidi, “LOS/NLOS near-field localization with a large reconfigurable intelligent

surface,” IEEE Trans. Wireless Commun., vol. 21, no. 6, pp. 4282–4294, Jun. 2022.

[3] A. Elzanaty, A. Guerra, F. Guidi, D. Dardari, and M.-S. Alouini, “Towards 6G holographic localization: Enabling

technologies and perspectives,” arXiv:2103.12415, 2021.

[4] M. Z. Win, Y. Shen, and W. Dai, “A theoretical foundation of network localization and navigation,” Proc. IEEE, vol. 106,

no. 7, pp. 1136–1165, Jul. 2018.

[5] J. Wang, J. Luo, S. J. Pan, and A. Sun, “Learning-based outdoor localization exploiting crowd-labeled WiFi hotspots,”

IEEE Trans. Mob. Comput., vol. 18, no. 4, pp. 896–909, Jun. 2018.

[6] J. Cherian, J. Luo, and S.-S. Ho, “Parkloc: Light-weight graph-based vehicular localization in parking garages,” Proc.

ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 2, no. 3, Sep. 2018.



[7] A. Morar, A. Moldoveanu, I. Mocanu, F. Moldoveanu, I. Radoi, V. Asavei, A. Gradinaru, and A. Butean, “A comprehensive

survey of indoor localization methods based on computer vision,” Sensors, vol. 20, no. 9, p. 2641, May 2020.

[8] T. Zhou, M. Yang, K. Jiang, H. Wong, and D. Yang, “MMW radar-based technologies in autonomous driving: A review,”

Sensors, vol. 20, no. 24, Dec. 2020.

[9] A. Motroni, A. Buffi, and P. Nepa, “A survey on indoor vehicle localization through RFID technology,” IEEE Access,

vol. 9, pp. 17 921–17 942, Jan. 2021.

[10] H. Zhang, H. Zhang, B. Di, M. D. Renzo, Z. Han, H. V. Poor, and L. Song, “Holographic integrated sensing and

communication,” IEEE J. Sel. Areas Commun., vol. 40, no. 7, pp. 2114–2130, Jul. 2022.

[11] X. Zhang, H. Zhang, H. Zhang, and B. Di, “Holographic radar: Target detection enabled by reconfigurable holographic

surfaces,” IEEE Commun. Lett., Sep. 2022, early access.

[12] H. Zhang, H. Zhang, B. Di, K. Bian, Z. Han, and L. Song, “Towards ubiquitous positioning by leveraging reconfigurable

intelligent surface,” IEEE Commun. Lett., vol. 25, no. 1, pp. 284–288, Jan. 2021.

[13] A. Elzanaty, A. Guerra, F. Guidi, and M.-S. Alouini, “Reconfigurable intelligent surfaces for localization: Position and

orientation error bounds,” IEEE Trans. Signal Process., vol. 69, pp. 5386–5402, Aug. 2021.

[14] Z. Abu-Shaban, K. Keykhosravi, M. F. Keskin, G. C. Alexandropoulos, G. Seco-Granados, and H. Wymeersch, “Near-field

localization with a reconfigurable intelligent surface acting as lens,” in Proc. IEEE Int. Conf. Commun., Montreal, QC,

Canada, Aug. 2021.

[15] Z. Wang, Z. Liu, Y. Shen, A. Conti, and M. Z. Win, “Location awareness in beyond 5G networks via reconfigurable

intelligent surfaces,” IEEE J. Sel. Areas Commun., vol. 40, no. 7, pp. 2011–2025, 2022.

[16] E. Björnson, H. Wymeersch, B. Matthiesen, P. Popovski, L. Sanguinetti, and E. de Carvalho, “Reconfigurable intelligent

surfaces: A signal processing perspective with wireless applications,” IEEE Signal Process. Mag., vol. 39, no. 2, pp.

135–158, Mar. 2022.

[17] C. L. Nguyen, O. Georgiou, and G. Gradoni, “Reconfigurable intelligent surfaces and machine learning for wireless

fingerprinting localization,” arXiv:2010.03251, 2020.

[18] M. Boyarsky, T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Electronically steered metasurface antenna,” Sci.

Rep., vol. 11, no. 1, pp. 1–10, Feb. 2021.

[19] R. Deng, B. Di, H. Zhang, D. Niyato, Z. Han, H. V. Poor, and L. Song, “Reconfigurable holographic surfaces for future

wireless communications,” IEEE Wireless Commun., vol. 28, no. 6, pp. 126–131, Dec. 2021.

[20] X. Wei, D. Shen, and L. Dai, “Channel estimation for ris assisted wireless communications—Part I: Fundamentals, solutions,

and future opportunities,” IEEE Commun. Lett., vol. 25, no. 5, pp. 1398–1402, May 2021.

[21] F. Elbahhar, B. Fall, A. Rivenq, M. Heddebaut, and R. Elassali, “Indoor positioning system based on the ultra wide band

for transport applications,” in New Approach Indoor Outdoor Localization Syst. Rijeka, Croatia: IntechOpen, 2012.

[22] M. Noschese, F. Babich, M. Comisso, and C. Marshall, “Multi-band time of arrival estimation for long term evolution

(LTE) signals,” IEEE Trans Mobile Comput., vol. 20, no. 12, pp. 3383–3394, Dec. 2021.

[23] H. Lin, W. Yu, R. Tang, J. Jin, Y. Wang, J. Xiong, Y. Wu, and J. Zhao, “A dual-band reconfigurable intelligent metasurface

with beam steering,” J. Phys. D: Appl. Phys., vol. 55, no. 24, p. 245002, Mar. 2022.

[24] N. Zhang, K. Chen, Y. Zheng, Q. Hu, K. Qu, J. Zhao, J. Wang, and Y. Feng, “Programmable coding metasurface for

dual-band independent real-time beam control,” IEEE J. Emerging Sel. Top. Circuits Syst., vol. 10, no. 1, pp. 20–28, Mar.

2020.

[25] C. Huang, S. Hu, G. C. Alexandropoulos, A. Zappone, C. Yuen, R. Zhang, M. Di Renzo, and M. Debbah, “Holographic

MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends,” IEEE Wireless Commun., vol. 27, no. 5,

pp. 118–125, Jul. 2020.



[26] J. Hu, H. Zhang, K. Bian, M. D. Renzo, Z. Han, and L. Song, “MetaSensing: Intelligent metasurface assisted RF 3D

sensing by deep reinforcement learning,” IEEE J. Sel. Areas. Commun., vol. 39, no. 7, pp. 2182–2197, May 2021.

[27] K. Han, C. Zhang, J. Luo, M. Hu, and B. Veeravalli, “Truthful scheduling mechanisms for powering mobile crowdsensing,”

IEEE Trans. Comput., vol. 65, no. 1, pp. 294–307, Jan. 2016.

[28] D. He, S. Chan, and M. Guizani, “User privacy and data trustworthiness in mobile crowd sensing,” IEEE Wireless Commun.,

vol. 22, no. 1, pp. 28–34, Feb. 2015.

[29] M. Decker, “Location privacy-an overview,” in Proc. Int. Conf. Mob. Bus., Barcelona, Spain, Jul. 2008.

[30] W. Zhou, R. Zhang, G. Chen, and W. Wu, “Integrated sensing and communication waveform design: A survey,” IEEE

Open J. Commun. Soc., vol. 3, pp. 1930–1949, Oct. 2022.

[31] D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a waveguide-fed metasurface

antenna,” Phys. Rev. Applied, vol. 8, p. 054048, Nov 2017.

[32] W. Tang, M. Z. Chen, X. Chen, J. Y. Dai, Y. Han, M. Di Renzo, Y. Zeng, S. Jin, Q. Cheng, and T. J. Cui, “Wireless

communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement,” IEEE Trans.

Wireless. Commun., vol. 20, no. 1, pp. 421–439, Sep. 2021.

[33] K. Yu, M. Bengtsson, B. Ottersten, D. McNamara, P. Karlsson, and M. Beach, “Modeling of wide-band MIMO radio

channels based on NLoS indoor measurements,” IEEE Trans. Veh. Technol., vol. 53, no. 3, pp. 655–665, May 2004.

[34] A. Goldsmith, Wireless communications. Cambridge, U.K.: Cambridge university press, 2005.

[35] G. Barriac and U. Madhow, “Space-time precoding for mean and covariance feedback: application to wideband OFDM,”

IEEE Trans. Commun., vol. 54, no. 1, pp. 96–107, Jan. 2006.

[36] T. Chen and H. Chen, “Universal approximation to nonlinear operators by neural networks with arbitrary activation functions

and its application to dynamical systems,” IEEE Trans. Neural Netw., vol. 6, no. 4, pp. 911–917, Jul. 1995.

[37] B. Ozdenizci, V. Coskun, and K. Ok, “NFC internal: An indoor navigation system,” Sensors, vol. 15, no. 4, pp. 7571–7595,

Mar. 2015.

[38] G. Kortuem, F. Kawsar, V. Sundramoorthy, and D. Fitton, “Smart objects as building blocks for the Internet of things,”

IEEE Internet Comput., vol. 14, no. 1, pp. 44–51, Jan. 2010.

[39] J. He, H. Wymeersch, L. Kong, O. Silvén, and M. Juntti, “Large intelligent surface for positioning in millimeter wave

MIMO systems,” in Proc. IEEE Veh. Technol. Conf., Antwerp, Belgium, May 2020.

[40] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, “Deep learning with differential

privacy,” in Proc. ACM SIGSAC, Vienna, Austria, Oct. 2016.

[41] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, Inc., 1993.

[42] P. J. Schreier and L. L. Scharf, Statistical Signal Processing of Complex-valued Data: The Theory of Improper and

Noncircular Signals. Cambridge, UK: Cambridge university press, 2010.

[43] N. H. Pham, L. M. Nguyen, D. T. Phan, and Q. Tran-Dinh, “ProxSARAH: An efficient algorithmic framework for stochastic

composite nonconvex optimization,” J. Mach. Learn. Res., vol. 21, no. 110, pp. 1–48, May 2020.

[44] N. Parikh, S. Boyd et al., “Proximal algorithms,” Found. Trends Optim., vol. 1, no. 3, pp. 127–239, Jan. 2014.

[45] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A comprehensive survey on transfer learning,”

Proc. IEEE, vol. 109, no. 1, pp. 43–76, Jan. 2021.

[46] I. Goodfellow, Y. Bengio, and A. Courvile, Deep learning. Cambridge, MA: MIT Press, 2016.

[47] J. Ren, Y. He, D. Wen, G. Yu, K. Huang, and D. Guo, “Scheduling for cellular federated edge learning with importance

and channel awareness,” IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7690–7703, Aug. 2020.

[48] L. M. Milne-Thomson, The calculus of finite differences. Providence, Rhode Island: American Mathematical Soc., 2000.

[49] K. B. Petersen, M. S. Pedersen et al., “The matrix cookbook,” Tech. Univ. Denmark, vol. 7, no. 15, p. 510, Nov. 2012.



Response to Reviews of the Article #1570878869:

“HoloFed: Environment-Adaptive Positioning via Multi-band

Reconfigurable Holographic Surfaces and Federated Learning”

Jingzhi Hu, Zhe Chen, Tianyue Zheng, Robert Schober, and Jun Luo

The authors would like to thank the editor and the reviewers for their constructive sugges-

tions and positive comments, which have helped improve the content and presentation of the

manuscript. We have revised the manuscript based on the reviewers’ comments and suggestions.

In particular, we clearly explain the four distinct novelties of this paper compared to the related

conference paper accepted by IEEE ICC 2023, where only a small part of this work has been

reported. The detailed explanation can be found in our responses to Comments C and D of

Review 2. We have added some necessary references to support our arguments, namely [23],

[24], [37], [38], [45]. We selected these references based on their relevance and declare that

none of the newly added references are our previous works.

In the following, we provide point-by-point responses to the raised comments of all the

reviewers. The detailed revisions are highlighted in the manuscript and summarized below.

• Section I: 1) In the fifth paragraph, we have added two references, i.e., [23], [24], for existing

designs and prototypes of multi-band (MB) reconfigurable holographic surfaces (RHSs) and re-

configurable intelligent surfaces (RIS) to support the feasibility of MB-RHS. 2) We have added

a statement following our main contributions listed in the introduction to explain the novelty

of this JSAC manuscript compared to its conference version presented in IEEE ICC 2023.

• Section II: 1) In Sec. II-A2, we have revised the description of the user position distribution.

2) Besides, below (6), we have added an explanation that our channel model can account for

the passive interference among users. 3) We have revised the first paragraph of Sec. II-C1 to

emphasize the reason why the transmissions in multiple bands are performed sequentially. We

added a footnote, namely Footnote 5, to clarify that the proposed algorithm can also be adapted

to the parallel transmission case. 4) In the second paragraph of Sec. II-C1, we have added

an analysis on the time complexity of the multi-pattern transmission (MMT) phase. 5) In the

second paragraph of Sec. II-C3, we have added an footnote, namely Footnote 6, to clarify that



short-ranging techniques for user positioning near the anchors can be readily supported by the

existing IoT infrastructures. We have also added some references, i.e., [37], [38], to support

this claim. 6) Below (11), we have added an explanation for how the proposed system utilizes

the position labels provided by the anchors and what the benefit is. 7) In the fourth paragraph

of Sec. II-C3, we have added a footnote, namely Footnote 7, to explain how the users can

select the band to transmit their local gradient and that the proposed algorithm supports this.

8) At the end of Sec. II-C, we have added a remark, namely Remark 2, to clarify that there

are no active user interference in HoloFed.

• Section IV: 1) At the end of Sec. IV-A, we have added two remarks, namely Remarks 3

and 4. In Remark 3, we explain how user interference impacts the CRLB for positioning. In

Remark 4, we explain how using multiple bands helps lower the CRLB. 2) In the second

paragraph of Sec. IV-A2, we have revised the description of the proposed algorithm to clarify

why it contains an outer loop and an inner loop. 3) Besides, in the third paragraph of Sec. IV-B,

we have added an explanation for why the source and target domains are different from each

other, and why transfer learning can help the adaptation of the position estimator to the target

domain. We have added a new supportive reference, namely [45], for transfer learning. 4) In

the second paragraph of Sec. IV-B2, we have further clarified the working principle of the

fine-tuning technique adopted in the proposed algorithm. 5) Moreover, below Proposition 3 in

Sec. IV-C, we have added an explanation for why we adopt a gradient power based criterion

in the user scheduling algorithm. 6) Furthermore, below (33) in Sec. IV-C, we have added a

footnote, namely Footnote 8, to clarify that the proposed algorithm allows the users to perform

band selection, supporting our statement in Footnote 7.

• Section V: 1) We have enlarged the figures to enhance the legibility of their text elements. 2) In

the third paragraph of Sec. V-A, we have revised the description of the position distribution

of the anchors to make it clearer. 3) In the description of Fig. 6 in Sec. V-B, we explain now

the meaning of the dots. 4) In the description of Fig. 7 in Sec. V-B, we have revised the text

to clarify the target criterion we considered in the comparison.



RESPONSE TO REVIEW 1

A. The work is very interesting and presents an interesting technical endeavor using many

different techniques to solve the issues arising from their proposal. The necessary optimization

problems are solved using appropriate techniques.

Response: We thank the reviewer for the positive feedback on our manuscript. We have tried

our best to address all comments of the reviewer in order to further enhance the quality and

clarity of our paper.

B. My main upset regards the data used in the learning process. The authors claim to present a

proposal independent of using any extra positioning infrastructure and relying solely on the RHS,

a data-exchanging protocol, and an ML-based regressor. However, all the presented algorithms

and results depend on an extra infrastructure for the positioning labels used in the learning

process. If some beacons are used to estimate the data labels when users are sufficiently close,

a parallel/concurrent positioning capacity is necessary? This eliminates many of the claimed

benefits of the proposal. Moreover, can you affirm that this allows us to effectively train the

regression for the signals emitted by the RHS? The last is characterized by band-dependent

directional patterns, the physical principle supporting the proposed positioning protocol.

Response: We thank the reviewer for this comment. In the comment, two questions are raised

by the reviewer: 1) Does using beacons to estimate the data labels of the users rely on an extra

infrastructure with parallel positioning capacity and thus eliminate the claimed benefits of the

proposal? 2) Why does using the data labels near the beacons allow us to effectively train the

regression for the signals emitted by the RHS? In the following, we address these two questions

sequentially.

1) Justification for using “beacons” to estimate the data labels: In this paper, as we have

described in the second paragraph of the introduction, our motivation is to provide high precision

positioning service in a large region of interest (ROI), without deploying extra infrastructure,

e.g., a massive number of RFID tags to cover the ROI. Nevertheless, this does not mean that

we do not use existing infrastructure. As we have explained in our main contributions in the

introduction, we have designed HoloFed to deliver low positioning error and high environmental

adaptivity without compromising the users’ privacy. To achieve this, we assume that the users

possess a small number of position labels in deployment environment of HoloFed, so that the



users can adapt the position estimator of HoloFed to the environment. To obtain such position

labels, the users are required to employ short-range positioning techniques that operate in parallel

with HoloFed. This requirement does not incur extra infrastructure requirements or eliminate the

benefits and practicability of our proposal, and hence is compatible with our motivation. This

can be further justified as follows.

In this paper, as the reviewer has pointed out, we assume that the users can collect their

position labels as the data labels when they are near a small number of “beacons” in the ROI.

We refer to these “beacons” as anchors, as described in Sec. II-C3. To obtain its position when

near an anchor, a user is required to be able to perform short-range positioning in parallel with

HoloFed. This requirement can be satisfied by already existing infrastructure; therefore, it does

not require additional infrastructure. Specifically, when a user conducts near-field communication

with the surrounding infrastructure (e.g., smart gate machines, point-of-sale machines, and RFID

tags), the infrastructure can be considered as anchor, and a position label can be obtained since

the position of the infrastructure is known and the user is in its proximity [37]. Infrastructures

that support such short-range positioning have already been widely deployed in practice because

of the prevalence of the Internet of Things (IoT) [38].

However, in general, existing infrastructure can only provide a small number of anchors

that are not densely deployed, and thus such short-range positioning capability cannot provide

consistent high-precision positioning services to users within a large ROI. In comparison, our

proposed HoloFed can provide high-precision positioning services within a large ROI, and thus

the assumption that users can obtain position labels in the proximity of a small number of

anchors does not degrade the benefits of our proposed approach. Actually, one of the merits of

our proposed HoloFed is that HoloFed can effectively merge the information provided by RHS-

based signal transmission with the limited labels provided by existing short-range positioning

techniques to achieve high-precision large-range positioning with environmental adaptability.

To clarify this in the manuscript, we have added a footnote in the second paragraph of

Sec. II-C3, where we justify that short-range positioning techniques are supported by the existing

and widely deployed IoT infrastructures. The added footnote is reproduced below.
“ 6Here, an anchor refers to a location where the users can obtain their position labels based on short-range

positioning techniques. Such short-range positioning techniques can be readily supported by near-field communi-

cation (NFC) of the users with the existing Internet of Things (IoT) infrastructure [37], [38].”

Besides, we have added an explanation in Sec. II-C3 to clarify that with the help of the



position labels collected near a small number of anchors, HoloFed can achieve high-precision

large-range positioning with environmental adaptability. The added part is reproduced below.

“Exploiting the local gradient of the positioning loss w.r.t. the position labels collected

near a small number of anchors, HoloFed adapts its position estimator to the actual

deployment environment for achieving large-range positioning with high precision.”

2) Explanation for why these data labels can be used to train the regression effectively:

Though users can only collect position labels near a limited number of anchors, HoloFed can

use them effectively to train the regression of user positions, based on the fine-tuning technique

utilized in the proposed algorithm. To achieve this goal, as described in Sec. IV-B, we first

consider a source domain where the environmental characteristics of the channel model are

known, in contrast to the target domain where HoloFed is deployed and the environmental

characteristics are unknown. As described in Sec. IV-B, based on transfer learning, our procedure

to train the regression can then be decomposed into two steps: In Step 1, we train the regression

in the source domain; In Step 2, we adapt the regression to the target domain. For the first

step, as the channel model in the source domain is known, sufficient training data across the

entire ROI is obtained, which can be utilized to train the regression for the band-dependent

directional patterns of the emitted signals. Specifically, we adopt a multilayer perceptron (MLP)

with trainable parameters for position estimation to perform this regression.

Then, as for the second step, based on the fine-tuning technique, we decompose the position

estimator into two parts: a feature extractor and a regressor. The regressor is composed of the

output layer of the MLP, which contains a few trainable parameters; while the other layers

constitute the feature extractor, which contains most of the trainable parameters of the MLP.

Due to the intrinsic similarity between the source and target domains, which originates from the

same signal propagation models and digital-analog beamforming configurations, the method to

extract features from the signals should be similar in the source and target domains; while the

values of the extracted features can be distinct due to different environmental characteristics.

Therefore, the parameters of the feature extractor can be frozen or adapted with a very small

learning rate, but the parameters of the regressor need to be re-trained substantially so that they

can adapt to the extracted feature with different values. Nevertheless, since the regressor only

contains a few trainable parameters, the adaptation can be effectively performed with only a

small number of data-label pairs in the target domain.

This fine-tuning technique is also widely adopted in transfer learning, and enables effective



training of classification and regression functions with insufficient data-label pairs [45]. Conse-

quently, by using the algorithm proposed in Sec. IV-B, we ensure that using the collected position

labels near the anchors allows us to train the regression for the emitted signals effectively. The

effectiveness of the regression is validated by Figs. 7 and 8, where it can be observed that after

training with the collected position labels, the position regression adapts to the target domain.

To address this point in the manuscript, we have made three key revisions to explain why

the training is effective. Firstly, we have revised the third paragraph of Sec. IV-B, where we

emphasize that the similarity between the source and target domains lays the foundation for

transfer learning. The revised part is reproduced below.

“Nevertheless, due to the intrinsic similarities between Dtar and Dsrc (e.g., the under-

lying signal propagation models and DA beamforming configurations are identical),

transfer learning can be used efficiently to adapt w∗′ to Dtar [45].”

Secondly, we have revised the second paragraph of Sec. IV-B2. We explain now that the feature

extractor does not need re-training because the feature extraction method remains effective in

the target domain:

“We note that the feature extractor optimized for T (Dsrc) is also effective for T (Dtar)

as the channels in both domains follow the same structure, i.e., (1)-(9), and the same DA

beamforming configurations are employed. Therefore, the method for feature extraction

needs little adaptation, and w
(t)
feat can be frozen or adapted with a very low rate ηfeat.”

Finally, in the second paragraph of Sec. IV-B2, we have clarified that the regressor can be

adapted effectively with limited training data-label pairs because it comprises only a small number

of trainable parameters. The new text is reproduced below.

“In contrast, the regressor has to be adapted substantially to handle the differences

in the extracted feature values caused by the different environmental characteristics.

Thus, we adapt the regressor with a large learning rate denoted by ηreg. Though the

amount of local user data collected in Dtar is small, the adaptation of the regressor

can still be done effectively since the regressor only contains the output layer of the

MLP with a small number of trainable parameters.”



C. Besides, saying that the user is close to an anchor is too vague; although the authors set

this distance to .25 m in the simulation, they spread anchors over the whole cuboid ROI. Saying

that ten anchors are uniformly distributed in the ROI is very imprecise. Do you say they are

drawn using a uniform distribution or have a specific 3D arrangement?

Response: We thank the reviewer for this comment and the careful reading. The simulation

setup mentioned by the reviewer is in the third paragraph of Sec. V-A. In the simulation,

the positions of the anchors are drawn from a uniform distribution within the ROI. A user

is considered to be close to an anchor when it is within 0.25 m of the anchor’s location. If a

user is close to an anchor, it can obtain its current position, which can be used as label for the

federated adaptation of the position estimator.

To clarify this in the manuscript, we have revised the description in Sec. V-A corresponding

to this comment. The text is reproduced below.

“Each data-label pair comprises a received signal matrix and the corresponding position

label. A user obtains a position label when it is within 0.25 m of one of 10 anchors.

For simulation, the positions of the 10 anchors are drawn from a uniform distribution

within the ROI.”

D. This links to another aspect that needs to be better explained. For the presented solution to

use transfer learning, the source and target ROI should be different, authors try to differentiate

them using the multipath-coefficient ratio in PaP, but this reflects changing the RHS instead of

the domain. However, results use the same domain. I need help finding where transfer learning

is applied.

Response: We thank the reviewer for this comment. In this paper, the different environmental

characteristics, including the multipath-coefficient ratios, i.e., Ppap,i(θ), of the source and target

domains reflect the differences in the channel environments of the source and target ROIs. This

is described in the third paragraph of Sec. IV-B, where we provide the reason for using transfer

learning. To be specific, this can be justified as follows.

In transfer learning, a domain represents the joint distribution of the data-label pairs, and

the source and target domains that are different need to have different joint distributions of the

data-label pairs [45]. In this paper, our source and target domains satisfy this requirement since

the gain patterns of the meta-elements and the power-angle profiles in the source and target

domains are different, as explained in the remark at the end of Sec. II-B and the simulation



setup in Sec. V-A. These differences result in channel models with different environmental

characteristics, which makes the “data”, i.e., the received signals of a user, to have a different

distribution with respect to the user position, causing a position estimator trained in the source

domain to be not effective in the target domain. Nevertheless, due to the intrinsic similarities

between the source and target domains (e.g., the same signal propagation models and digital and

analog (DA) beamforming configurations), transfer learning can be applied to adapt the position

estimator to the target domain efficiently. For this reason, we propose a transfer learning based

algorithm to adapt the position estimator trained in the source domain to the target domain,

minimizing the positioning error.

To clarify this point in the manuscript, we have added a corresponding explanation in Sec. IV-B,

which is reproduced below.

“To obtain w∗′, certain environmental characteristics need to be assumed for Dsrc,

which are generally different from those in Dtar. This results in different joint distri-

butions for the user positions and received signals in the two domains, and hence w∗′

is not valid in Dtar. Nevertheless, due to the intrinsic similarities between Dtar and Dsrc

(e.g., the underlying signal propagation models and DA beamforming configurations

are identical), transfer learning can be used efficiently to adapt w∗′ to Dtar [45].”

E. Figures should be enlarged to ease reading.

Response: We thank the reviewer for this comment. As suggested, we have enlarged all figures

in our manuscript, enhancing the legibility of the text elements of these figures.

F. Some phrases need a better explanation, like “the positions of a user for different positioning

processes are independent and identically distributed.”

Response: We thank the reviewer for the careful reading. In Sec. II-A2, the phrase pointed

out by the reviewer indicates that in each positioning process, the positions of the users are

assumed to be independent and identically distributed random variables. To clarify this in the

manuscript, we have rewritten the relevant text in Sec. II-A2. The new text is reproduced below.

“Moreover, we assume that the positioning processes take place periodically. In each

positioning process, the positions of the users are assumed to be independent and

identically distributed random variables, each following a distribution ΓU, i.e., p ∼

ΓU.”



G. The sentence “we assume that in each positioning process, only one user is selected to upload

its local update over a single band, so that the occupation of the time-spectrum resources for FL

is minimized” makes one wonder if there would be beneficial to select the user band or using

multiples bands for a user in the positioning task.

Response: We thank the reviewer for this comment. This comment involves two aspects.

Firstly, in the positioning task of the proposed HoloFed system, all the bands are utilized as

described in Sec. II-C, which is beneficial for high positioning precision. Specifically, in the first

phase of the protocol, the base station (BS) transmits in all NB bands sequentially, generating

multiple beam patterns in each band. Each user receives the signals in the NB bands and jointly

uses them to estimate its position. To clarify the benefit of using multiple bands for positioning,

we have added a new remark below Proposition 1 in Sec. IV-A1, which is reproduced below.

“ Remark 4: According to Proposition 1, the benefits of using multiple bands for

positioning are two-fold. Firstly, the Fisher information from multiple bands adds up,

leading to a lower value for the CRLB. Secondly, the fact that signals received in

different bands are generally less correlated (due to less correlated multipath gains)

also contributes to a lower CRLB. This can be shown by deriving the Fisher information

of two correlated signals based on [41, Eq. (3.31)].”

Secondly, with regard to the sentence that the reviewer referred to, we assume that a user

uploads its local update using a single band, which means that in the federated adaptation

phase, a user uses one band to transmit its local gradient to the BS for training the position

estimator. This assumption lowers the hardware requirements for the BS and users as they

do not require radio-frequency (RF) chains that support simultaneous signal transmission and

reception capability in multiple bands. As the reviewer has pointed out, the band where a user

conducts this transmission can be selected by the user. If the BS and the user have the capability

of simultaneously transmitting and receiving in multiple bands, respectively, the user can even

upload its local gradient over multiple selected bands. Both options are beneficial for the uplink

transmission rate of the user, at the cost of incurring additional overhead for band selection and/or

higher requirements on the RF chains. To keep the description of the user scheduling algorithm

concise and focused, we do not explicitly include such band selection in our manuscript.

Nevertheless, it is worth mentioning that the user scheduling probability optimization proposed

in our paper can easily be adapted to these scenarios by substituting the estimated uplink



transmission rate with that of the selected single or multiple bands. To clarify this in the

manuscript, we have added a footnote in the sentence mentioned by the reviewer in Sec. II-C3.

The footnote is reproduced below.
“ 7The band used for uploading can be selected by the user for rate maximization. Even multiple bands can be

used if the user and the BS can support it. The proposed algorithm can be modified to accommodate such cases,

as described in Sec. IV-C.”

Besides, to emphasize that our proposed scheme can be adapted to the cases of selecting single

and multiple bands, we have added a footnote in the discussion of (33) in Sec. IV-C, which is

reproduced below.
“ 8As user n can calculate Z

(t)
IE,n in (33) with R

(t)
n being the uplink rate of the user, the proposed user scheduling

algorithm can be extended to arbitrary band selection schemes for uplink transmission of local gradients. ”

H. The link between the gradient power and the necessary capacity, although intuitive, is not

necessarily correct. As a suggestion, an information-based criterion could be more effective.

Response: We thank the reviewer for this comment. In our paper, we choose the criterion of

gradient power not only because of its intuitive relation to the necessary capacity, but also based

on the derivation in Proposition 3 in Sec. IV-C. In the proof of Proposition 3 in Appendix B,

we have proven that the convergence rate depends on the gradient power of user n, i.e., g(t)◦2
n .

Moreover, from (30), we observe that in order to enhance the convergence rate, it is preferable

to allocate users having higher gradient powers with larger scheduling probabilities, i.e., ξ(t)n .

Based on this derivation and observation, we have designed the criterion for a user’s influence

on convergence based on its gradient power. Furthermore, the effectiveness of using the gradient

power based criterion is also validated by our simulation results in Fig. 7. To clarify the reason

why we adopt a gradient power based criterion, we have emphasized this below Proposition 3

in Sec. IV-C. The corresponding text is reproduced below.

“Proposition 3 reveals that the convergence rate is dependent on the powers of the

gradients of the users and, to improve the rate of convergence, users having higher

gradient powers should be scheduled with higher probabilities.”

As the reviewer has kindly pointed out, an information-based criterion for the users’ impact on

convergence could possibly be more effective than our method, provided that a tighter bound on

the convergence rate can be derived using information-based analytical approaches. Nevertheless,

since we can only devote a limited amount of space to achieving environmental adaptivity in



MB-RHS-based ISAC systems in a privacy-preserving manner, we would prefer to leave further

exploration of a more efficient user scheduling algorithm for future work.

I. In the Caption of figure 5, please correct “differencemethod”.

Response: We thank the reviewer for the careful reading. We have corrected the typo pointed

out by the reviewer in the caption of Fig. 5.

J. The graphs in Figure 6 do not seem to consider 20% of the 104 samples said to be used in

the tests.

Response: We thank the reviewer for the careful reading and the comment. In Fig. 6, each of

the 30 dots in the violin shape for each configuration represents the average MSE of positioning

for an independent trial conducted on a randomly generated test set, rather than a single sample

from the test set. Therefore, each dot in a violin shape represents 20% of the 104 samples in the

test. To clarify this issue in the revised manuscript, we have added an explanation for this setup

and the physical meaning of each dot in the discussion of Fig. 6 in Sec. V-B. The corresponding

text is reproduced below.

“ To reduce randomness, for each configuration, we evaluate the position estimator for

30 randomly generated test sets, and the resulting average MSE of positioning in each

trial is shown by a dot in Fig. 6.”



RESPONSE TO REVIEW 2

A. The manuscript is well written and has a good readability. However, some minor issues need

to be fixed, images are not easy to read and some sentences need to be rewrote.

Response: We thank the reviewer for this comment. To address this comment, we have

enlarged all figures in our manuscript, enhancing the legibility of the text elements of these

figures. Besides, we have checked the manuscript and we have rewritten some sentences to

improve their readability.

For example, in Sec. II-A2, we have rewritten the sentence that describes the distribution of

the users’ positions to make it clearer. The new sentence is reproduced below.

“Moreover, we assume that the positioning processes take place periodically. In each

positioning process, the positions of the users are assumed to be independent and

identically distributed random variables, each following a distribution ΓU, i.e., p ∼

ΓU.”

In Sec. IV-B2, we have rewritten the second paragraph, where we have improved the expla-

nation for the detailed working principle of the fine-tuning technique in the proposed algorithm.

The rewritten sentences are reproduced below.

“We note that the feature extractor optimized for T (Dsrc) is also effective for T (Dtar)

as the channels in both domains follow the same structure, i.e., (1)-(9), and the same DA

beamforming configurations are employed. Therefore, the method for feature extraction

needs little adaptation, and w
(t)
feat can be frozen or adapted with a very low rate ηfeat. In

contrast, the regressor has to be adapted substantially to handle the differences in the

extracted feature values caused by the different environmental characteristics. Thus,

we adapt the regressor with a large learning rate denoted by ηreg. Though the amount

of local user data collected in Dtar is small, the adaptation of the regressor can still be

done effectively since the regressor only contains the output layer of the MLP with a

small number of trainable parameters.”

In Sec. V-A, we have rewritten the description of the location of the anchors and the criterion

for users to be considered to be near an anchor. The rewritten sentences are reproduced below.

“Each data-label pair comprises a received signal matrix and the corresponding position

label. A user obtains a position label when it is within 0.25 m of one of 10 anchors.



For simulation, the positions of the 10 anchors are drawn from a uniform distribution

within the ROI.”

Moreover, in the description of Fig. 7 in Sec. V-B, we have revised a sentence to clarify the

target performance criterion we considered in the comparison. The relevant text is reproduced

below.

“Moreover, we calculate the average relative gain in terms of the required number of

epochs for the MSE of positioning to drop from its initial value to below 0.5 m2. The

corresponding values are provided in the sub-headings of Figs. 7(a)-(f), e.g., ↓ 37.3%

in Fig. 7(a).”

B. Some issues are not clear to me, the presented algorithms and results seems depends on an

extra infrastructure for the positioning labels, some beacon is required to estimate the position

of the users?

Response: We thank the reviewer for this comment. In this paper, as described in Sec. II-C3,

we assume that a user can get a position label when it is near a few “beacons” in the region of

interest (ROI), which we refer to as anchors. It is worth noticing that this assumption does not

require extra infrastructure to be deployed or eliminate the benefits of our proposal. This can be

justified as follows.

First, this assumption can be satisfied by already existing infrastructure; therefore it does

not require extra infrastructure to be deployed. Specifically, when a user conducts near-field

communication with the surrounding infrastructure (e.g., smart gate machines, point-of-sale

machines, and RFID tags), the infrastructure can be considered as anchor, and a position label can

be obtained since the position of the infrastructure is known and the user is in its proximity [37].

Infrastructures that support such short-range positioning have already been widely deployed in

practice because of the prevalence of the Internet of Things (IoT) [38].

Second, short-range positioning cannot position a user within a large ROI as HoloFed does;

therefore it does not eliminate the benefits of our proposed approach. In general, existing

infrastructure can only provide a small number of anchors that are not densely deployed, and

thus such short-range positioning capability cannot provide consistent high-precision positioning

services to users within a large ROI. In comparison, our proposed HoloFed can provide high-

precision positioning services within a large ROI, and thus the assumption that users can obtain

position labels in the proximity of a small number of anchors does not degrade the benefits of



our proposed approach. Actually, one of the merits of our proposed HoloFed is that HoloFed can

effectively merge the information provided by RHS-based signal transmission with the limited

labels provided by existing short-range positioning techniques to achieve high-precision large-

range positioning with environmental adaptability.

To clarify this in the manuscript, we have added a footnote in the second paragraph of

Sec. II-C3, where we justify that short-range positioning techniques are supported by the existing

and widely deployed IoT infrastructures. The added footnote is reproduced below.
“ 6Here, an anchor refers to a location where the users can obtain their position labels based on short-range

positioning techniques. Such short-range positioning techniques can be readily supported by near-field communi-

cation (NFC) of the users with the existing Internet of Things (IoT) infrastructure [37], [38].”

Besides, we have added an explanation in Sec. II-C3 to clarify that with the help of the

position labels collected near a small number of anchors, HoloFed can achieve high-precision

large-range positioning with environmental adaptability. The added part is reproduced below.

“Exploiting the local gradient of the positioning loss w.r.t. the position labels collected

near a small number of anchors, HoloFed adapts its position estimator to the actual

deployment environment for achieving large-range positioning with high precision.”

C. The novelty of this manuscript is in doubt due to the paper accepted in ICC.

Response: We thank the reviewer for this comment. To address this comment, we note that

our manuscript has four major novel contributions compared to our conference paper accepted

for presentation at IEEE ICC [1] (arXiv:2303.15686).

Firstly, in this paper, we have proposed to exploit the federated learning technique to achieve

environmental adaptivity for RHS-based ISAC systems while preserving user position privacy.

To be specific, we have designed a new federated positioning protocol in Sec. II-C to coordinate

the BS, RHS, and users, where the users can help the adaptation of a shared position estimator

in a federated and privacy-preserving manner by uploading only the noisy gradient information

of their local positioning losses. Based on the newly designed protocol, we have formulated a

positioning error minimization problem that is essentially different from the problem considered

in our ICC paper, as the problem in this paper involves a federated learning process.

Secondly, to solve the digital and analog (DA) beamforming optimization sub-problem, i.e.,

(SP1’), more efficiently, we have proposed a new proximal stochastic descent algorithm with

alternating DA beamforming updates. Compared to the algorithm proposed for DA beamforming



optimization in our ICC paper, the new algorithm can handle a much larger number of sample

points within a given time. Specifically, thanks to the newly designed algorithm, we could extend

the number of sample points from Nsam = 1200 in our ICC paper to Nsam = 10000 in this paper.

By this means, the sample points can represent the region of interest (ROI) more comprehensively,

which is also beneficial to the positioning precision of HoloFed after environmental adaptation.

Thirdly, to handle the federated adaptation of the position estimator, we have designed a new

algorithm based on the fine-tuning technique in transfer learning in Sec. IV-B. This algorithm

is essential for providing the considered system with environmental adaptivity because it allows

the position estimator to be pre-trained in a source domain and adapted to a different target

domain by using only gradient information of the limited users’ local datasets.

Fourthly, we have derived a novel proposition, i.e., Proposition 3, for the convergence rate

of the federated adaptation in the case that users upload noisy local gradients. Based on this

proposition, we have proposed a new user scheduling algorithm for selection of the user for local

gradient upload in order to optimize the convergence rate and uploading efficiency. Based on

the simulation result in Fig. 7, the proposed user scheduling algorithm achieves a 11% ∼ 37%

faster convergence rate compared to the benchmark.

In summary, our JSAC manuscript has been substantially revised and makes four distinct

novel contributions compared to our ICC paper [1]. The ICC paper contains only a subset of

this manuscript, where only the multi-band RHS-based ISAC system model and the CRLB for

positioning precision parts are reported. Thus, we believe our manuscript meets the high technical

standards maintained by JSAC and is novel work having its own merits.

To clarify the novel contributions made by our JSAC paper, we have added a corresponding

statement following our main contributions listed in the introduction, which is reproduced below.

“Compared to its conference version [1], this paper proposes the application of FL

for achieving privacy-preserving environmental adaptivity. Furthermore, it provides

new optimization algorithms, which enhance the efficiency of the DA beamforming

optimization by proximal stochastic descent, handle the insufficiency of users’ local

data by transfer learning, and improve the efficiency of user scheduling in FL based

on an new analytical result of the convergency rate.”



D. Must be explained the novelty and exact improvement respect to the paper accepted in ICC,

it seems to be derivative and this should be strongly considered in JSAC.

Response: We thank the reviewer for this comment. As we have explained in detail in the

response to Comment C, our JSAC manuscript makes four distinct novel contributions compared

to our IEEE ICC 2023 paper [1] (arXiv:2303.15686):

• We propose to exploit the federated learning technique to achieve environmental adaptivity

in a privacy-preserving manner and propose a federated positioning protocol for this. In

contrast, the ICC paper has not considered environmental adaptivity.

• We propose a new proximal stochastic descent algorithm with alternating DA beamforming

updates, which enables the proposed system to handle more sample points in the ROI

efficiently compared to the algorithm reported in our ICC paper.

• We propose a new algorithm based on transfer learning to enable users to adapt the

positioning estimator effectively. Our ICC paper does not contain such an algorithm since

it does not involve a process for users to train the positioning estimator with federated

adaptation.

• We derive a novel proposition that analyzes the convergence rate of the federated adaptation

in the case that users upload noisy local gradients. Based on this proposition, we propose a

new user scheduling algorithm to optimize the convergence rate and uploading efficiency.

Considering the above four distinct novel contributions, our JSAC manuscript is not a derivative

work of our ICC paper. The JSAC paper introduces novel and significant improvements for MB-

RHS-based ISAC systems to enable environmental adaptivity, user position privacy, and enhanced

system efficiency in terms of DA beamforming optimization and training of the position estimator.

Therefore, we believe our manuscript meets the high technical standards of JSAC.



RESPONSE TO REVIEW 3

A. As this work has been accepted in part for presentation at ICC, the authors should explain

in the introduction how this work differs from the work in their conference paper explicitly.

Response: We thank the reviewer for this comment. To address this comment, we note that

our manuscript has four major novel contributions compared to our conference paper accepted

for presentation at IEEE ICC [1] (arXiv:2303.15686).

• We propose to exploit the federated learning technique to achieve environmental adaptivity

in a privacy-preserving manner and propose a federated positioning protocol for this. In

contrast, the ICC paper has not considered environmental adaptivity.

• We propose a new proximal stochastic descent algorithm with alternating DA beamforming

updates, which enables the proposed system to handle more sample points in the ROI

efficiently compared to the algorithm reported in our ICC paper.

• We propose a new algorithm based on transfer learning to enable users to adapt the

positioning estimator effectively. Our ICC paper does not contain such an algorithm since

it does not involve a process for users to train the positioning estimator with federated

adaptation.

• We derive a novel proposition that analyzes the convergence rate of the federated adaptation

in the case that users upload noisy local gradients. Based on this proposition, we propose a

new user scheduling algorithm to optimize the convergence rate and uploading efficiency.

In summary, our JSAC manuscript has been substantially revised and makes four distinct

novel contributions compared to our ICC paper [1]. The ICC paper contains only a subset of

this manuscript, where only the multi-band RHS-based ISAC system model and the CRLB for

positioning precision parts are reported.

To clarify the novel contributions made by our JSAC paper, we have added a corresponding

statement following our main contributions listed in the introduction, which is reproduced below.

“Compared to its conference version [1], this paper proposes the application of FL

for achieving privacy-preserving environmental adaptivity. Furthermore, it provides

new optimization algorithms, which enhance the efficiency of the DA beamforming

optimization by proximal stochastic descent, handle the insufficiency of users’ local

data by transfer learning, and improve the efficiency of user scheduling in FL based

on an new analytical result of the convergency rate.”



B. In the introduction, the authors have considered using the multi-band RHSs, which are a

relatively new RHS design, but in the introduction and the system model, they have not provided

sufficient supports for the multi-band RHSs to be physically practical. The authors should provide

more information on the existing multi-band RHSs or the potential implementation methods to

realize them.

Response: We thank the reviewer for this comment. In the introduction, we have provided a

reference, i.e., [18], to support the feasibility of multi-band (MB) RHSs. Specifically, in [18], the

authors have shown in [18, Fig. 8] that their proposed metamaterial surface, which is equivalent

to an RHS in our paper, can operate in multiple frequency bands at 9.0 GHz, 9.5 GHz, 10.5 GHz,

and 11.0 GHz, while different beamforming configurations need to be used in different bands.

This existing design supports the feasibility of the MB-RHS considered in our paper.

In addition to [18], we have also found support for MB reconfigurable intelligent surfaces (RISs)

in several recent works. As RISs and RHSs are both composed of metamaterial antenna elements,

the success of the implementation of MB-RISs also supports the feasibility of MB-RHSs. In [23],

the authors designed and implemented a dual-band RIS that can operate at 2.4 and 5.8 GHz.

In [24], the authors have designed and implemented a dual-band metasurface that operates in

the bands at 6 GHz and 9.8 GHz. The design and implementation methods for metamaterial

elements reported in these works can also be adopted for the implementation of MB-RHSs.

To clarify this issue in the manuscript, we have revised the fifth paragraph of the introduction

to emphasize that the feasibility of MB-RHSs has been validated in existing references. The

revised sentences are reproduced below.

“The feasibility of MB-RHSs has been verified in [18], where an MB-RHS capable of

operating in bands at 9.5, 10, 10.5, and 11 GHz is realized. Moreover, in [23], [24], the

authors prototyped RISs employing meta-elements capable of operating in two bands.”

C. In Section II-C1, the authors assumed the OFDM transmissions in multiple bands are per-

formed sequentially, which may incur extra overheads. The reason for the transmissions in

multiple bands not being conducted simultaneously needs to be clarified.

Response: We thank the reviewer for this comment. In this paper, the main reason for why the

transmissions in multiple bands are performed sequentially is to make our proposed protocol com-

patible with the practical limitations of MB-RHS designs and to reduce the hardware requirements



on the users and the base station (BS). Specifically, due to the frequency selectivity of meta-

elements [18], [19], their radiation coefficients for a single configuration may differ significantly

in bands, i.e., the configuration yielding the most effective beamforming pattern in one band may

lead to undesirable beamforming patterns in other bands. By assuming sequential transmissions

in different bands, the MB-RHS can control the configurations in different bands independently,

so that in each band the best beamforming pattern can be employed. This assumption is in

accordance with the design of the RHS in [18], where the RHS operates in multiple frequency

bands at 9.0 GHz, 9.5 GHz, 10.5 GHz, and 11.0 GHz, while different beamforming configurations

need to be used in different bands.

Besides, if the OFDM transmissions in multiple bands are conducted in parallel, the BS and

the users have to possess the capability to transmit and receive signals in multiple bands in

parallel. This is a demanding requirement for the hardware, as the BS and the users need to

have RF chains supporting ultra-wideband signal transmission and reception.

To clarify this point in the manuscript, we have revised the first paragraph of Sec. II-C1 to

explain the reason for assuming sequential transmissions. The corresponding text is reproduced

below.

“Thus, a state configuration that creates a desired beamforming pattern in one band

may lead to undesired beam patterns in other bands. Therefore, to design favorable

beam patterns in all bands, we assume that the OFDM transmissions in the NB bands

are performed sequentially, allowing the states of the meta-elements to be configured

independently in each band. This approach also reduces the hardware requirements for

the BS and the users as their RF chains do not have to support ultra-wideband signal

transmission and reception.”

Nevertheless, it is worth noticing that if the RHS can control the beam patterns in multiple

bands independently and the BS and users support parallel transmission and reception in multiple

bands, then HoloFed can be easily extended to this case. To clarify this in the manuscript, we

have added a footnote in the first paragraph of Sec. II-C1, which is reproduced below.

“ 5If the RHS can independently control the beam patterns in multiple bands, HoloFed can be modified to account

for parallel transmissions in these bands, assuming the hardware of both the BS and users is capable of supporting

it.”



D. In Section II-C3, what is the time complexity of the MMT phase?

Response: We thank the reviewer for this comment. Based on Fig. 3, the MMT phase has

linear time complexity with respect to the number of bands, i.e., NB, and the number of frames

transmitted in each band, i.e., F . Besides, since the BS broadcasts the frames to all the users

at the same time, the MMT phase has constant time complexity with respect to the number of

users. Consequently, its time complexity is given by O(NBF ).

To clarify this point in the manuscript, we have added an analysis on the time complexity of

the MMT phase in Sec. II-C1, which is reproduced below.

“ Based on Fig. 3, the MMT phase has linear time complexity with respect to (w.r.t.)

the number of bands and the number of frames transmitted in each band. Besides,

since the BS broadcasts the frames to all users at the same time, the MMT phase has

constant time complexity w.r.t. the number of users. Consequently, its time complexity

is given by O(NBF ).”

E. In Section IV-A1, it is not very clear how using multiple bands benefits positioning. The

authors may want to explain this in detail.

Response: We thank the reviewer for this comment. The benefit of using multiple bands

for positioning is two-fold. Firstly, based on (16), (17), it can be observed that the CRLB

for positioning is inversely proportional to the summed Fisher information of multiple bands.

Therefore, if more bands are jointly used for positioning, the Fisher information in the received

signals increases, leading to a lower CRLB for positioning and thus a higher positioning precision.

Secondly, using multiple bands is more beneficial for positioning than using a single band

with larger bandwidth or more frames. This is due to that the correlation between the received

signals in different bands is much lower than that in the same band based on (7) and (8),

which results in a higher Fisher information contained in the received signals. This can be

demonstrated by the following example: Suppose we estimate a 1D position p based on received

signals y1 = (hLoS(p) + hMP
1 )x and y2 = (hLoS(p) + hMP

2 )x, where hLoS(p) is the LoS channel

gain w.r.t. p, hMP
1 and hMP

2 are random multi-path gains following the normal distribution, and

x is the transmitted signal. If y1 and y2 are received in different bands, hMP
1 and hMP

2 will have

close-to-zero correlation; otherwise, if y1 and y2 are received in adjacent frames or sub-bands,

the correlation between hMP
1 and hMP

2 will be higher, denoted by ρ > 0. Based on [41, Eq.



(3.31)], the Fisher information of y1 and y2 w.r.t. p is proportional to (1 + ρ)−1. Therefore,

signals received in different bands are expected to lead to a lower CRLB.

To address this clearly in the manuscript while keeping the presentation concise, we have

added a remark in Sec. IV-A1, which is reproduced below.

“ Remark 4: According to Proposition 1, the benefits of using multiple bands for

positioning are two-fold. Firstly, the Fisher information from multiple bands adds up,

leading to a lower value for the CRLB. Secondly, the fact that signals received in

different bands are generally less correlated (due to less correlated multipath gains)

also contributes to a lower CRLB. This can be shown by deriving the Fisher information

of two correlated signals based on [41, Eq. (3.31)].”

F. In Section IV-A2, the reason why the proposed Algorithm 1 contains an outer loop and an

inner loop needs to be further explained.

Response: We thank the reviewer for this comment. In the proposed algorithm, based on [43],

the outer loop and the inner loop are used to enhance the efficiency of estimating the gradient

of the objective function w.r.t. the optimization variables. Specifically, in the outer loop, the

gradient of the objective function w.r.t. the optimization variables is initially estimated for a set

of randomly sampled points in the ROI. Then, within each subsequent inner loop, the gradient

estimate is further refined based on the calculated gradient deviation during the update of the

optimization variables. By this means, the efficiency and precision of the gradient estimation

can be enhanced, leading to an accelerated convergence rate.

To clarify this point in the manuscript, we have revised the second paragraph of Sec. IV-A2 to

explain the reason for using the outer loop and inner loop. The corresponding text is reproduced

below.

“In the outer loop, the gradient of the objective function w.r.t. the optimization variables

is coarsely estimated for a set of sampling points in the ROI. Then, in the inner loop,

the gradient estimate is iteratively refined based on the gradient deviation determined

during the update of the optimization variables. This method enhances the precision of

gradient estimation for limited sampling points, leading to an accelerated convergence

rate [43].”



RESPONSE TO REVIEW 4

A. The work propose a system using RHS, to tackle the disadvantage of user position estimation

for a diverse environment. Through this paper a first try to minimize the MSE using different

algorithms is applied. Is a well written paper and understandable although is a little bit

complicated to its way of organized. Your proposed algorithm seems to perform better according

to the simulation results which are provided in the last chapter. Moreover the reviewer could

not find any major flaw as far as any grammatical or spelling errors.

Response: We thank the reviewer for the positive feedback for our manuscript. We have

addressed all of the reviewer’s comments, which has significantly enhanced the quality and

clarity of our paper.

B. For the time being it seems a fair good work for finding the exact position of the users

through the proposed algorithm. I would like a clarification as to what impact the presence

of interference between the users can have. Will the interference affect the performance of the

aforementioned, since all the metrics which will be used will be affected from the interference?

Response: We thank the reviewer for this comment. Two different types of interference

between the users may be considered as follows.

First, in the positioning process, users do not suffer from active user interference caused by

the active signal transmissions of other users. This is because, as described in Sec. II-C1, in the

multi-band multi-pattern transmission (MMT) phase, the users only passively receive the signals

transmitted by the BS and do not transmit actively. Although the users need to actively transmit

their local updates to the BS in the federated adaptation phase, they are scheduled by the BS so

that only one user transmits at a time.

Second, in the positioning process, users receive signals that were passively scattered by the

bodies of other users, which constitutes passive interference between users. As the reviewer has

mentioned, such passive user interference affects the observations used for positioning, i.e., the

received signals, and thus affects the performance of HoloFed. Since the scattering paths can

be considered as random multipath channels, passive user interference can be accounted for by

the random multipath channel gains that we have modeled in Sec. II-B3. Specifically, in (6), we

model the covariance of the multipath channel gains of the received signals in band i by Vi. If

the passive user interference becomes larger due to, e.g., a larger number of users in the system,



the powers of the multipath channel gains will become larger, leading to a magnified covariance

matrix Vi. Then, based on (6) and Proposition 1, if Vi is magnified by a factor of X ∈ R, the

Fisher information will decrease approximately X times, leading to an X-fold increase in the

CRLB.

To clarify this, we explain in the revised paper that passive interference can be accounted for

by covariance matrix Vi. The added explanation is reproduced below.

“We note that Vi can also account for the passive interference among users, i.e., the

interference caused to a given user by signals passively scattered by the bodies of other

users; because the scattering paths can be modelled as random multipath components.”

Besides, we clarify that the users in HoloFed do not suffer from active user interference by

adding a remark, namely Remark 2, at the end of Sec. II-C. The added text is reproduced below.

“Remark 2: In HoloFed, users do not suffer from active user interference caused

by signal transmissions of other users because they only receive signals in the MMT

phase and are scheduled to transmit their local updates one at a time in the federated

adaptation phase.”

Moreover, we have added a remark, namely Remark 3, following Proposition 1 to clarify the

impact of passive user interference, which is reproduced below.

“Remark 3: Based on (6) and Proposition 1, the impact of passive user interference

on the CRLB can be analyzed: If the magnitudes of all entries of Vi increase by a

factor of X times due to larger passive user interference (∀i ∈ {1,..., NB}), then based

on (16)–(18), CRLB(p) will increase approximately by a factor of X as well.”




