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Abstract—Door lock is regarded as a critical line of defending the privacy and security of personal areas. However, for inner doors in
environments like factories, existing locking mechanisms can be poor in user-friendliness and high in cost. For instance, mechanical locks
require carrying keys that inevitably compromise user experiences, while smart locks always require non-trivial sensors. Therefore, inner
doors urgently require a lightweight unlocking scheme that can properly balance user-friendliness, cost, and security. To this end, we
propose HandKey as a keyless unlocking scheme to supplement existing lock systems. HandKey relies on two principles: the simplicity
of hand knocking doors and the uniqueness of vibration triggered by the knocking force. In other words, a door and a hand knocking it
jointly form a unique physical system that generates hand-dependent and user-specific vibration signatures uniquely representing a user
identity. In designing HandKey, we first analyze the vibration mechanism behind it and the impacts of gestures and door materials on
vibration signatures. Then we innovatively construct a signal processing and deep learning-based pipeline to extract signatures robust
to variable knocking behaviors for representing user identity. Finally, we implement a HandKey prototype and use extensive evaluation
to demonstrate its security and effectiveness.

Index Terms—Keyless unlocking, authentication, vibration signature, behavior-independent signature.
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1 INTRODUCTION

Door locks always play a key role in preventing illegitimate
invasion and hence protecting personal security. However,
for environments accommodating multiple users (e.g., com-
panies or institutes), inner doors are only applied to restrict
personnel activity areas. Therefore, their dominating re-
quirements for locks are low cost, user-friendliness, as well as
an adequate security level (in particular, robustness to theft and
counterfeit). Unfortunately, current unlocking mechanisms
often cannot fully meet these requirements. To illustrate
the mismatches between functionalities and requirements,
we consider three main categories of unlocking schemes:
i) mechanical key or electronic card [1], [2], ii) keyless
access via passwords or drawing patterns [3], [4], and iii)
biometrics-based identity verification [5], [6].

Category i) requires users to carry physical keys/cards at
all times. As losing and forgetting them inevitably happen
in human daily life, such mechanisms sometimes cause
terrible user experience [7]. In practice, relying on per-
mission managers to recover from this loss is both cum-
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bersome and lacking of timeliness. Most importantly, an
illegitimate person can steal the magnetic stripe or utilize
the near-field communication technology [8] to slinkingly
replicate entrance accessing permission, thus gaining free
entrance to sensitive areas like personal offices. Category ii)
aims to bring better user experiences and security, but the
current performance is far from satisfactory; it demands
users to remember tedious numbers and then manually
input them when unlocking. Since each user often owns not
just one but a lot of accounts (e.g., online banks and in-
stant messaging applications) entailing distinct passwords,
remembering them becomes a heavy burden. Moreover,
password/patterns do raise security risk as they can be
stolen by peeping [3] and side-channel [9] attacks.

Thanks to its keyless nature (thus the resulting security
and convenience), category iii) has been widely adopted
on smart locks, yet they necessitate multiple non-trivial
sensors to identify user biometrics reliably, resulting in a
high cost and hence not suitable for inner-door locks. For
instance, FaceID [10] demands a structured light system to
capture facial 3D features with flood illuminators, dot pro-
jectors, and an infrared camera, greatly increasing hardware
costs. Qualcomm Fingerprint Sensor [11] leverages non-
trivial ultrasonic readers to construct accurate fingerprint
images by scanning the pores of a user’s fingers. In addition,
recent proposals [12], [13] leverage vibration signals emitted
by motors in wearable devices to authenticate users: they
both argue that identical vibration waves, after propagating
through arms and fingers, become signatures unique to
individual users. However, requiring user-held devices has
compromised the keyless promise of this category.

Given that existing schemes largely fail to meet the main
requirements for inner-door locks, namely, low-cost, user-
friendliness, and robustness to theft and counterfeit, it is
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Fig. 1. The usage illustration of HandKey: a predefined knocking area
and three typical knocking gestures.

imperative to look for alternatives. To this end, we plan to
exploit two properties inherent to hand knocking doors, to
fully meet the aforementioned unlocking requirements. On
one hand, knocking on doors by hand is easy to operate
for users, as it has been used for thousands of years as a
gesture to ask a door to be opened. On the other hand,
thanks to the intrinsic differences among human users in
bone structure, muscle distribution, and shape of hands [14],
physical contact between hand and door jointly forms a
unique system. Triggered by the knocking force, this sys-
tem generates hand-dependent vibration signals unique to
individual users. These two properties have motivated us
to ask the following question: can we employ simple knocking
operations and unique hand-dependent vibration signals to realize
an adequate unlocking approach for inner doors?

In response to this question, we specifically leverage the
aforementioned two properties to construct HandKey as a
keyless unlocking scheme in this paper. Basically, Hand-
Key employs user-specific vibration signatures created by
hand knocking as “keys”, and it verifies signatures after
sensing them via an accelerometer. As illustrated in Fig. 1,
a user knocks on a pre-set knocking area1 to unlock a door.
HandKey adopts an accelerometer to record the induced
vibration signatures and then verifies the feature similarity
between newly captured and registered signatures, so as
to determine whether to unlock or not. The adequacy and
effectiveness of HandKey manifest in four aspects:

• HandKey leverages a common accelerometer to com-
plete data collection, ensuring a low hardware cost.

• Users need only to execute hand knocking during
authentication, imposing minimal user involvement
and thus being very user-friendly.

• The combination of a hand and door forms a unique
structure, physically guaranteeing the uniqueness of
vibration signatures for authentication purpose.

• The signature generation strongly relies on the struc-
ture of user hands, making it impossible for attackers
to replicate signatures and hence ensuring the secu-
rity of HandKey.

However, implementing HandKey faces several techni-
cal challenges. First of all, though deeming the hand-door
as an oscillator excited by the knocking force is theoretically
sound, the intrinsic properties of this oscillator are unknown

1. Distance changes between knocking positions and the accelerom-
eter sensor, can directly lead to similarity reduction of vibration signa-
tures generated by the same user. Therefore, we preset a knocking area
on a door to ensure that positions of multiple hand knocks are close to
each other as much as possible.

without prior knowledge of the mutual interactions within
the oscillator. Second, the knowledge on extracting what
effective features from the vibration signals to characterize
user identity is also missing. Third, subtle changes in knock-
ing behavior can lead to varying signatures even from the
same hand, so achieving behavior-robustness is crucial but
challenging. To tackle these challenges, we first analyze the
working principles of the hand-door oscillator and reveal
decisive factors such as mass and spring constant crucial
to vibration generation. We explore the signature variations
caused by different knocking gestures and door materials
in a feasibility study, establishing a foundation for the
development of HandKey. Second, we specifically design a
learning-driven signal processing module to transform orig-
inal vibration signals into user identity features; it involves
Discrete Wavelet Transform (DWT) [15] based noise removal
and Variational Auto-Encoder (VAE) [16] feature extraction.
Finally, we apply a typical LeNet [17] network to construct
Triplet model [18] for obtaining behavior-independent sig-
natures robust to user behaviors; these signatures are taken
to drive the authentication process that compares a new
signature with multiple stored templates associated with an
identity and determines its authenticity via voting.

In summary, our main contributions in designing Hand-
Key are summarized as follows:

• We propose a lightweight keyless unlocking method
HandKey for inner doors; it delivers adequate secu-
rity, smooth user experience, and low cost.

• We analyze the vibration mechanism and key param-
eters of the hand-door oscillator, thereby revealing
the reason for signature uniqueness across users.

• We design a series of strategies for obtaining linear
time-frequency features via PCA and non-linear fea-
tures via VAE, aiming to effectively characterize a
user identity.

• We leverage a LeNet-based network to build a Triplet
model, in order to extract behavior-independent vi-
bration signatures robust to variations in knocking
behavior.

• We implement a HandKey prototype and conduct
comprehensive experiments to validate its effective-
ness; The promising results demonstrate that our
method can achieve an accuracy of 97.71%.

The remainder of this paper is organized as follows.
Sec. 2 introduces vibration mechanism and investigates
the feasibility of using hand-dependent vibration signals
for keyless door unlocking. Potential attacks and system
overview are presented in Sec. 3. We elaborate the tech-
nical details in Sec. 4, and report the implementation and
performance evaluation of HandKey respectively in Sec. 5
and 6. After discussing limitations and related works in
Sec. 7 and 8, we finally conclude this paper in Sec. 9.

2 BACKGROUND AND FEASIBILITY ANALYSIS

In this section, we first introduce a simple yet effective
model to characterize vibration generation and propaga-
tion. Then we perform feasibility studies to corroborate
the theoretical uniqueness of vibration signatures, justifying
using them for authenticating users. Finally, we demonstrate
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Fig. 2. The illustration of vibration generation and propagation.

the behavior impacts on vibration signatures, aiming to
concretely motivate our latter design.

2.1 Vibration Mechanism of Hand Knocking Door
When a hand knocks on a door, the force-bearing area (i.e., the
contact area between them) is deformed and thus generates
vibration waves. Vibration generation and propagation de-
pend on structure properties such as spring constant and
damper coefficient of both hand and door, which jointly
form an oscillator [19]. Therefore, knocking on the same
door by the hand of a certain user should produce user-
specific vibration signatures. More importantly, as the hand
structure parameters such as bone and shape are important
determining factors of this oscillator, it is highly possible
that changes in them may significantly alter the vibration
signature. Therefore, we construct a simple model to reveal
this potential impact (hence the uniqueness of vibration
signature for individual users) in the following.

As a forced spring system [20], the process of vibration
generation in the hand-door oscillator involves two stages:
compression and stretch. In the first stage, the force of
hand waving is exerted on doors, causing the force-bearing
area and hand to squeeze against each other and hence
transforming kinetic energy into elastic potential energy.
This stage ends with the force-bearing area deforms to its
greatest extent when the exerted force offsets the resistance
of the door material. In the second stage, the force-bearing
area begins to gradually restore its original state, releasing
energy and generating vibrations. To describe this process,
we adopt the well-known mass-spring-damper model [21].
As shown in Fig. 2(a), the hand-door oscillator can be
characterized using its mass m, spring constant s, and
damper coefficient c. In our case, these parameters are
determined by the bone, muscle, and shape users’ hands,
making the structure of an oscillator uniquely determined
by a user [14]. According to Hooke’s law [22] and Newton’s
second law [23], we formulate the relation between the
knocking force ft=0 and the vertical displacement of door
surface x(t) (i.e., the vibration signature) as follows:

ft=0 = ma(t) + cv(t) + sx(t), (1)

where a(t) and v(t) are respectively the acceleration and
speed of the door. Leveraging the physical relation among
acceleration, speed, and displacement [24] allows us to
further simplify Eqn. (1) as:

ft=0 = m
d2x(t)

dt2
+ c

dx(t)

dt
+ sx(t). (2)

According to Eqn. (2), the vibration signature x(t) is
uniquely determined by parameters m, s, and c given the
knocking force ft=0. Moreover, as changes in ft=0 only
affect vibration amplitude, the shape of vibration envelope
(morphology) can be regarded as a unique signature.

Vibration signal x(t) is generated in the force-bearing
area and then propagates outward through the hand-door
oscillator, which is eventually sensed by an accelerometer
fixed on the door. The propagation process consists of two
distinct parts. On one hand, the signal waveform propagates
along a line (a.k.a. direct path) towards the accelerometer.
On the other hand, vibration waves reaching the medium
boundary can be reflected towards the accelerometer and
hence form reflected paths. Though there could be multiple
reflected paths caused by various medium boundaries, we
only show one reflected path as an example in Fig. 2(b) for
the sake of brevity. During this process, vibration amplitude
continuously attenuates, which is characterized by the fol-
lowing vibration attenuation model [25]:

y(t) = x(t)e−µr, (3)

where µ is the attenuation coefficient of medium structure,
and r is the propagation distance between the impact point
and accelerometer. Different door materials may lead to
distinct values of the coefficient µ, which in turn affects the
attenuation of x(t) during propagating.

2.2 Feasibility Study on Vibration for Authentication

In this section, we conduct a feasibility study to corroborate
the theoretical analysis presented in the previous section.
As illustrated in Fig. 1, we deploy a BU-27135 accelerometer
with a sampling rate of 10 kHz in the bottom position of
pre-set knocking area, for sensing vibration in real-time.
Unless otherwise specified, all users use their right hands
with Gesture-1 (Fig. 1) to knock on a wooden door, and
they keep their hands on the door for about two seconds,
for largely preserving the oscillator structure during the
vibration propagation.

The uniqueness of vibration signatures to represent
corresponding user identities is the foundation of our de-
sign. To verify its uniqueness, we first let two users with
identical hand shapes knock on a door five times utilizing
the same gesture and position. Hand shape is measured
by three critical parameters, i.e., length, breadth, and cir-
cumference shown in Fig. 3(a), according to a study from
NASA [26]. The signals sensed by the accelerometer are
shown in Fig. 3(b) and 3(c). One may clearly discern the
differences between two time domain waveforms, and the
spectral densities of them also present distinct distributions:
one concentrates below 80 Hz while another up to around
200 Hz. Therefore, even with identical hand shapes, dif-
ferences in internal structures such as muscle tissue and
bone, still ensure the uniqueness of vibration signatures. We
further calculate Pearson Correlation Coefficient (PCC) [27]
of two arbitrary signatures from the same user (referred to
as Intra-PCC) and across distinct users (Inter-PCC). PCC is
an accurate and effective method to measure sample simi-
larity. Fig. 3(d) presents signature similarities of 47 users; the
minimum Intra-PCC is 0.91 much higher than the maximum
Inter-PCC value at 0.57. These results confirm that vibration
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Fig. 3. An illustration of hand-shape parameters (a). Vibration signatures generated by two human hands while each knocking the door five times
(b) and their frequency domain versions (c). Similarities of vibration signatures among 47 users (d).

signatures across users can be correctly classified and hence
have potential to effectively represent user identities.

The long-time stability of vibration signatures is an-
other necessary condition for our design to be practical. To
confirm this stability, we ask users to knock on doors at
six regularly spaced time periods p1, p2, · · · , p6 during the
last three months. They knock ten times during each period
and intervals between adjacent periods are about 15 days.
Subsequently, to verify the stability of vibration signatures,
we calculate PCCs between signatures (of the same user)
collected during p1 those from other periods. As shown in
Fig. 4(a), with a three-month time span between p1 and p6,
the average value of Intra-PCCs drops by only 0.05 and still
maintains a large difference from Inter-PCCs. This indicates
that vibration signature, as biometrics, is sufficiently stable
during a long-time period. The variations in knocking
door material may also affect the vibration signatures, as
door is part of the oscillator. To quantify the impact of
door materials, we let users knock on different types of
doors, i.e., wood, aluminum, and zinc alloy, while each type
includes five distinct thicknesses. Subsequently, we report
the average Intra/Inter-PCCs in Fig. 4(b), which indicates
a sufficiently wide gap between Intra- and Inter-PCCs for
each material (consisting of one type with five thicknesses).
Therefore, we may safely deem the door material as having
insignificant impact on the vibration signature, hence it can
be neglected in our latter design.

In addition to the uniqueness confirmed earlier, another
important property of the vibration signature is its non-
replicability. In other words, no one can fake the hand of a
legitimate user, because many features of a hand (e.g., its
bond structure and muscle) that determine the vibration
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Fig. 4. Variations in vibration signature similarity as (a) the time interval
increases from half a month to three months and (b) under three distinct
door materials.

signatures are intrinsic and hence cannot be replicated even
with sophisticated anatomy. This is in sharp contrast to
other biometrics such as fingerprint and iris: they stay on the
surface of human bodies and thus may often be replicated.

2.3 Interference from Knocking Behavior
Except for the inherent structure of hands and doors, the
effects of knocking behavior imposing on final output vibra-
tion signatures should be attached with great importance.
The most obvious is that adjusting knocking gestures can
directly change the whole oscillator structure. To study its
effects, we let users knock on a door using three common
gestures (i.e., Gesture-1/2/3 in Fig. 1), while each of them
offers the total of thirty vibration signatures. The average
Intra-PCC and Inter-PCC of them in each gesture as dis-
played in Fig. 5. For HandKey, a sufficiently large difference
between Intra-PCC and Inter-PCC indicates that signatures
are unique across users while consistent for the same user.
It is clear that Gesture-1 performs the best in this sense,
while the other two gestures perform slightly worse but
still offer sufficient discriminability. By reviewing vibration
mechanism, the reasons for performance differences among
gestures become clear: the parameters such as spring and
damping coefficients of an oscillator’s sub-components can
impose more impacts on output vibration signals, when
their contact areas become larger [28]. Gestures having
larger force-bearing areas with door allow the hand struc-
ture traits to be more involved in the oscillator, thereby en-
suring the signature uniqueness/discriminability. Therefore,
we recommend users to choose gestures with large force-
bearing areas for enhancing signature uniqueness.

Moreover, we have learnt from Eqn. (2) and (3) that
knocking force ft=0 and distance r, though not affecting
the signature morphology, may still cause inconsistency
between registered and newly sensed signatures of the same
user; they potentially result in a higher false positive or
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Fig. 5. The signature similarity under three common knocking gestures.
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Fig. 6. Signature similarity decreasing caused by user behavior
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negative rate. To explore the effects brought by ft=0, we
first ask one user to knock with three distinct forces (i.e.,
small, medium, and large). t-SNE [29] is then leveraged for
clustering similar samples in an adjacent three-dimensional
space, thereby visually analyzing the similarity of these
signatures. As illustrated in Fig. 6(a), the strength of ft=0

slightly changes the distribution support of the resulting sig-
natures, thereby reducing Intra-PCCs and causing a higher
ratio of rejecting legitimate users. Moreover, to study the
impact of distance deviation on vibration signatures, we let
users knock on four positions, while the first one is away
from others with 0.5 cm, 1 cm, and 1.5 cm respectively.
Fig. 6(b) displays signature similarity decreasing to 0.72
as position deviation increases to 1.5 cm; these results also
indicate a potentially higher false positive rate. To maintain
the performance vibration signature under the above two
factors, we plan to leverage suitable deep learning model to
distill behavior-independent signature robust to these factors,
and we also consider setting a knocking area on the door to
limit force-bearing range and hence confining the position
deviation within a tolerable range.

3 POTENTIAL ATTACKS AND SYSTEM OVERVIEW

In this section, we first introduce potential attacks threat-
ening unlocking security and then present the detailed
workflow of HandKey.

3.1 Attack Models

We assume that Alice is an attacker who tries to spoof
HandKey, for illegitimately entering Bob’s private space.
Considering the existing approaches and actual scenarios
for compromising identity verification system, Alice enacts
the following attacks:

• Zero-effort Attack. Alice does not master any infor-
mation (e.g., knocking gesture, force, and position)
about how Bob unlocks a door by HandKey. Without
prior knowledge, Alice attempts to unlock the door
by aimless knocking. This type of attack is easy to
operate and hence ordinary attackers can perform it.

• Imitation Attack. We assume that Alice has a
chummy relationship with Bob, thus he/she can
stand around Bob and observe how to use Hand-
Key. Moreover, Alice records the complete unlocking
process through a latent camera and then practices to
imitate Bob’s knocking behaviors. Finally, Alice rely-
ing on this useful information tries to trick HandKey.
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Fig. 7. The workflow of HandKey, including four major modules: vibration
sensing, signal preprocessing, basic feature extraction, and behavior-
independent signature.

Imitation attack is regarded as an effective way to
deceive unlocking schemes that leveraging behavior
traits, so being widely discussed in existing authen-
tication works [30]–[32].

• Side-channel Attack. Alice tries to place an ac-
celerometer in inconspicuous positions to record vi-
bration signatures when a legitimate user knocking
on the door. He/she then releases captured vibration
waves through adjustable motors to spoof HandKey.
This approach sounds promising yet is short of im-
plementability. We detailedly explain the reasons for
its invalidation in Sec. 6.10.

3.2 HandKey Overview
On the basis of running state, HandKey’s workflow (il-
lustrated in Fig. 7) can be divided into two major phases:
system construction and authentication. In fact, both phases
involve almost the same data processing flow, except that
the latter phase executes a comparison between newly
captured user signatures with the registered ones obtained
during the former phase. Therefore, we focus on discussing
the construction phase, but leave design details to Sec. 4.

In Vibration Sensing, users knock on the pre-set knock-
ing area with habitual gestures and forces, for registering
identity signatures. HandKey then detects knocking event
and segments vibration data corresponding to user signa-
ture from original signals, in Knocking Event Monitor and
Data Segmentation respectively. Considering user experience,
HandKey allows users to knock with relatively small forces.
In this case, sensed vibration amplitude and signal-to-noise
ratio of signature are both low. Therefore, we design a Dis-
crete Wavelet Transform (DWT) [15] based method in Noise
Removal, to filter inherent noise caused by electronic com-
ponents. Subsequently, we extract Mel-Frequency Cepstral
Coefficients (MFCCs) [33] based linear fine-grained features
in Linear Time-frequency Feature while relying on Principal
Component Analysis (PCA) in Dimension Reduction to com-
press the feature dimension. Afterward, Variational AutoEn-
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coder (VAE) [16] based Feature Extractor obtains latent non-
linear characteristics derived from hand structure. To sum
up, linear and non-linear features respectively and com-
plementarily represent the basic and latent hand structure
attributes from vibration signals. Finally, as these original
features may not well handle the interference caused by be-
havior changes, we designed a LeNet-based Triplet model to
extract behavior-independent signatures and hence ensure
the robustness of HandKey.

4 HANDKEY DESIGN

In this section, we detailedly introduce the technical mod-
ules of HandKey, mainly involving knocking event de-
tection, noise data removal, basic feature extraction, and
obtaining behavior-independent signature.

4.1 Signal Preprocessing

4.1.1 Knocking Detection and Data Segmentation

Detecting and segmenting vibration signal of each knocking
event is the premise of further identity signature extraction.
We observe that there is bursting energy fluctuation (i.e.,
absolute amplitude differences between adjacent samples)
brought by hand knocking door as shown in Fig. 8(a).
Therefore, we leverage a fluctuation threshold-based sliding
window to detect knocking event occurrence relying on [34].
The sensed vibration data from idle/non-knocking period is
denoted as yidle(t). The mean ȳ and standard deviation σ of
its energy fluctuation sequence can be calculated as follows:

ȳ =
1

T

T−1∑
t=0

|yidle(t+ 1)− yidle(t)| , (4)

σ =

√√√√ 1

T

T−1∑
t=0

(|yidle(t+ 1)− yidle(t)| − ȳ)
2
, (5)

where T is the number of samples. Relying on the analysis
of energy fluctuation distribution, we discover appearance
time ta of knocking event accompanying by two markers:
the first sample’s value in sliding window is larger than
ȳ + 3σ; the averaging amplitude of all samples is greater
than 5.8ȳ. In HandKey, we set window size as 600 ms that
typically larger than time duration of signatures and its
sliding step is 20 ms. Fig. 8(b) presents the result of data
segmentation, and starting times ta of knocking events are
marked with red stars.
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4.1.2 Noise Removal
Data captured by an accelerometer always consists of vi-
bration signature and intrinsic noise introduced by internal
electromagnetic components. In Fig. 9, it’s visible that an
accelerometer continuously bulks out non-zero amplitude
samples (noise) even during an idle period. In this section,
we employ the multi-resolution characteristic of DWT to
remove noise in frequency bands. It can analyze signals
in multiple frequency scales and effectively remove noise
components while retaining needed ones [35], [36]. DWT
divides sensed vibration data (i.e., y(t)) into two parts,
approximate coefficients (i.e., wj) corresponding to low-
frequency bands and detail coefficients (i.e., uj) correspond-
ing to high-frequency bands:

wj = 2−j/2

∫
y(t)φ(2−jt− 2k)dt, (6)

uj = 2−j/2

∫
y(t)ψ(2−jt− 2k)dt, (7)

where φ(·) and ψ(·) are scaling and wavelet functions
respectively. j is a scaling parameter and k is movement step.
Especially, the low-frequency band can be divided multi-
ple times, for obtaining approximate coefficients at varied
scales. In HandKey, we represent original vibration data
using seven frequency scales with considering actual de-
noising performance. The physical contact of hand and door
makes them enjoy large coefficients in resonance frequency
scales/bands [37] while background noise owns small ones.
To filter out noise and preserve important vibration features,
we select a dynamic threshold on the basis of [38] and then
coefficients lower than it will be set up to zero on each scale.
Finally, denoised data y(t) on j-th scale is reconstructed
through rescaled discrete orthogonal functions (i.e., h(·) and
g(·)) and corresponding coefficients:

yj(t) =
∑
k

h(n− 2k)wj+1 +
∑
k

g(n− 2k)uj+1, (8)

where wj+1 and uj+1 are corrected approximate coefficients
and detail coefficients on (j + 1)-th scale respectively. In
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Fig. 10. Original signals (a) and noise removal version (b).
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Fig. 10, we present five vibration signal segments and their
denoising versions from the same user. Clearly, denoising
module makes these waveforms more consistent, confirm-
ing the effectiveness of the proposed DWT-based method.

4.2 Basic Feature Extraction

In this section, we first extract linear features in time-
frequency domain relying on vibration mechanism of the
hand-door oscillator. Specially, we employ a PCA approach
to reduce the dimension of the MFCC-based linear features.
We further design a VAE encoder to explore non-linear fea-
tures derived from hand structure. In short, linear features
outline the basic characteristics of vibration signal and the
learning-based non-linear part further explores latent hand
structure attributes; they apparent complement each other.

4.2.1 Linear Time-Frequency Features
For each hand-door oscillator, there are four main structure
parameters affecting vibration signatures: mass m, spring
constant s, damper coefficient c and attenuation coefficient
µ. These parameters jointly determine duration time κ,
amplitude range ς and attenuation degree τ of a oscilla-
tor’s reciprocating motion. For instance, if they have larger
values, the duration time κ of vibration become short. To
explicitly describe the extraction process of the three fea-
tures, we present part of vibration signature in Fig. 11 as
an example. HandKey first detects extreme points (e.g., ρ1
and ρ2) marked with green triangles, which are boundary
points of peaks. There are three peaks in this case, i.e.,
ρ̃1ρ2ρ3, ρ̃3ρ4ρ5, and ρ̃5ρ6ρ7. Then we leverage maximum
horizontal and vertical range distances of peaks to represent
κ = {κ1, κ2, κ3} and ς = {ς1, ς2, ς3} respectively. Vibration
attenuation degree ξ is defined as { ς2

ς1
, ς3ς1 }. Subsequently,

nearest-neighbor interpolation [39] is employed to align
feature vectors to a fixed length (i.e., the maximum number
of peaks in registered signatures). Moreover, we calculate
mean, variance, skewness, kurtosis, and form factor [40] to
present the global characteristic of each signature.

Learned from Sec. 2.2, the frequency-domain energy
distribution of vibration signature across users are unique.
Therefore, we leverage MFCCs to further represent spec-
trum differences among signatures. It’s widely utilized to
extract subtle spectrum pattern variations of time series
data. Unlike applying MFCC to the speech recognition field,
we needn’t transform vibration signal into mel spectrum
scale in HandKey. In our case, time frame of each knocking
event is 100 ms and frame-shifting step is set as 25 ms. Fur-
thermore, we calculate the delta and delta-delta of MFCCs
to sense the dynamic characteristics of vibration signals.
Finally, we obtain a feature vector with 1215 elements. Nev-
ertheless, directly utilizing MFCC-based features of such
a huge dimension to construct the following behavior-
independent signature extraction model undoubtedly re-
sults in limited computing resource’s curse. Fortunately, we
discover that spectrum powers of partial frequency bands
are repeatedly counted by multiple triangular filters, thus
leading to information redundancy within initial MFCCs.

To compress MFCC-based features and completing di-
mension reduction, we resort to PCA [41] filtering out
superfluous information. Its essence is to leverage a set

Fig. 11. Extracting time-domain features in three peaks.

of orthogonal components in a low-dimensional space for
representing high-dimensional features while avoids losing
critical characteristics. PCA is always employed to dimen-
sion reduction, benefiting from its low computation cost and
without complex parameter setting. We use matrix Ag1×g3

to save g3 (i.e., 1215) dimension features extracted from g1
vibration signatures, then apply Singular Value Decomposi-
tion (SVD) [42] to decompose it into three submatrices: row
matrix Ug1×g2 , diagonal matrix Qg2×g2 , and column matrix
VT

g2×g3 :

Ag1×g3 = Ug1×g2 ×Qg2×g2 ×VT
g2×g3 (9)

The singular values in Qg2×g2 is denoted as {r1, r2, ..., rG}.
We then select the columns of VT

g2×g3 corresponding to
top-G singular values in Qg2×g2 , and obtain the principal
component Ag1×G from original features:

Ag1×G = Ag1×g2 ×Vg2×G (10)

In our system, we set G for compressing the original feature
intoG dimensions. The value ofG is selected with satisfying
the following demand:

argmin

G
∣∣∣∣∣

G∑
i=1

wi

/ G∑
i=1

ri > ϑ

 (11)

The ϑ is set as an empirical value 0.92, which is determined
to balance the trade-off between unlocking accuracy and
time-consuming, referring to system performance evalua-
tion Sec. 6.6. Moreover, we find that singular value distribu-
tions of MFCC-based features and orderings of their princi-
pal components are distinguishable. The view is consistent
with the above analysis, that is, the resonance frequency
distribution of each hand-door oscillator is unique.

4.2.2 Non-linear Feature Extraction
Learning-based models holding a huge superiority in min-
ing latent non-linear characteristics of samples, are regarded
as effective tools for feature extraction [43]. In particular,
VAE only requires a small size dataset for completing fea-
ture extractor training and hence being widely acclaimed;
it can effectively capture numerical distributions of key
parameters determining sample generation. In HandKey,
we apply VAE to extract latent structure parameters (e.g.,
mass and spring constant) of the hand-door oscillator from
vibration signatures. The VAE model consists of three sub-
modules presented in Fig. 12. Each vibration signature
y(t) = [y1(t), y2(t), · · ·yl(t)] feeding into VAE and then
the specific numerical distribution of each latent parameter
is ascertained through an encoder. Subsequently, a com-
pressed latent parameter vector of structure z = [z1, z2, ···zℓ]
is obtained; a decoder reconstructs input signature relying
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Fig. 12. The VAE model containing three sub-modules: encoder, latent
parameter layer, and decoder.

on z thereby outputting ŷ(t) = [ŷ1(t), ŷ2(t), · · ·ŷl(t)]. Es-
sentially, the process of encoding and decoding on vibration
signatures prompts VAE’s latent parameter layers to possess
the power that representing the nonlinear characteristics of
each hand-door oscillator structure. To empower our VAE,
two goals require to be followed during model training
phase: (1) minimizing the reconstruction loss between y(t)
and ŷ(t) to ensure latent parameters correctly representing
vibration signature; (2) promoting the underlying distri-
bution qθ(z|y(t)) of latent parameters to move closer the
normal one, hence preventing from model over-fitting and
parameter space irregularity. Referring to [44], the two goals
can be formulated as following loss function:

L(q̄θ, qϕ; y(t)) = DKL(qϕ(z|y(t))||q̄θ(z)) + ∥y(t)− ŷ(t)∥2,
(12)

where DKL is Kullback-Leibler divergence measuring the
difference between two probability distributions. q̄θ(z) is the
prior standard normal distribution N (0; 1) and || · ||2 is the
L2 norm to present reconstruction loss of input and output
signatures. In HandKey, the number of neurons contained
in VAE’s three modules is (64, 64, 32), (24, 12), and (32, 64,
64) respectively. Its detailed inputting data collection, and
parameter settings (e.g., weight decay ratio and optimizer)
in the training process are consistent with the following
behavior-independent signature extraction module.

LeNet  

Fig. 13. The structure of HandKey’s LeNet-based Triplet model.

4.3 Behavior-independent Signature

Knocking behaviors of the same user between registra-
tion and identity authentication phases are not identical,
inducing signature similarity decrease and hence the suc-
cess ratio of authentication. To make unlocking scheme
practical, the final signature extracted by HandKey should
both effectively distinguish users and resist interference
from user behavior changes. In this section, we construct
Triplet model [18] as the behavior-independent signature
extraction tool employing LeNet [17] network which is a
typical learning-based approach to extracting condensed
features of input images. The essence of Triplet model is
to restore similar parts of features from the same user
and simultaneously amplify differences across users. To be
specific, this model makes Intra-PCCs much larger than
Inter-PCCs even if knocking behavior changes, hence en-
suring unlocking accuracy. As shown in Fig. 13, the Triplet
consists of three sub-modules sharing identical weights.
{νneg, νanc, νpos} is a 3-tuple including three feature vectors
as the basic inputting unit. Therein, νanc and νpos from
the same legitimate (positive) user; the former acts as the
newly sensed authentication signature feature and the latter
is the registered feature template to represent user identity;
while νneg is a randomly selected one from other (negative)
person. To reduce the loss of feature vectors νanc and νpos

while make νneg far away from them, we leverage the
following function [45] controlling weight update in each
iteration:

L̂ = max(||νanc − νpos||2 − ||νanc − νneg||2+α, 0), (13)

where α is a margin threshold that is enforced between
positive and negative pairs.

For filtering out behavior interference, the training pro-
cess of Triplet model is elaborately designed. We let arbi-
trary twenty users knock on random fifteen positions of the
pre-set knocking area, with three force ranges (i.e., small,
medium, and large). Each user offers ten vibration signa-
tures in one position-force combination, with a total of 450
(i.e., 15×3×10). HandKey then extracts 214-element feature
vector from each original signature, that is, 89 elements
from time domain, 113 ones of compressed MFCCs, and the
remaining part generated by our VAE-based extractor. In the
following, successive “0” is filled at the end of feature vec-
tors, for shaping them into 15×15 matrices inputting LeNet
models. Especially, the pairing scheme of input vector tuples
is critical to guide the Triplet model extracting behavior-
independent signatures. In HandKey, there are two types of
input pair: νneg and νpos have similar knocking behaviors
while νanc is not; νneg and νanc have similar knocking
behaviors while νpos is not. In this scheme, the model can
learn to ignore behavioral differences in vibration samples
from the same user and just focuses on hand-dependent
features. When iterating, the amount of data in each batch is
32. The weight decay ratio is set to 0.01 and the number of
parameters updated in each iteration is randomly selected
50%. Moreover, each parameter’s optimization strategy is
set as Adam optimizer [46] and the maximum number of
training iteration is 106 until the loss stabilizes.



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, 2022 9

4.4 Identity Authentication
In the registration phase, a user u knocks on a door to
generate vibration signature νposu as his/her identity tem-
plate. HandKey then reuses the feature vectors from other
users who participated in training Triplet model as the
negative templates νnegu . Both templates are then stored in
our database. Upon authenticating user u, HandKey obtains
a newly sensed signature νancu , thereby constructing a 3-
tuple (i.e., {νnegu , νancu , νposu }) by combining it with the saved
identity template and a negative one. Subsequently, this
feature 3-tuple is fed into the trained Triplet model for
verifying user identity. HandKey could repeat the above
process for forming multiple 3-tuples by traversing all νnegu

and apply a standard voting mechanism on all classifica-
tion results to judge νancu ’s authenticity. However, we only
randomly choose 32 3-tuples in a batch in order to strike
a balance between computational cost and authentication
security. Finally, if more than a half tuples’ ∥νancu − νposu ∥
less than ∥νancu − νnegu ∥, the newly sensed signature is more
similar to the registered identity template and hence the user
is accepted, otherwise rejected.

5 IMPLEMENTATION

The devices used in the following experiments have shown
in Fig. 14. Users knock on the door and piezoelectric/BU-
27135 sensors sense vibration data in real-time. We leverage
BU-27135 for vibration collection in the feasibility study
and verifying experiment due to its high sensitivity with
a sampling frequency of up to 10 kHz. In the following,
a Shenzhou notebook with an Intel i5-8400 CPU, GeForce
GTX1060 6G GPU, and 16G RAM, is denoted as a processing
unit to receive vibration signature by the serial interface. The
JetBrains PyCharm 2019 software is applied to analyze and
process the sensed data. In HandKey, signal preprocessing
and signature extraction modules are both completed in
the notebook. Arduino UNO receives an authentication
result (i.e, locking/unlocking) and then controls the motor
controller to implement it. We recruit 47 users (18 females
and 29 males) denoted as U1, U2, ...U47 aged from 21 to 43
for evaluating our system. HandKey is built on three types
of doors (i.e., wood, aluminum, zinc) and three gestures
(i.e., Gesture-1, Gesture-2, and Gesture-3), respectively. In
default, users knock the pre-set knocking area thirty times
on each door with habitual forces, by the right hand using

Arduino 

UNO
Relay

Piezoelectric 

Vibration Sensor

Lock&Stepper 

Motor 

Motor 

Power

Motor 

Controller 

Bread Board 

Fig. 14. The experiment setup of HandKey.

Gesture-1. Moreover, the dataset verifying the impacts of
specific parameters and unlocking security under potential
attacks is customized.

6 PERFORMANCE EVALUATION

In this section, we evaluate HandKey’s performance under
practical scenarios. Before diving into experiment details,
we first discuss basic metrics for evaluation. As identity
verification is a binary classification problem, there are
four basic cases related to authentication result, namely
true positive (TP), true negative (TN), false positive (FP),
and false negative (FN). To comprehensively measure the
performance of HandKey, we use False Accept Rate (FAR),
False Reject Rate (FRR), Precision, and Accuracy as evalua-
tion metrics. Basically FAR = FP

FP+TN measures the ratio of
an authentication system incorrectly accepting illegitimate
users. FRR = FN

FN+TP shows the ratio of incorrectly re-
jecting legitimate user. Moreover, Precision = TP

TP+FP mea-
sures the overall system performance, while Accuracy =

TP+TN
TP+TN+FP+FN is the ratio of samples being correctly clas-
sified. A secure and effective unlocking system should have
low values of FAR and FRR, and high values of Precision
and Accuracy.

6.1 Overall Performance
We select one user (e.g., U1) as the legitimate user who
has registered personal identity information in HandKey,
and other users (e.g., U2, ...U47) play the role of illegitimate
ones. Following the cross-validation principle, every user
is treated as the legitimate user in turn and we finally
obtain a total of 47 authentication results from all users.
In the following, we input sensed vibration signatures into
the trained model and count the correct verification ratio
of these positive and negative samples. The cumulative
distribution function of all users’ FARs and FRRs are shown
in Fig. 15(a). Averaging values of the two metrics are 1.87%
and 2.72% respectively. From the result, we conclude that
HandKey incorrectly verifies the identity of users at a low
ratio. Moreover, the unlocking performances of three types
of doors are verified. In Fig. 15(b), we see that there are
negligible differences in Precision (97.71%) and Accuracy
(97.37%) when knocking on three doors respectively, and
their averaging values are 97.54%. The result indicates that
door materials almost don’t affect unlocking performance
that is consistent with our analysis in the feasibility study.
Therefore, signature differences among users are mainly
caused by hand structure; regardless of door materials, a
hand can still ensure the structure uniqueness of the hand-
door oscillator.

6.2 Impact of Knocking Trial Times
Existing unlocking systems acquiescently allow users to
continuously authenticate/input identity information five
times until unlocking. If identity verification still fails for
the fifth time, systems will be locked over a while. Therefore,
the ratio of users successfully passing authentication within
five times reflects unlocking effectiveness. In this section,
we present changes in HandKey performance within the
maximum number of knocking trials from one to five. As
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Fig. 15. Results in (a) show low incorrect unlocking rates among all
users. (b) presents stable unlocking performance when implementing
HandKey on three different doors.

illustrated in Fig. 16, four metrics are continuously opti-
mized as the number of trials increases. Especially, at the
fifth trial, FRR is decreased to 1.15% meaning that HandKey
unlocks the door when the legitimate user knocks with high
accuracy.

6.3 Impact of Behavior-independent Signature

During user registration and identity authentication phases,
knocking behaviors may be various, hence causing similar-
ity decreasing of vibration signatures from the same user. To
relieve the interference of knocking position and force vari-
ation, HandKey extracts behavior-independent signatures
by the LeNet-based Triplet model as described in Sec. 4.3.
We evaluate HandKey performance changes caused by sus-
pending this model and directly judge user identity using
initial linear and non-linear features. As shown in Fig. 17,
the value of FRR when feeding behavior-independent sig-
natures into the trained model is 1.87% which is much less
than 29.05% without applying the Triplet model. In this case,
legitimate users are misidentified at a high rate. Moreover,
the FAR increases to 7.14% when behavioral interference
isn’t properly processed, which means the signature unique-
ness among individuals is compromised. The result verifies
that behavior-independent signatures extracted in HandKey
are effective, that can enhance unlocking convenience and
ensure signature distinctiveness among users.

6.4 Impact of Registration Data Size

HandKey has trained VAE-based feature extractor and
Triplet model relying on a pre-collected dataset. For adapt-
ing the model to a specific person, newly registered users
should input their vibration signatures for adding personal
identity information to the trained extractor and Triplet
model. If an unlocking system requires collecting a large
amount of registered data to extract identity information,
it undoubtedly compromises user experiences. Therefore,
the desired system should construct a model for security
authentication by as few registered signatures as possible.
In this section, we employ different sizes of registration data
to evaluate HandKey’s performance. Users knock on the
door from 5 to 35 times respectively for model construction.
As shown in Fig. 18, when the number of knocking times
reaches 20, HandKey shows excellent performance with
2.16% FAR and 3.41% FRR. This result indicates that users
can complete the data registration by inputting just a few
vibration signatures that spending within one minute.
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Fig. 17. Unlocking performance
with/without using behavior-
independent signatures.

6.5 Impact of Knocking Hand
Due to differences in personal habits, some users may
choose to knock utilizing right hands while the others lever-
age left ones. Relative positions between two hands and
the pre-set knocking area are distinct, thus sensed vibration
signatures of them are different. In this section, we explore
unlocking performances by employing two hands to register
information respectively. Ten random users participate in
this experiment and they knock fifty times with each hand
using habitual forces on the wood door. 50% data is used
for training our model and the other tests unlocking per-
formance. As shown in Fig. 19, HandKey’s performances
of knocking by two hands are both satisfactory. To be
specific, their averaging values of Precision and Accuracy
are respectively greater than 98% and 96%. It shows that
two hands can generate unique signatures for representing
user identity.

6.6 Impact of Dimension Reduction Threshold
To remove redundant information of original MFCC-based
features, we leverage the PCA-based approach to com-
plete dimension reduction in Sec. 4.2.1. A small threshold
ϑ means that only fewer features are retained, and the
probability of losing important information representing
user identity is increased. Therefore, choosing a proper
ϑ is critical to HandKey’s unlocking performance. In the
following, we explore the change tendencies of FRR and
FAR when adjusting ϑ from 0.1 to 1. The averaging values of
them as illustrated in Fig. 20. We see that the smallest FAR
is obtained when ϑ is set as 0.92, and the corresponding
FRR is below 2.75%. In this case, HandKey can ensure
legitimate users successfully access and effectively resist
potential attacks, thus the default value of ϑ is 0.92.

6.7 Impact of Wearing Accessory
Some users are accustomed to wearing watches, smart
bracelets, gloves, and other wearable devices. These ac-
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cessories may indirectly affect the overall structure of the
hand-door oscillator. To verify the impact of wearing them,
we collect vibration signatures when users wear a TIS-
SOT watch with 60g, a Huawei bracelet with 30g, and
a glove with general thickness respectively. Subsequently,
all signatures are fed into the trained model constructed
by non-wearing accessory registration data. As shown in
Fig. 21, wearing a glove on hand owns a few larger FRR
(6.83%) compared with a bracelet/watch on the wrist. We
summarize the reasons for FRR increasing as follows: gloves
cover an entire hand and hence slightly change the oscillator
structure. As the above analysis, the vibration signature
generation and propagation strongly depend on oscillator
structure, thus changing this structure doubtlessly affects
the signature and hence performance in FRR; otherwise,
it would allow attacks to easily fake a legitimate user. In
HandKey, by designing the behavior-independent signature
extraction module, the FRR caused by wearing gloves is
6.83% which is satisfactory and reasonable.

6.8 Impact of Knocking Gestures

HandKey supports users to choose personal favorite ges-
tures instead of just the fixed one to represent identity
information and unlocking inner doors. In this section,
we evaluate HandKey’s unlocking performance using three
common gestures. The results are illustrated in Fig. 22 pre-
senting that Gesture-1 presents a better unlocking accuracy
compared with the other two gestures. In general, they all
offer satisfactory performance with Precision larger than
97%. We summarize the reason for performance differences
caused by gestures as follows: a large contact area between
a hand and the pre-set knocking area enables the hand
structure to have more effects on vibration generation and
propagation. Therefore, we recommend that users choose
accustomed gestures for data registration while increasing
the contact area as much as possible.
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6.9 The Stability of Vibration Signature

Vibration signature stability across a long-term span is one
critical indicator for measuring unlocking performance. If
one user’s signatures significantly change over time, it in-
evitably causes a high probability of failure authentication
and hence compromising user experience. For verifying
signature stability, we record the unlocking performance of
users after completing the initial registration, as the time
interval increases from half a month to three months. In
the following, the averaging authentication performance of
each period is presented in Fig. 23. The result indicates that
even if the time span between registration and authenti-
cation phases is up to three months, HandKey still keeps
a satisfactory performance of recognizing legitimate users
with a small FRR increasing of 0.14%. Thus, we conclude
that the vibration signature is stable enough to ensure the
unlocking performance of HandKey.

6.10 Unlocking Security under Attacks

In this section, we evaluate the unlocking security of Hand-
Key under three potential attacks that are zero-effort, imita-
tion, and side-channel. In the first type, all users are divided
into two parts, thirty of them as legitimate users registering
personal information in HandKey, and other ones are attack-
ers. We ask each attacker to output fifty vibration signatures
from random knocking forces and positions. Sensed signa-
tures then are compared with the registered ones to obtain
feature similarities and hence judge identity. The averaging
ratio (i.e., FAR of 1.53%) of misjudging these illegitimate is
presented in Fig. 24. To implement the imitation attack, we
select eight users to combine four legality-attack pairs. Two
users belonging to the same pair have the most similar hand
shapes among 47 users. One person in the pair acts as a
registered user, and the other is denoted as an attacker who
observes and practices to imitate legitimate users’ knocking
behaviors. We obtain fifty vibration signatures from each
attacker, and the averaging FAR is 2.04%. The experiment
results present that imitation attack doesn’t cause obvious
changes in the misclassification rate (i.e., FAR) of negative
samples, with an increase only of 0.17% compared to the
baseline 1.87%.

The side-channel attack with a complex design seems
to have powerful destructive capabilities but lacks practi-
cality. The reasons behind this view are as follows: Firstly,
the vast majority of doors are flat and unobstructed. If
attackers deploy malicious sensors within human visible
ranges (e.g., around the pre-set knocking area), they can
be easily detected by users. Secondly, assuming a sensor
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Fig. 24. FARs under potential attacks.
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placing in the lower half of doors that are far away from the
knocking position, sensed signals are severely distorted and
become invalid. We place an accelerometer at 30 cm, 50 cm,
and 70 cm away from the preset knocking area to collect
vibration signals and then observe their differences with the
legitimate user signature. As illustrated in Fig. 25(b), at a
distance greater than 30cm, sensed signal energy is low and
its waveform greatly differs from the legitimate signature.
The result indicates that malicious attackers cannot steal
signatures matching the identity of legitimate users, and
thus are unable to carry out further attacks. We ask ten users
to knock on doors fifty times and collect vibration signals
at the above-mentioned positions in real-time. The trained
model then verifies their identity and none of the recorded
vibration signals can spoof HandKey i.e., FAR = 0.

6.11 Time Latency and Hardware Cost

In HandKey, vibration signal first is sensed by the ac-
celerometer, then transmitted to the computer completing
further data processing. Without considering data com-
munication, we focus on the time taken for performing
authentication action. For HandKey, models such as the
PCA-based dimension reduction, VAE-based feature extrac-
tor, and LeNet-based Triplet network are trained offline.
Therefore, the main time-consuming parts are noise removal
and original feature extraction. We input twenty vibration
signatures of each user into our model and record the
running time of two data processing parts. The time costs
of them are 0.64± 0.29s and 0.81± 0.24s respectively. Gen-
erally, HandKey can achieve a satisfactory running speed
for unlocking.

The total hardware cost of HandKey prototype is 72.9
dollars and its sub-module costs termwise lie in Table 1.
We also count the selling prices of the top-50 popular smart
locks on the Amazon website [47]; their average price is up
to 157 dollars more than the twice of HandKey. Relying on
these statistics, the fact is displayed that the cost of HandKey
is indeed low. Moreover, smart lock manufacturers leverag-
ing HandKey as the prototype can massively produce these
modules to further compress costs. Thus, the estimated cost
for HandKey could be significantly reduced.

7 LIMITATION AND FUTURE WORK

In this section, we review the keyless unlocking system
HandKey, mainly including the limitations that need to
be further solved and outlook for system performance im-
provement in the future work.

The size of HandKey’s prototype needs to further dwin-
dle. Current data sensing/processing modules of HandKey
are scattered, hence owning a large size. We should integrate

TABLE 1
The detailed cost of each module of HandKey prototype.

Module
Name

Arduino
AT-

mega328

Elprico
Relay

Abovehill
Mo-

tor&Power
Sensor Fittings Total

Cost

Unit
Price($) 22.8 8.1 18.4 17.2 6.4 72.9

The Pre-set 

Knocking Area

30 cm
50 cm
70 cm

(a) The position of mali-
cious sensor.
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(b) Sensed vibration signals.

Fig. 25. Implementing the side-channel attack. (a) illustrates the three
positions placing an accelerometer. (b) shows sensed vibration signals
in four data collection positions when the user knocks on the door.

all modules into a small unit that is convenient for instal-
lation and usage. Nevertheless, it is a technical problem
rather than related to academic research. For manufacturers,
producing a market-oriented smart lock utilizing unique
vibration signatures is easy to achieve. In the next version,
we will try to compress current prototype size to facilitate
rapid deployment.

We consider combining HandKey with existing “keys”
(e.g., fingerprint and face) in a conjunctive manner to further
facilitate (hand-)disabled users. In this manner, HandKey
allows users to flexibly select appropriate unlocking ways
on account of actual demands. Nevertheless, we must pru-
dently handle the tradeoff between convenience and secu-
rity under such a setting, since there are intrinsic draw-
backs in combined keys as stated in Sec. 1. Therefore, for
unlocking the inner door, whether enabling the conjunctive
mechanism needs careful consideration.

Moreover, we explore utilizing vibration signatures
constructs an authentication approach applying to hand-
holding mobile devices like smartphones. In this case, the
hand and a smartphone can be regarded as an oscillator.
When a finger touches the screen, the oscillator can generate
hand-specific vibration signals triggered by touching forces;
meanwhile, a built-in accelerometer on smartphones senses
it in real-time. During the interaction of finger and device,
the user identity can be continuously tracked, thereby en-
suring system security in the entire service session.

8 RELATED WORK

In this section, we revisit previous efforts on user authen-
tication and unlocking systems. Moreover, we present the
difference of HandKey compared with them.

8.1 Unlocking Using Physical Key and Magnetic Card
Traditional physical keys are made of metals or magnetic
cards [1], [2]. The key is regarded as an identity token, and
its holder can unlock a specific lock and enter private spaces.
However, physical keys exist inherent shortcomings: firstly,
due to strict correspondence between key and lock, the user
who possesses permissions to enter multiple personal areas,
needs to carry a bunch of keys. Without a doubt, this is
a terrible experience for most users. Secondly, forgetting
and losing keys inevitably happen in daily life [7]. In this
case, locks must be quickly replaced, hence leading to usage
cost and security risk increasing [48]. Thirdly, metal keys
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are prone to rust and plastic cards may be accidentally
degaussed [49]. When jagged parts of a key are deformed,
users lose permission to unlock doors. All the above three
issues inevitably compromise user experience and personal
security.

8.2 Unlocking Door in a Keyless Way
To enhance convenience of unlocking ways, smart locks [50]
are emerging and given high hope. It allows unlocking
a door by verifying pre-stored identity information with-
out carrying any physical keys. Earlier appeared keyless
schemes require users to enter Personal Identification Num-
bers (PINs) [51] and graphical patterns [52] for identity
verification. However, the password-based approaches can
be easily peeked by someone close [3] and vulnerable to
side-channel attack [9]. Followed by that, biometrics are
leveraged to represent user identity and unlocking permis-
sion, including, among others, fingerprint [53], face [54],
and voice [55], teeth [56]. But constructing door entry sys-
tems relying on these traits also faces major obstacles in
deployment, due to the high cost of non-trivial sensors. For
instance, FaceID [10] captures facial 3D features using cus-
tomized flood illuminators and dot projectors; Qualcomm
Fingerprint Sensor [11] leverages extraordinary ultrasonic
readers to scan the pores of users’ fingers. Moreover, their
flaws are continuously discovered by researchers. To be
specific, exquisitely designed masks can deceive most face
recognition systems [57] and voice authentication always in-
correctly rejects unlocking of legitimate users under ambient
noise interference.

8.3 Vibration-based Authentication and Unlocking
Some advanced works are devoted to exploring unique
vibration patterns generated by users to authenticate iden-
tity. For example, [12], [13], [31] show the feasibility of
distinguishing users employing vibration features of arms
and fingers stimulated by a motor, while HandPass [58]
just applicable for mobile scenarios. Therein, [12] and [13]
require users either to wear a wristband or to hold a
smartphone for capturing vibration patterns, thus they are
mobile-customized and not suitable for implementing key-
less unlocking. Users leveraging VibWrite [31] paint spe-
cific graphic patterns on a vibrating panel with fingers for
verifying identity, which increases user intervention. More-
over, they require motors to impose active high-frequency
vibration that may weaken user-friendliness. Taprint [32]
regards hands as virtual number keyboards and supports
text inputting by tapping finger knuckles. It argues that
captured sensed vibration features can distinguish users and
tapping positions, thereby achieving secure inputting. Nev-
ertheless, it needs users to actively calibrate the system to
relieve the interference of variable tapping behaviors. Some
emerging authentication approaches leverage vibration pat-
terns relying on knocking behaviors (e.g., Thumprint [59],
AwareLESS [60], and KeyClick [61]) to distinguish users. But
behavior-based traits can be easily controlled and changed
by subjective factors, thereby leading to identity feature
changes and failed authentication.

Different from the above methods, HandKey captures
unique vibration signatures when a hand knocks on doors

in a natural (passive) way, which offers users excellent
experiences. We adequately explore the effects of dominat-
ing factors such as knocking gesture and door material on
vibration signatures, making HandKey more practical. In
the following, we extract behavior-independent signatures
leveraging a LeNet-based Triplet model, hence presenting
the essential hand structural property even if knocking
behaviors change.

9 CONCLUSION

In this paper, we have proposed a keyless unlocking sys-
tem HandKey that employs the unique vibration signature
generated by the hand-door oscillator. HandKey offers a
low-cost, user-friendliness, and secure unlocking scheme
implemented on inner doors. It leverages only a common
accelerometer to complete vibration signal reception. To
effectively represent the unique signature and solve the
interference brought by variable knocking behavior, we
have elaborately designed corresponding strategies. For
instance, we firstly extracted linear features by analyzing
the vibration mechanism in time and frequency domains;
we employed a VAE-based model to capture hidden non-
linear features. Subsequently, we leveraged the LeNet-based
Triplet model to resolve the effects of knocking behavior
variation, thereby obtaining behavior-independent signa-
tures. Finally, we have evaluated the authentication perfor-
mance by conducting extensive experiments; the promis-
ing results have proved a 1.87% FAR and a 97.71% Ac-
curacy. Benefiting from the lightweight mode, HandKey
could achieve large-scale deployment to provide users with
effective unlocking services on inner doors.
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