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Abstract—The integration of microservice architecture and
edge computing offers innovative solutions for highly interactive,
low-latency Internet applications. To manage the dynamic nature
of requests in edge computing, microservice autoscaling tech-
niques are frequently employed. However, the resource limitation
of individual edge servers and the heterogeneity among edge
servers present significant challenges for autoscaling in edge
computing. Meanwhile, few studies have considered the long-term
optimization and the joint optimization of instance adjustment
and request routing in edge computing. This article aims to fill
these gaps. First, we propose global horizontal pod autoscaler
(GHPA), a novel framework that addresses microservice autoscal-
ing from the perspective of edge server clusters. Second, we
consider the joint optimization of instance adjustment and
request routing, and formulate a long-term optimization problem.
Third, we transform the long-term optimization problem into
a Markov Decision Problem (MDP) and use reinforcement
learning techniques to solve it. Finally, we conduct extensive
experiments using both real and synthetic data. The experiment
results demonstrate that our algorithm achieves at least a
10% performance improvement in various test environments
compared to state-of-the-art algorithms.

Index Terms—autoscaling, edge computing, Microservice
architecture, reinforcement learning (RL), service deployment.

I. INTRODUCTION

M ICROSERVICE architecture is a modern software
development approach that decouples monolithic appli-

cations into a collection of loosely coupled, independently
deployable microservices to promote modularity, scalability,
and resilience [1]. This decoupled architecture has been
widely employed for Internet applications by giants, including
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Microsoft and Alibaba [2], [3]. Internet applications are char-
acterized by scalability, delay sensitivity, and high concurrency.
As a result, an increasing number of microservices are deployed
at the network edge to reduce latency, enhance real-time
responsiveness, and minimize bandwidth consumption [4], [5].

The integration of edge computing with microservice archi-
tectures leverages the respective advantages of both paradigms,
thereby providing a flexible, scalable, and low-latency frame-
work for data processing and management in distributed
environments. However, the highly dynamic workload in edge
computing may lead to uneven resource allocation, degraded
service quality, and reduced system reliability. Microservice
autoscaling, which facilitates the dynamic adjustment of
microservice instances in response to real-time demand, has
emerged as a critical strategy for addressing workload vari-
ability in cloud computing. Nonetheless, the implementation
of microservice autoscaling in edge computing for Internet
applications presents substantial challenges, and this area
remains underexplored in the existing literature.

First, efficient microservice autoscaling needs to consider
the heterogeneity across different edge servers and the resource
constraints of individual servers. Different edge servers are
distributed across various geographic locations and possess
different resources, often necessitating distinct autoscaling
strategies. For example, frequently accessed microservices
should be deployed closer to the user, whereas less fre-
quently accessed microservices can be deployed further away.
Additionally, edge servers with limited resources are often
unsuitable for hosting larger-scale microservices. However,
heterogeneity and resource constraints are usually overlooked
in previous research. Numerous studies [6], [7], [8], [9]
have implemented autoscaling based on Kubernetes. Since
these studies only focus on single edge server, they struggle
to effectively address resource heterogeneity and resource
constraints in edge computing environments.

Second, microservice autoscaling necessitates the joint
optimization of instance adjustment and request routing.
These two aspects exhibit strong coupling characteristics:
the microservice instance adjustment strategy is influenced
by request routing while simultaneously affecting routing
design decisions. Current research predominantly fails to
account for this intrinsic coupling relationship. Most existing
approaches focus solely on microservice instance adjustment
without corresponding adaptations to request routing
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strategies [10], [11], [12]. Such isolated optimization methods
inevitably lead to suboptimal autoscaling performance.

Third, efficient microservice autoscaling requires con-
sideration of long-term optimization. Each adjustment of
microservice instances incurs certain dynamic costs. For
instance, adding or removing an instance requires time,
during which computational resources remain unavailable.
Consequently, large-scale adjustments are impractical in real-
world production environments. Instead, minimal adjustments
should be employed to achieve maximum benefits. Some
studies addressed workload variability by dividing time into
segments [13], [14], [15], thereby transforming dynamic sce-
narios into a series of static scenarios. Within each time
segment, a static service deployment algorithm is exe-
cuted to handle dynamic requests. However, this approach
often results in significant changes to the deployment of
microservice instances even in response to minor variations
in requests. Although these methods may yield favorable
results within a single timeslot, it is ultimately unacceptable
from a long-term perspective because of the huge dynamic
costs.

Motivated by the aforementioned needs and difficulties, this
article proposes a cluster-based microservice autoscaler termed
global horizontal pod autoscaler (GHPA) to address resource
heterogeneity and resource constraints in edge computing.
To accomplish this, several challenges must be addressed.
First, the complex intercommunication between microservices
needs to be managed. In scenarios integrating microservice
architecture and edge computing, the invocation relationships
between microservices become even more intricate. Second,
joint optimization of instance adjustment and request rout-
ing must account for both dynamic deployment strategies
and adaptive routing mechanisms to achieve optimal system
performance. Finally, long-term optimization poses a sig-
nificant challenge. Conventional methods struggle to solve
long-term optimization problems, necessitating the design of
an appropriate approximation algorithm.

In summary, our work makes the following contributions.
1) We propose a global microservice autoscaler GHPA that

operates at the level of edge server clusters. Within
the cluster, one server is designed as the master server,
referred to as the edge cloud, responsible for data
collection and decision-making, while the remaining
edge servers act as slavers, executing the actions.

2) We consider the joint optimization of instance adjust-
ment and request routing. Then, we employ undirected
graphs along with open Jackson queueing networks to
model the long-term optimization problem.

3) We transform the long-term optimization problem into
a Markov decision process (MDP) and employ a rein-
forcement learning (RL) algorithm to handle long-term
optimization. The RL agent is deployed on the master
server, collecting data from the slave servers and learn an
autoscaling policy through continuous interaction with
the environment.

4) We compare our algorithm with the most popular
existing methods using extensive real-world and sim-
ulated data. Experimental results demonstrate that our

algorithm GHPA achieves at least 10% performance
improvement.

The remainder of this article is organized as follows.
Section II reviews the related work. In Section III, we
introduce the cluster-based autoscaling mechanism and the
multiobjective long-term optimization problem. Section IV
details the proposed GHPA algorithm. Section V provides
the performance evaluation, and we conclude this article in
Section VI.

II. RELATED WORK

This section reviews the related work on microservices
deployment and autoscaling.

A. Microservice Deployment

In cloud computing, Singh and Peddoju [16] proposed an
automated system for deploying and integrating microservices
using Docker containers, demonstrating improved performance
and reduced effort compared to monolithic designs through
a social networking case study. Wan et al. [17] explored
optimizing application deployment in cloud data centers using
microservice architecture and Docker containers to minimize
costs while meeting service delay requirements. Xu et al. [18]
and Hu et al. [19] utilized queuing networks for modeling and
jointly optimize microservice deployment and request routing
to enhance performance and reduce latency in cloud data
centers. As for edge computing, Deng et al. [20] proposed
a novel approximation algorithm to optimize the deploy-
ment of microservice instances in resource-limited MEC.
Guo et al. [21] crafted a multiobjective evolutionary approach
named MSCMOE to tackle the problem of joint optimization
of service latency and deployment cost in MEC. Hu et al. [22]
and Peng et al. [23] considered the joint optimization of
microservice deployment and request routing in edge com-
puting, significantly reducing communication costs between
microservices. Lv et al. [24], Peng et al. [5], Hu et al. [25]
employed RL to optimize microservice deployment in edge
environment.

Microservice deployment and microservice autoscaling
share certain similarities. However, microservice deployment
addresses a static problem, whereas microservice autoscaling
tackles the issue of dynamic requests. Therefore, the methods
used for microservice deployment cannot be directly applied
to microservice autoscaling.

B. Microservice Autoscaling

In cloud computing, Ding and Huang [26], and
Hossen et al. [27] used CPU utilization as the primary metric
for scaling decisions. Expanding on the reactive model,
Zhang et al. [28] and Kwan et al. [29] incorporated both
CPU and memory utilization to determine the appropriate
scaling actions for microservices. Moreover, studies by
Qiu et al. Abdullah et al. [30], Iqbal et al. [31], and
Prachitmutita et al. [32] employed a proactive approach to
predeploy microservice instances by predicting request arrival
rates using methods, such as elastic net regression, linear
regression, and LSTM networks. Xu et al. [33] analyzed the
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TABLE I
NOTATION AND TERMINOLOGY

currently prevalent dominant scaling techniques (horizontal
scaling, vertical scaling, brownout) and demonstrated that
the RL methods can achieve better results. Wang et al. [34]
comprehensively considered both resource wastage and
service level objective (SLO) assurances, thereby rendering
the RL methods more applicable to real-world production
environments. As for edge computing. Phuc et al. [7],
Kundroo et al. [8], and Ju et al. [9] implemented autoscaling
based on Kubernetes by modifying the evaluation metrics
within Kubernetes to better meet the requirements of edge
computing. Focusing on long-term benefits, Cheng et al. [14]
decomposed the entire optimization problem into several
per-timeslot subproblems and solved them individually.
Cheng et al. [11] designed two components, an autoscaler
and a burst handler, to handle predictable workloads and
unpredictable request bursts, respectively.

The aforementioned research on microservice autoscal-
ing mostly neglected the heterogeneity among edge servers.
Moreover, few studies have taken into account the scenarios
of multi-instances and instance multiplexing.

III. PROBLEM FORMULATION

A. System Models

We apply microservice architecture in edge computing. We
utilize an undirected graph H(E, V) to represent the edge
server distribution and use E = {E1, E2, . . . , EM} to denote
the set of edge servers. Each server is subjected to a maximum
computational resource constraint and a maximum memory
constraint, represented by Em.cpu and Em.mem, respectively.
In our study, we disregard the specific connections between
servers and instead use Vm,n to uniformly represent the trans-
mission velocity between servers Em and En.We summarize
used notations in Table I.

B. Microservice Models

In a microservice architecture, a complete service is decom-
posed into a series of independent microservices, which may
be deployed on the same or different edge servers. We use
S = {S1, S2, . . . , SI} to denote the set of microservices,
where Si.cpu and Si.mem are the computational and memory
resources required to deploy an instance of Si, respectively.
We define the application requests as R = {R1, R2, . . . , RK}.
An application request is a sequence of microservices arranged
in a specific order and we need to finish all the required
microservices to fulfill the application request.

Considering the general scenarios, we assume that the edge
servers are deployed near the base stations, as shown in Fig. 1.
Application requests initially arrive at the base station, which
is then forwarded between edge servers until all microservices
are completed.

C. Request Routing

Instances of the same microservice may be deployed on
different servers. For example, in Fig. 1, there are instances
of S3 on both E4 and E6. Therefore, it is essential to establish
a request routing mechanism for service requests to select
the most appropriate server to provide service. To balance
efficiency and load, we adopt the weighted routing approach.
The faster the transmission rate of the target server and the
more microservice instances are deployed, the higher the
routing probability. For instance, we need to invoke Sj after
finishing Si, and assuming that Si is deployed on Em, the
probability of invoking Sj on En can be expressed as follow:

P
(
Si, Sj|Em, En

) = ω1
Vm,n∑

k∈Θ Vm,k
+ ω2

Nj
n

∑
k∈Θ Nj

k

(1)

Θ = {
k|Sj in Ek

}
(2)

where two adjustable weighting parameters ω1 and ω2 are
introduced with ω1+ω2 = 1 and Nj

n is defined as the number
of instances of Sj deployed on En.

D. Service Response Latency

The service response latency of each request is determined
by two components: 1) transmission latency and 2) processing
latency.

Transmission Latency: Assuming a microservice Si

deployed on server Em invokes a microservice Sj deployed
on the server En with data size datai,j, then the transmission
latency is:

Tt = datai,j

Vm,n
. (3)

Processing Latency: In practical applications, when a
request arrives at a server, it is not necessarily executed
immediately but instead incurs a queuing delay. Currently, to
handle high-concurrency service demands, deployment using
multiple instances is commonly adopted. Therefore, we model
the queuing delay using M/M/C queuing theory. For instances
of Si deployed in Em. The number of instances is Ni

m. The
average service rate for a single instance is μi

m which is a
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Fig. 1. Microservice architecture in edge environment.

constant. The average arrival rate of microservice Si in Em is
λi

m. Then the processing latency can be represented as follows:

Tp = Tq + 1

μi
m

(4)

Tq =
(
Ni

mρi
m

)Ni
mρi

m

λi
mNi

m!
(
1− ρi

m

)2
P0 (5)

ρi
m =

λi
m

Ni
mμi

m
(6)

P0 =
⎛

⎝
Ni

m∑

h=0

1

h!

(
λi

m

μi
m

)h

+ 1

Ni
m!

(
1− ρi

m

)
(

λi
m

μi
m

)Ni
m

⎞

⎠

−1

. (7)

The service response latency of a request is the sum of all
transmission and processing latency in this request

Ts =
∑

Tt +
∑

Tp. (8)

We denote the average service response latency of Rk in Em

as Tk,m. The total service response latency can be expressed
as

Tdelay =
M∑

m=1

�k
mTk

m. (9)

E. Energy Consumption

Servers exhibit idle energy consumption and load energy
consumption. Idle energy consumption refers to the energy

consumed by a server when it is powered on, regardless of
whether any services are running on it. Load energy consump-
tion refers to the energy consumed when services are running
on the server. We model the server energy consumption as
follows:

Pm = Pstartup + Pinstance

I∑

i=1

Ni
mϕ

(
Ui

m

)
(10)

where Pstartup represents the startup energy consumption of the
server, and Pinstance denotes the energy consumption incurred
by running one microservice instance on the server. Ui

m
denotes the utilization ratio of the Si in Em, and ϕ represents
a nonlinear function that describes the relationship between
utilization ratio and energy consumption, which is dependent
on the computational and storage devices employed. The total
energy consumption of all servers can be expressed as

Ecost =
M∑

m=1

Pm. (11)

F. Autoscaling

Traditional Kubernetes-based microservice autoscaling, as
illustrated in the left part of Fig. 2, involves each server
monitoring the current request arrival rate on that server and
utilizing its local resources to perform microservice autoscal-
ing. However, due to the resource constraints of individual
edge servers, this approach often fails to achieve effective
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Fig. 2. Autoscaling in edge environment.

microservice autoscaling. Additionally, this method is highly
sensitive to the initial deployment [12], where a poor initial
deployment can significantly degrade the performance of
subsequent microservice autoscaling.

Our proposed GHPA algorithm introduces a central con-
troller on top of the traditional Kubernetes-based microservice
autoscaling framework, enabling microservice autoscaling at
the level of edge clusters. We adapt a master-slave model,
where one edge server in the cluster is selected as the master,
referred to as the edge cloud, while the remaining edge servers
act as slaves, as shown in the right part of Fig. 2. This master-
slave model is widely used in microservice architectures, such
as in service registration and discovery (Eureka), as well as
fault detection (Prometheus) in edge servers.

When the request arrival rate increases beyond the load
capacity of the existing instances, unlike traditional microser-
vice autoscaling, the server will send a request to the edge
cloud server. The edge cloud server then executes the microser-
vice autoscaling algorithm, deploys additional microservice
instances on suitable target edge servers, and routes part of
the requests to the target server based on the routing rules.
Conversely, when the request arrival rate decreases and the
instance load falls below the minimum threshold, the edge
server similarly sends a request to the edge cloud server.
The edge cloud server executes the microservice autoscaling
algorithm, removes excess microservice instances from the
target edge server, and routes the requests from the target
server to other edge servers based on the routing rules.

We model the autoscaling problem as follows. The request
arrival rate exhibits variability both temporally and spatially,
which can be represented by the function λ(s, t), where
s denotes location and t denotes time. In our model, we
discretize both time and space. A day is divided into several
timeslots G = {G1, G2, . . . , GL}, while the spatial division is
based on the coverage areas of edge servers. Therefore, we
use �k

m(l) to represent the arrival rate of Rk from Em during
timeslot Gl. In different timeslots, to handle the variations in
request arrival rates, we need to adjust the instance deployment
on the edge server. We use Ni

m(l) to denote the number of
instances of Si deployed on Em during timeslot Gl.

G. Long-Term Optimization Objective

This article proposes a multiobjective long-term
optimization problem that considers both service latency and
energy consumption

min
Ni

m(l)
lim

L→∞
1

L

L∑

l=1

(
αTlatency(l)+ βEcost(l)

)
(12)

where α, β represent the weights of service latency, energy
cost, respectively. The summation and averaging operations are
employed to achieve the objective of long-term optimization.
In general, reducing the latency tends to increase energy
consumption, and vice versa. In real-world applications, we
need to balance the weights to achieve the best performance.

There are two constraints: resource constraints and load con-
straints. The resource constraints ensure that the computational
and memory resources utilized by the server do not exceed the
total computational and memory resources available on that
server. This can be expressed as follows:

I∑

i=1

Ni
m(l)Si.cpu < Em.cpu m = 0, 1, 2, . . . , M (13)

I∑

i=1

Ni
n(l)Si.mem < Em.mem m = 0, 1, 2, . . . , M. (14)

The load constraints primarily ensure the normal operation
of the server, preventing system crashes. We denote the load
by the ratio of the total arrival rate to the total service rate.
The load constraints can be expressed as follows:

ρi
m(l) = λi,m(l)

Ni
m(l)μi,m(l)

(15)

ρi
m(l) < ρmax (16)

where ρmax represents the maximum load constraint.
Thus, the overall optimization objective is defined as

min
Ni

m(l)
lim

L→∞
1

L

L∑

l=1

(
αTlatency(l)+ βEcost(l)

)
(17)

s.t. (13)(14)(16). (18)
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IV. ALGORITHM

Traditional methods struggle to address long-term
optimization problems. RL has been extensively applied to
solve dynamic problems and has demonstrated promising
results. Therefore, we adopt RL to tackle the aforementioned
long-term optimization challenge.

A. Preliminary

RL: RL is a subfield of machine learning that focuses
on how an agent can learn to make sequential decisions by
interacting with an environment to maximize a cumulative
reward signal. Unlike supervised learning, which relies on
labeled datasets, RL operates through trial and error, where
the agent explores the environment, takes actions, and receives
feedback in the form of rewards. The core components of RL
include the agent, the environment, states, actions, rewards,
policies, value functions, and Q-value functions. The agent’s
goal is to learn a policy, denoted as π , which maps states
to actions in a way that maximizes the expected cumulative
reward. The state-value function Vπ (s) represents the expected
return when starting from state s and following policy π ,
defined as

Vπ (s) = Eπ [Gt|St = s]

where Gl is the discounted sum of future rewards

Gt =
∞∑

k=0

γ kRt+k+1

and γ is the discount factor (0 ≤ γ ≤ 1). Similarly, the action-
value function Qπ (s, a) represents the expected return when
taking action a in state s and following policy π , defined as

Qπ (s, a) = Eπ [Gt|St = s, At = a].

The Bellman equation provides a recursive relationship for the
value functions. For the state-value function, it is expressed as

Vπ (s) =
∑

π(a|s)
∑

P
(
s′|s, a

)[
R
(
s, a, s′

)+ γ Vπ
(
s′
)]

.

The optimal value functions V∗(s) and Q∗(s, a) are defined as
the maximum value functions over all policies

V∗(s) = max
π

Vπ (s)

Q∗(s, a) = max
π

Qπ (s, a).

The optimal policy π∗ is the policy that achieves these optimal
value functions, defined as

π∗(a|s) = arg max
a

Q∗(s, a).

RL provides a robust framework for decision-making in
dynamic environments, enabling agents to learn effective
policies through iterative interactions and optimization of
cumulative rewards. The foundational concepts and formulas
outlined above serve as the basis for understanding and apply-
ing RL in various domains, ranging from robotics and game
playing to resource management and autonomous systems.

Algorithm 1: MFFD
Input: Request arrival rate �; Resource limitation

Em.cpu and Em.mem m ∈ 1, 2, ..., M; Distance
between edge servers dm,n m, n ∈ 0, 1, 2, ..., M.

Output: Initial microservice deployment Ni
m(0)

1 Arrange all requests in a certain order and denote them
as REQ

2 Create a new stack and initialize it stack← ∅
3 for req in REQ do
4 REQ.delete(req)

5 Get the start server of this request Es

6 Get the arrival rate of this request λs

7 Get the next undeployed microservice ms

8 stack.put([Es,λs,mss])
9 while stack is not empty do

10 E,λ,m=stack.pop()
11 Calculate the required number of instances K for

m according to λ

12 Get the next next undeployed microservice mn

Sorting all servers in ascending order based on
their distance to E and denote them as Ẽ

13 for En in Ẽ do
14 Calculate the number of deployable instances

KE in En

15 Deploy KE instances of m in En

16 Update the microservice deployment Ni
n

17 Update resource utilization En.cpu and
En.mem

18 Route a portion of request λn to En based on
the instance deployment

19 if mn exists then
20 stack.put(En,λn,mn)

21 if Complete the deployment of K instances
required for m then

22 Break

B. MFFD Algorithm

A day is divided into multiple timeslots. In the initial
timeslot G0, a deployment is required as the starting solu-
tion for the GHPA algorithm. For the initial solution, this
article introduces the microservice first-fit decreasing (MFFD)
algorithm, inspired by the first-fit decreasing (FFD) heuristic
used in service deployment [35] and [36]. The core idea
is to employ a greedy strategy to assign interconnected
microservices to the nearest edge servers, thereby minimiz-
ing transmission latency. The pseudocode is presented in
Algorithm 1.

Step 1: Arrange the requests in a certain order, which is
arbitrary. For example, the order could be based on the servers,
starting with all requests on E1, followed by all requests on
E2, and so on. We use EnRk to represent the request Rk

in server En. So the order could be E1R1, E1R2, . . . , E1RK ,
E2R1, . . . , ENRK .
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Step 2: Consider the deployment of microservice instances.
For each request, we employ the greedy strategy to deploy the
interconnected microservice instances on the nearest server.
For example, for a pair of microservices Si and Sj in an
application request. If Si is deployed on Em, then we could
deploy Sj on the available server closest to Em to save
transmission latency. The specific operation is that we first
calculate the number of instances required based on the request
arrival rate, and then identify the suitable deployment server.
Each request is composed of several pairs of interconnected
microservices and for each pair, we apply the same operation.
It is noteworthy that there may be situations where no single
available server has sufficient resources to deploy all the
required microservice instances. In such cases, we deploy a
subset of the instances on the nearest server and subsequently
deploy the remaining instances on the second nearest server,
and so forth.

C. GHPA Algorithm

RL is grounded in the framework of MDP, where each action
taken by the agent elicits a reward from the environment. The
objective of RL is to maximize cumulative rewards through a
series of sequential decisions. Consequently, we can transform
the long-term optimization problem into an MDP. As illustrated
in Fig. 2, the process of dynamic microservice adjustment is
converted into a sequence of decisions. For each decision, the
agent deployed on the edge cloud first collects information
from all edge servers to form the state. Subsequently, the
agent selects an appropriate target server to either increase or
decrease microservices. Finally, the overall latency and energy
consumption across the edge environment are qualified as the
reward for the agent’s decision. The notation Hl l = 1, 2, 3, . . . ,

is employed to denote each decision made by the agent,
specifically referring to each adjustment of the microservice
instance. Currently, RL encompasses a variety of algorithms to
address MDPs, with the most commonly used ones, including
A3C, PPO, and DDPG. Different algorithms are suited to
different types of problems. A3C, a policy gradient-based
algorithm, although less precise in solution accuracy compared
to PPO, significantly outperforms both PPO and DDPG in
terms of computational speed. Given the critical importance of
computational speed in edge computing, we have chosen A3C
as our RL algorithm. The pseudocode is shown in Algorithm 2
and the specifics are as follows.

Framework: The framework of GHPA is illustrated in
Fig. 3. Master server is responsible for data monitor-
ing and decision-making, while slave servers are tasked
with data collection and the scaling of microservice
instances.

State: The state space is composed of five components: the
request arrival rates for all edge servers in the past p timeslots
�Λ, the resource status(computational and memory resources)

of all edge servers RS, the microservice instance deployment
of all edge servers N, the identifier of the microservice to be
adjusted MS, and an indicator I specifying whether to increase
or decrease the microservice. Here, I = 1 denotes the need to
add an MS microservice instance, while I = 0 signifies the

Algorithm 2: GHPA
Input: Epoch number M; Soft update factor μ; Reward

discount factor γ ; Request arrival rate �; Batch
Size; Initial deployment Ni

m(0)

1 Initialize Actor network σ(s|θσ ) and target actor network
σ ∗

2 Initialize critic network Q(s, a|θQ) and target critic
network Q∗

3 Let θσ ∗ ← θσ , θQ∗ ← θQ

4 for epoch i = 0, ..., M do
5 Initialize a random process N to add exploration to

the action
6 j← 0
7 Accept initial state s0 according Eq (21)
8 while not done do
9 Select action aj = σ(sj|θσ )+Nj

10 Execute the action aj

11 if Action failture then
12 Break

13 else
14 r = c+ αTlatency + βEcost

15 Update instance deployment N, Resource usage
RS

16 Update request arrival rate �

17 Transfer to another state sj+1
18 Store the transition [sj, aj, rj, sj+1]
19 j← j+ 1
20 if j mod BatchSize == 0 then
21 Calculate the value of Q, and make

qj = rj + γ Q∗(sj+1, σ
∗(sj+1|θσ ∗)|θQ∗)

22 Update the critic network by minimizing the
loss function L = 1

N (
∑

t(qj − Q(sj, aj|θQ)))2

23 Update the actor network by maximizing the
value function through gradient ascent:
∇θσ J ≈

24
1
N

∑
t ∇aQ(s, a|θQ)|s=sj,a=σ(sj|θσ )∇θσ σ (s|θσ )|sj

Update the target network using exponential
smoothing: θQ∗ = μθQ + (1− μ)θQ∗ , θσ ∗ =
μθσ + (1− μ)θσ ∗

25 Clear the transition list
26 j← 0

need to remove an MS microservice instance

s = { �Λ, RS, N, MS, I}. (19)

Action: The action space is the identifiers of the edge
servers, indicating the addition or removal of a microservice
instance on server E

a = E. (20)

Reward: The reward function consists of two components.
The first is the deployment success reward, which provides
a fixed reward c upon successful deployment. The second is
the optimization reward for latency and energy consumption,
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Fig. 3. Framework of GHPA.

which is a weighted reward based on these two factors.
Since our objective is to minimize both latency and energy
consumption, this component of the reward is negative. The
design of the reward function enables the agent to continuously
and dynamically adjust the deployment of microservice
instances while simultaneously minimizing latency and energy
consumption

r = c+ αTlatency + βEcost. (21)

V. PERFORMANCE EVALUATION

In this section, the proposed GHPA is evaluated from
multiple perspectives.

A. Experimental Setting

We use both real and synthetic data to perform comprehen-
sive simulations of our algorithm. The hyperparameter settings
of Training are summarized in Table II.

Edge Servers and Devices: To simulate the realistic MEC
environments, we utilized the geographic coordinates of
user devices and edge servers from the Shanghai Telecom
dataset [37]. This dataset is open to the public and contains
more than 7.2 million Internet access records through 3233
base stations from 9481 mobile phones for six months. The

dataset includes the geographical location information and user
access information of each base station. We selected base
stations with long and uninterrupted records in the dataset as
our target base station for simulation. Also, the user traffic
during different time period was used as the request arrival
rate in the simulation.

Application Requests and Microservices: We choose cluster-
trace-v2018 dataset from Alibaba [3] and cache-trace dataset
from Twitter [38]. Cluster-trace-v2018 dataset includes
information about 4000 machines in a period of 8 days and
consists 6 tables. In machine_meta.csv, it contains the resource
information of each machine. In batch_task.csv, it describes
the required CPU and memory for each instance and provides a
detailed description of the microservice invocation relationship
for each service request. Cache-trace dataset comprises user
request data collected from 54 servers. User information is
documented in the client_id file, while the arrival time of each
request is recorded in the timestamp file.

B. Baselines Algorithms

We select several state-of-the-art algorithms that are
most relevant to our study as baseline algorithms for
comparison.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on January 05,2026 at 05:46:19 UTC from IEEE Xplore.  Restrictions apply. 



PENG et al.: GLOBAL MICROSERVICE AUTOSCALING OVER HETEROGENEOUS EDGE ENVIRONMENTS FOR INTERNET APPLICATIONS 40255

Fig. 4. Service latency, energy consumption, and load balance of four algorithms under different scales of edge environment.

Fig. 5. Overall cost of the four algorithms in each timeslot under different scales of edge environment.

Random: Microservice instances are randomly deployed in
each timeslot while meeting the constraints. This approach can
only meet the basic requirements and does not incorporate any
optimization.

Kubernetes: Kubernetes is deployed on each server to
dynamically adjust the number of microservice instances based
on real-time load. The monitoring metrics selected are CPU
and memory utilization. While Kubernetes performs well on
cloud servers in handling request fluctuations, its effectiveness
on edge servers is limited due to resource constraints.

ProScale [11]: In ProScale, the autoscaler employs a greedy
strategy, iterating through all servers during each timeslot
and selecting the server that minimizes latency for deploying
microservice instances. However, long-term optimization is
highly complex, and a purely greedy strategy often fails to
yield a good solution.

C. Metrics

We carefully select four metrics to comprehensively assess
the performance of our algorithm.

Service Latency: Service latency is directly related to the
user experience, and we aim for the shortest possible service
latency.

Energy Consumption: Energy consumption is linked to
costs, and we aim to reduce energy consumption.

Load Balance: We use the variance of instance utilization to
measure the load balancing status among instances. A smaller
variance indicates a smaller gap in utilization across instances,
suggesting a more balanced load distribution.

TABLE II
HYPERPARAMETER SETTINGS OF TRAINING

Overall Cost: Cost is defined as the weighted average
of service latency and energy consumption. Since these two
metrics are minimization objectives, a lower cost indicates
better performance.

D. Experimental Results

The Impact of Edge Scales: We established three scales
of edge environment: 1) small scale (6 types of microser-
vices, 4 types of service requests, and 6 edge servers);
2) middle scale (8 types of microservices, 6 types of service
requests, and 10 edge servers); and 3) large scale (12 types
of microservices, 8 types of service requests, and 14 edge
servers). The results are illustrated in Fig. 4. In this figure, the
horizontal axis represents the edge scales, while the vertical
axis represents the service latency, energy consumption, and
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Fig. 6. Service latency, energy consumption, and load balance of four algorithms under different application requests.

Fig. 7. Overall cost of the four algorithms in each timeslot under different application requests.

load balance. As illustrated in the figure, in terms of load
balancing, Kubernetes, ProScale, and GHPA exhibit excellent
performance at small scales. However, as the scale increases,
the load balancing effectiveness of Kubernetes declines sharply
due to its inability to handle resource constraints on individual
servers, while ProScale and GHPA maintain robust load
balance performance. Regarding energy consumption, there is
a notable correlation with load balance. A more balanced load
enables efficient utilization of resources, resulting in relatively
lower energy consumption. In terms of latency, GHPA demon-
strates significant improvement over Kubernetes across all
scales and achieves approximately a 10% reduction in latency
compared to the ProScale, which employs a greedy strategy.
In Fig. 5, the horizontal axis represents the time period,
while the vertical axis denotes the overall cost. We illustrate
the variations in overall cost across different timeslots. As
observed in the figure, as the scale gradually increases, the
total cost of Kubernetes progressively approaches that of the
random strategy. Although GHPA occasionally underperforms
compared to Proscale in certain timeslots, it consistently
demonstrates superior overall performance among all the
compared algorithms.

The Impact of Different Types of Requests: We analyzed the
dataset and extracted the variations in requests for different
types of applications (shopping, social, and meeting) through-
out the day. The edge environment was fixed at a large scale,
and the performance of our algorithm was tested using distinct
applications. The results are illustrated in Fig. 6. As observed,
at the large scale, Kubernetes demonstrates performance
comparable to a random strategy, showing no significant

advantage. ProScale incorporates optimizations for latency,
significantly reducing service latency. GHPA leverages a RL
algorithm, further enhancing performance (by approximately
13%) compared to the greedy strategy employed by ProScale.
Fig. 7 provides a clearer depiction of the performance of
each algorithm across different timeslots. Both the random
and Kubernetes struggle to adapt effectively to request fluctu-
ations, whereas ProScale and GHPA can dynamically adjust in
response to these variations. Additionally, although ProScale
occasionally outperforms GHPA in some timeslots, GHPA
focuses on long-term optimization, resulting in superior overall
performance compared to ProScale.

The Impact of Hyperparameters: The configuration of
hyperparameters has a substantial impact on the performance
of RL algorithms. We examined the effect of various hyperpa-
rameters on the GHPA. Initially, we assessed the influence of
different hidden layer configurations on the algorithm, and the
results are illustrated in the Fig. 8(a). The choice of hidden
layers should be determined by the specific environment.
When there are significant fluctuations in service requests, it is
advisable to increase the number of hidden layers. Conversely,
the number of hidden layers should be reduced to prevent
overfitting. From Fig. 8(a) we can see that GHPA demonstrates
the best convergence when the number of hidden layers is set
to three. Second, we tested the impact of different discounted
factors on the convergence of the algorithm, as shown in
Fig. 8(b). A larger discounted factor leads the algorithm to
prioritize long-term optimization. Commonly used values are
0.9, 0.95, and 0.99. In our tests, the performance with these
three values was similar. Finally, we examine the impact
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Fig. 8. Impact of different hyperparameters. (a) Impact of the number of hidden layers. (b) Impact of discounted factor. (c) Impact of input sequence length.

of input sequence length on algorithm performance. We use
p to denote the input sequence length. The comparison result
of p = 4 and p = 8 is illustrated in Fig. 8(c). Longer
input sequences contribute to more accurate prediction results
but simultaneously incur higher data collection overhead. As
illustrated in the figure, the model achieves faster convergence
when p = 8.

VI. CONCLUSION

In this article, we have proposed a cluster-based autoscaler
GHPA to address resource limitations and resource hetero-
geneity. Then, we have considered the joint optimization
of instance adjustment and request routing to achieve bet-
ter autoscaling performance. Next, we have conducted a
comprehensive analysis of microservice intercommunica-
tion in edge computing, employing undirected graphs and
open Jackson queueing networks to formulate a long-term
optimization problem. Finally, we have transformed the
long-term optimization problem into a MDP and used RL
techniques to solve it. Through extensive experiments, our
proposed approach can achieve at least 10% performance
improvement under various test conditions compared to three
state-of-the-art alternatives.
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