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Abstract—Radio-Frequency (RF)-based Human Activity Recognition (HAR) rises as a promising solution when low-light, obstructions,
or privacy concerns render computer vision impractical. However, the scarcity of labeled RF data due to their non-interpretable nature
poses a significant obstacle. Thanks to the recent breakthrough of foundation models (FMs), extracting deep semantic insights from
unlabeled visual data become viable, yet these vision-based FMs fall short when applied to small RF datasets. To bridge this gap, we
introduce FM-Fi 2.0, an innovative cross-modal framework engineered to translate the knowledge of vision-based FMs for enhancing
RF-based, multi-person HAR systems. FM-Fi 2.0 first employs the intrinsic capabilities of FM and RF modality to associate both intra-
and cross-modal features of each subject, while simultaneously filtering out irrelevant features to achieve better alignment between
the two modalities. FM-Fi 2.0 also employs a cross-modal contrastive knowledge distillation mechanism, enabling an RF encoder to
inherit the interpretative power of FMs for achieving zero-shot learning. The framework is further refined through metric-based few-shot
learning techniques, aiming to boost the performance for predefined HAR tasks. Comprehensive evaluations evidently indicate that
FM-Fi 2.0 rivals the effectiveness of vision-based methodologies, and the evaluation results provide empirical validation of FM-Fi 2.0’s
generalizability across various environments.

Index Terms—Human activity recognition, foundation model, RF sensing.
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1 INTRODUCTION

With rapid developments [1], [2], Human Activity
Recognition (HAR) gains significant interest in smart
homes [3], [4], digital healthcare [5], [6], and human-
computer interaction [7], [8]. In practice, HAR tasks can
be either contact-based [9], [10], [11] or contact-free [12],
[13]; the latter offers the advantage of not imposing the
additional discomfort of wearing devices. Among all sens-
ing modalities for contact-free HAR, Radio-Frequency (RF)
sensing [14], [15], [16], [17] stands out by demanding mini-
mal resource for data processing and inference, rendering it
ideal for edge device integration. Additionally, it preserves
privacy while providing sufficient resolution by capturing
only contours without identity-specific features (e.g., facial
characteristics and clothing attributes), while being free of
visual constraints [18], [19], [20] such as low-light or haze.
Therefore, RF-HAR is deemed as a promising solution.

Whereas being effective to specific HAR tasks, RF sens-
ing is hindered by data scarcity and difficulties in annota-
tion. In fact, comprehensive RF datasets are scarce, and the
available ones often suffer from compatibility issues due to
the diversity in RF devices. This is caused by the significant
challenges in annotating RF-sensing data [21]: Unlike image
data, human annotators find it impossible to intuitively
recognize activities from RF data (especially when there
are multiple human subjects in the scene), complicating
offline annotation. As a result, annotators must resort to
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online labeling, posing stringent demands on their skills
and increasing the difficulty in verifying data quality after
annotation. Therefore, creating a comprehensive RF-HAR
dataset incurs prohibitive costs yet lack guaranteed data
reliability, largely confining the adoption of RF-HAR.

The recent advent of Foundation Models (FMs) [22],
[23], [24] presents a promising solution for addressing the
scarcity of labeled data in RF-HAR. Due to their large scale
and multimodal training on massive datasets, these mod-
els have acquired comprehensive knowledge. In particular,
FMs [25] are trained through an unsupervised process that
aligns different data modalities within a high-dimensional
space, enabling them to process and understand diverse
inputs. Such capabilities enable FMs to generalize across
diverse domains, and support applications such as zero-shot
image classification [25], [26], [27], object detection [28], [29],
and image generation [24], [30]. In particular, the compre-
hensive knowledge and zero-shot capability of FMs could be
crucial to overcome the inherent scarcity of labeled data in
RF sensing, and they may also bear the potential to push RF-
HAR towards open-set recognition [31]. Now the question
becomes: can FMs be harnessed to interpret multi-person RF-
HAR data? A valid answer to this question is essential for
advancing RF-HAR towards practical adoption.

Despite the potential of FMs in various domains, apply-
ing them to interpret RF-HAR data presents several unique
challenges. First, the majority of existing FMs have been pri-
marily developed for tasks in computer vision (CV) [23] and
natural language processing (NLP) [22], [25], thus limiting
their direct applicability to RF-HAR. Although cross-modal
knowledge distillation (KD) [32] paves the way for knowl-
edge transfer from image to RF modality, their efficacy in
adapting to the structured embeddings of FMs remains
unexplored. Second, the image and RF modalities exhibit
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Fig. 1: Overview of FM-Fi 2.0.

inherent feature discrepancies, making the association be-
tween these modalities inherently challenging. This feature
correspondence problem becomes even more complex in
scenarios with multiple human subjects present in the scene.
Third, while FMs produce informative embeddings, their
optimal use in HAR requires further fine-tuning. However,
this fine-tuning process is hindered by the scarcity (or void)
of labeled data.

To tackle these challenges, we design FM-Fi 2.0, a cross-
modal framework that distills the knowledge from FMs to
the RF modality, as illustrated in Fig. 1. First, FM-Fi 2.0
harnesses the intrinsic capabilities of FM and RF to eliminate
extraneous and background features and precisely locating
individual human subjects within the scene. By leveraging
the semantic and spatial relationships between these modal-
ities, FM-Fi 2.0 effectively associates distinctive features
across sensing methods for each human subject. Second,
given that conventional KD does not consider the structures
and interdependencies among the embeddings generated
by FMs, we design a novel contrastive knowledge distillation
(CKD) for transferring knowledge from FM to the neural
model for the RF modality. As opposed to conventional KDs,
our CKD stems from the mutual information between the
embeddings of two modalities: since the interdependency
among the embeddings’ elements is captured as a form of
“information”, they can thus be better preserved during
distillation. Finally, FM-Fi 2.0 harnesses a minimal set of
annotated data to fine-tune its model via metric-based few-
shot learning for further adaptation. The synergy of these
mechanisms sets the stage for the RF encoder to acquire
the full capabilities of the FMs, while opening the way for
approaching open-set HAR given the constant improvement
of FMs. In summary, our key contributions are:

• We construct the first cross-modal distillation system,
FM-Fi 2.0, specifically designed to transfer knowledge
from vision foundation models to RF models for multi-
person HAR, and evaluate it through extensive experi-
ments. The results demonstrate its strong performance
in zero/few-shot multi-person HAR scenarios.

• We design feature association methods tailored to im-
age and RF modalities to achieve association for indi-
vidual subjects while eliminating extraneous features.

• We develop a CKD mechanism to accommodate FM’s
intrinsic embedding dependencies, enabling knowl-
edge transfer from FMs to RF modality.

• We design a metric-based few-shot learning mechanism
to fine-tune the RF encoder, thereby adapting and en-
hancing it for specific closed-set HAR tasks.

In the following, § 2 introduces the background and
motivation of FM-Fi 2.0. § 3 presents the system design of
FM-Fi 2.0.
S 4 introduces the datasets and system implementation,
while § 5 reports the experimental setup and the evaluation
results. Related and future works are discussed in § 6.
Finally, § 7 concludes the paper with future directions.

2 BACKGROUND AND MOTIVATIONS

In this section, we introduce the background of FM for HAR
and the motivations of FM-Fi 2.0’s design.

2.1 FM for HAR
FMs represent a novel category of large-scale neural net-
works trained on datasets comprising billions of samples.
The training occurs across multiple GPUs over a span of
several weeks. Their rapid adoption across various domains,
such as CV (e.g., DALLE [24] for image generation), NLP
(e.g., GPT [22] for chatbot), and multimodal applications
(e.g., CLIP [25] for image semantics understanding), have
demonstrated their extensive capabilities. The enhanced
image understanding in FMs is facilitated by the adoption of
transformer [23], [33] architecture as encoders, which enable
the derivation of complex representations. Additionally,
contrastive learning [34], [35] has been exploited to align
embeddings across different modalities, integrating visual
data with semantic insights. Last but not least, the training
methodology benefits from the use of unlabeled image-
text pairs, allowing for the creation of large-scale training
datasets. All these properties have enabled FMs to accu-
rately align image and label embeddings for classification
tasks regardless of sample dependency.

The interpretive power of FMs makes them ideal tools
for conducting HAR. To give an example, as shown in
Fig. 2a, the CLIP model successfully performs zero-shot
recognition of human activities in each bounding boxes
(provided by manual annotations) by computing similarities
between image embeddings and textual descriptions. How-
ever, translating these FMs, which were initially trained on
vision-text pairs, to RF data presents significant challenges.
The fundamental issue lies in the sparsity of RF signals
which obscures key physical boundaries, making it partic-
ularly challenging to differentiate between individuals. As
illustrated in Fig. 2b, directly applying the CLIP model has
falsely identified the point cloud captured by a mmWave
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radar as wrong activities. This limitation underscores the
necessity of novel methods for RF data processing to extend
the applicability of FMs beyond visual data.

2.2 Challenges of Feature Alignment

Due to the infeasibility of directly applying FM to RF
data, cross-modal knowledge transfer emerges as a viable
solution. However, the fundamental premise of knowledge
transfer, i.e., features can be effectively aligned across differ-
ent modalities, faces substantial limitations when applied to
image and RF modalities. First, image and RF modalities
possess distinct feature sets, with each containing modality-
specific characteristics that may be irrelevant to HAR. For
instance, images capture extraneous environment elements
such as lighting conditions and background objects, while
RF data incorporates static background reflections irrelevant
to HAR. Second, scenarios involving multiple subjects fur-
ther complicate this misalignment, as existing knowledge
transfer lacks robust mechanisms to keep instance-wise
feature correspondence across subjects.

Fig. 3: Minor background variations significantly alter the
output embeddings of FM.

To illustrate the challenges of cross-modal feature align-
ment, we analyze feature maps from the image modality
under varying background subject activities and lightings,
as shown in Fig. 3. The figure presents scene images in the
upper row with their corresponding feature maps below.
Our analysis reveals that even subtle environment changes
(e.g., lighting variations or shifts in the position of back-
ground individuals) substantially impact the embedding
representations. To better illustrate the representation dif-
ference, we highlight the most distinct regions in the feature
maps with red bounding boxes. These perturbations in
the image modality features create significant obstacles for
robust cross-modal alignment. Given the sensitive nature of
these representations, we hypothesize that similar instabil-
ities manifest in the RF modality, further complicating the
alignment process. As a result, there is no straightforward
one-to-one correspondence between the embeddings of im-
age and RF modalities. Consequently, this feature misalign-
ment hinder the knowledge transfer from the image to the
RF modality, necessitating the development of a method to
efficiently associate features across these two modalities.

2.3 Why Conventional KD Fails for FMs?

Knowledge transfer involves transferring the knowledge
from an FM to RF model by aligning their output embed-
dings, where we can utilize the mean squared error (MSE)

loss for an element-wise comparison of embeddings be-
tween image and RF modalities. We employ a synchronized
image-RF dataset in our experiment, whose classes will be
detailed in § 5.1, to assess the zero-shot HAR performance,
by comparing a CLIP model with an RF model trained via a
standard KD [32]. In the experiment, we conduct both scene-
wise and instance-wise distillation, a distinction usually not
explored in single-person HAR because scene and instance
levels are effectively equivalent in that context [36]. One
may readily observe that a naive application of KD on
FMs leads to inferior performance, as depicted in Fig. 4a:
the CLIP-trained RF encoder achieves an average accuracy
slightly above 36.7% in scene-wise distillation and 49.8% in
instance-wise distillation. In contrast, the accuracy achieved
by the baseline CLIP model exceeds 80.3%.

(a) Zero-shot HAR comparison. (b) |RIM −RRF|.

Fig. 4: Conventional KD performance.

To understand KD’s ineffectiveness, we explore the in-
terdependencies among elements of the output embeddings
under the more effective instance-wise distillation setting.
We compute the correlation matrices, RIM for the FM (pro-
cessing the image modality) and RRF for the RF model,
respectively. By subtracting RRF from RIM, we obtain a
difference matrix as shown in Fig. 4b. One may readily
observe that the correlation difference of the two embed-
dings can be significant and reach up to 0.4. This finding
reveals the limitation of KD: while it aligns the embeddings
from the FM and RF model on an element-wise basis, it
fails to account for the interdependencies among the ele-
ments of the FM’s embeddings [37]. The interdependency
is especially important for HAR, it is essential that latent
factors representing the human subject, various body parts,
and activity states should be related and active, while other
irrelevant factors should also be related but suppressed. We
forward reference to Fig. 8b in § 3.3 for a better correlation
matrix difference that better captures the interdependencies
among the elements in the embeddings.

3 SYSTEM DESIGN

We hereby present FM-Fi 2.0 with four components: i) a mul-
timodal feature association module that aligns instance-wise
subject features, ii) an RF encoder that encodes instance-
wise subject information from the RF point clouds, iii) a
cross-modal CKD framework for transferring semantic rep-
resentations from visual feature maps to RF-based models,
iv) a zero/few-shot HAR mechanism relying on learned
associations between the semantics of both RF and (FM’s)
text modalities, and enabling FM-Fi 2.0 to quickly adapt to
various closed-set HAR tasks with few labeled examples. In
the following, we elaborate on each component, given the
overall design depicted in Fig. 5.
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Fig. 5: Overall design of FM-Fi 2.0.
3.1 Instance-wise Feature Association
According to § 2.2, it is necessary to remove HAR-irrelevant
extraneous features and keep instance-wise feature corre-
spondence prior to knowledge transfer. To improve inter-
pretability and reduce the consumption of computational
resources, we perform instance-wise feature association and
elimination of extraneous features utilizing signal properties
and FM’s knowledge without extra modules. Compared
to single-person HAR methods [36], FM-Fi 2.0 introduces
additional steps, as explained below, to explicitly associate
each subject across different modalities, thus inherently
suppressing irrelevant background features.

3.1.1 Image Modality
Since a single camera captures only 2-D information about
human positions, it is insufficient for accurately determining
a subject’s location in 3-D space. To overcome this limitation,
we employ two orthogonally placed cameras, with the full
process illustrated in Fig. 6. In this setup, each of the cam-
eras leverage the intrinsic capabilities of the FM to locate the
human subjects. To be specific, instead of employing extra
object detection or image segmentation methods for locating
the subjects, we employ the image and text encoders from
the teacher model in the knowledge transfer process to
generate similarity maps. A similarity map M has the same
dimensions as the input image, where M(u, v) stems from
the similarity between the corresponding pixel embedding
and a text embedding ETX of “A photo of humans doing
activities with bodies, arms and legs”:

M(u, v) = sim(F(u, v),ETX) (1)

where F consists of pixel-level embeddings of the input xIM,
derived from the intermediate layer data of the CLIP model,
(u, v) represents the pixel coordinates, and sim(·) computes
the cosine similarity between two embeddings. Due to the
parallel computation mechanism of the Transformer archi-
tectures, each input token preserves its individual represen-
tation across all layers, up to the final projection head. In
ViT-based CLIP models, these tokens correspond to fixed-
size image patches (e.g., 16×16 pixels). By extracting inter-
mediate patch-level embeddings prior to the final pooling or
projection stage, and subsequently applying spatial interpo-
lation, we can construct a dense pixel-wise embedding map.
This approach enables us to approximate per-pixel semantic
features while keeping the CLIP encoder unchanged. This

kind of pixel-level operation enables the isolation of image
regions that are pertinent to human activity, allowing for
the exclusion of non-essential features. As a result, the
human instance maps (i.e., processed candidate region) can
be expressed as H(u, v) = I

[
M(u, v) > λM̄

]
, where I(·) is

the indicator function, λ is a predefined threshold param-
eter, and M̄ is the mean value of the map M . Elements
that exceed the threshold retain their original pixel values
and proceed to the next step of fine-grained segmentation,
while those below the threshold are blurred. Concurrently,
different connected components in H are each assigned
distinct labels and bounding boxes, as depicted in Fig. 6.
Compared with other segmentation approaches, FM-Fi 2.0
eliminates the need for additional neural networks, and
avoids potential issues that could arise from incompatible
weighting method of input features by non-CLIP neural net-
works. The extensive knowledge and complex architecture
of the FM contributes to its accurate outputs and reliable
reasoning process. As a result, boundary maps obtained
from it efficiently concentrate on the relevant features in
images.

After obtaining human instance maps H , we implement
a human instance tracking mechanism for both camera
viewpoints while performing feature association between
them. Our approach leverages the natural continuity of hu-
man activities to execute instance tracking based on frame-
to-frame overlap, while simultaneously utilizing semantic
similarities across different viewpoints for robust matching.
Specifically, we select the i-th human instance from Hx and
the j-th human instance from Hy, and compute the similar-
ity of their corresponding original frame regions, where Hx

and Hy are human instance maps from cameras providing
views along the x and y directions, respectively. To mitigate
errors caused by single-frame analysis, we calculate the
mean similarity over a span of N frames starting from the
current frame:

S(i, j) =
1

N

N∑
t=1

sim
(
EIM(Hx

i ),E
IM(Hy

j )
)
, (2)

where EIM represents the vision embeddings generated
by CLIP, enabling semantic comparison between instances.
These similarities are ranked in descending order, with
matching pairs identified starting from the highest similar-
ity. Importantly, once an instance is matched, all subsequent
pairs containing that instance are disregarded, ensuring
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one-to-one correspondence. Upon completion, the bounding
boxes from both viewpoints in each matched pair are inte-
grated to form 3-D bounding boxes. The boxes serve as the
locational label for the instance, which is subsequently used
to train the instance-wise partitioning module in § 3.2.2.

After obtaining a pixel coordinate (u, v) in the image
coordinate system, it is necessary to transform it into the
real-world Cartesian coordinate system. First, the camera
intrinsic matrix K is acquired:

K =

fx 0 cx
0 fy cy
0 0 1

 , (3)

where fx and fy represent the focal lengths (in pixels) along
the horizontal and vertical axes, respectively, and cx and
cy denote the coordinates of the principal point (optical
center) in the image plane. Next, the extrinsic parameters,
including the rotation matrix R and the translation vector
T = [tx, ty, tz]

⊤, are obtained. The depth information Zc

is computed using multi-view triangulation. Finally, the 3D
Cartesian coordinates of the pixel (u, v) in the real-world
reference frame are given by:Xw

Yw
Zw

 = R ·

Zc ·K−1

uv
1

+ T. (4)

This process enables the transformation of image pixel co-
ordinates into the global Cartesian coordinate system.

3.1.2 RF Modality
Within the RF modality, we first eliminate static back-
grounds based on the intrinsic physical properties of the
wireless signals. Taking mmWave radar as an example, the
sensor emits electromagnetic waves in the range of 30-
300 GHz and receives the waves reflected by objects. The
raw baseband data collected can be processed to derive
information such as distance, angle, and velocity, which
can be further transformed into point clouds. Among the
information, velocity of an object is inferred through the
Doppler effect, which dictates that the frequency shift of
the signal is fd = 2v

c f0, where fd is the frequency difference
between the reflected and emitted waves, f0 is the frequency
of the transmitted signal, c is the speed of light, and v
is the velocity of the target object relative to the radar
sensor. Signals in the point cloud with fd = 0, indicative
of static backgrounds, are filtered out to isolate dynamic
subjects. It should be noted that, while it is theoretically
possible to mistakenly filter out purely tangential activities
(characterized by a Doppler velocity of zero), the likelihood
of such occurrences is minimal due to the diversity of MIMO
sensors and the abundance of data points associated with a
single human subject in real-world scenarios.

After removing the static background, it is necessary to
distinguish different individuals within the global context.
This includes eliminating dynamic backgrounds and sepa-
rating instance features. To achieve these, we can leverage
the supervisory signals provided by the visual modality to
learn whether RF signals are emanating from humans or
dynamic backgrounds. Specifically, we align the mmWave
point cloud with the vision modality’s Cartesian coordi-
nate system through coordinate transformation Pcamera =
R′Pradar +T

′. Here, Pcamera and Pradar represent points in the
coordinate systems of the respective modalities, while R′

and T ′ are the rotation and translation matrices computed
based on the sensor’s intrinsic and extrinsic parameters.
For each point, if its transformed coordinates fall within
the three-dimensional bounding boxes mentioned in § 3.1.1,
it is considered to belong to the corresponding individ-
ual; otherwise, they are classified as part of the dynamic
backgrounds. In addition to transformed coordinates, each
point also features Doppler velocity and intensity attributes.
§ 3.2 further provides discusses how these features are
assigned to individuals, and generate unique instance-level
embeddings.

3.2 Instance-wise RF Encoder

The mmWave data collected for this study is presented as a
point cloud, containing information of coordinates, Doppler
frequency, and intensity, each of which is indispensable
for HAR analysis. Specifically, the point cloud coordinates
provide valuable insights into human posture, while in-
tensity reveals the reflection characteristics, and Doppler
frequency offers critical dynamic information regarding mo-
tion. Before being processed by the neural network, the
point cloud undergoes preprocessing, during which their
centroid is translated to the origin, effectively eliminating
any translational biases. To extract semantic embeddings for
each human, the RF encoder in FM-Fi 2.0 operates in two
stages: initially, a spatial feature extraction module utilizes
self-attention layers to obtain context information for each
point, followed by an instance-wise embedding module that
clusters these points to corresponding individuals, creating
distinctive semantic representations for each person.

3.2.1 Spatial Feature Extraction
Contrary to the inherent order of image pixels, point cloud
data is characterized by an absence of order. Furthermore,
the coordinates of a point cloud depend on the selected
coordinate system. However, neither changing the point
order nor the coordinate system should affect the feature
extraction outcome. To address these challenges, we revamp
the design of PointNet [38] to accommodate the properties
of mmWave data, as shown in Fig. 7. FM-Fi 2.0’s RF en-
coder includes a spatial transformation network (STN) T ,
attention layers, and a maxpooling module. STN aims to
learn a 3 × 3 rotation-scaling matrix WT , implementing
a transformation on each point as x′ = WT · x, where x
and x′ represent the original and transformed coordinates,
respectively. To derive WT , the point cloud undergoes pro-
cessing through convolutional layers and fully connected
layers, outputting a 9-dimensional vector reshaped into a
3 × 3 matrix. Through this process, the STN captures the
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relationship between the point cloud’s global distribution
and implicit viewpoint information, as WT = T (x). This
transformation standardizes the point cloud, and improves
its robustness against geometric variations.

It is important to note that, in addition to spatial co-
ordinates (x, y, z), mmWave point clouds incorporate two
additional features: Doppler frequency and intensity. The
Doppler feature provides information about the moving ve-
locity of targets, while intensity is indicative of their distance
and material properties. These two features are essential
for HAR and are consequently concatenated with the three-
dimensional coordinates after STN processing. The resulting
feature vector, now enriched with the transformed coordi-
nates and the two additional features, is fed into a module
A, consisting of several self-attention layers to enable each
point to learn contextual information on a global scale. More
specifically, within each layer, we optimize three shared-
weight matrices Wq , Wk, and Wv across all points. The
5-dimensional feature vector p of each point is transformed
into corresponding query Q = Wq ·p, key K = Wk ·p, and
value V = Wv ·p. The weighted point vector p′ can be cal-
culated as p′ = Attention(Q,K,V) = softmax

(
QKT
√
dk

)
V.

We then pass the enriched feature vectors p′ through a
multilayer perceptron (MLP) ϕ to generate representations
for each point.

3.2.2 Instance-wise Partitioning
The aforementioned representations are initially used for
individual recognition. Specifically, within the individual
bounding boxes provided by the visual modality, the repre-
sentation of each point generates proxy coordinates through
a proxy network composed of a MLP. These coordinates
are learned to approximate the center of the individual
bounding box. If the original point does not fall within
any bounding box, it is considered part of the dynamic
background, and its proxy coordinates are set to (0, 0, 0),
corresponding to the position of the sensor. Therefore, the
loss function LP of the instance-wise partitioning module
can be written as:

LP = Ei

[
bi∥vi − ci∥2 + (1− bi)∥vi − (0, 0, 0)∥2

]
, (5)

where, bi is a binary variable that equals 1 if point i be-
longs to a human, and 0 if it belongs to the background.
Subsequently, the proxy coordinates are clustered using
the DBSCAN algorithm. For each proxy point vi, its ϵ-
neighborhood is computed as:

Nϵ(vi) = {vj | ∥vi − vj∥ ≤ ϵ}. (6)
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Fig. 7: Instance-wise RF encoder for cross-modal distillation.

A proxy point vi is considered a core point if |Nϵ(vi)| ≥
MinPts. All core points and their reachable neighbors
form a cluster Ck, and the set of clusters is denoted as
{C1, C2, . . . , CK}. As the output of the instance-wise par-
titioning module, the representations corresponding to each
cluster, except for the one closest to the origin, are processed
through a maxpooling mechanism. This mechanism selects
the maximal value across all points for each element of the
embedding, a process that remains invariant to the order
of point inputs and equally emphasizes every point in the
space. It should be noted that this step processes the point
cloud as a whole, rather than focusing on individual points.
Subsequent to another MLP, denoted as ψ, the output of
the RF encoder is mapped to a 512-dimensional vector. In
summary, the point cloud processing of each individual can
be expressed as follows:

ERF
k = ψ

(
maxpooling

i∈Ck, k ̸=kbackground

(ϕ (A (T (XRFi) ·XRFi)))

)
.

(7)

The 512-dimensional output of the encoder guarantees com-
patibility with the output from the FM image encoder.

3.3 Cross-Modal CKD
Synchronized vision and RF modalities capturing the same
scene offer closely related physical information, such as
spatial structure, contours, and dynamic information. As a
result, the gap between their semantic embedding spaces
can be potentially bridged using knowledge distillation [39].
The first step in conducting KD from FM to RF models
involves constructing a data bridge to link the image and
RF modalities. Given the scarcity of annotated data, high-
lighted in Section 2.3, this bridge only employs unlabeled
synchronized data gathered from a pair of camera and
radar sensor. Specifically, it comprises two data types: i) un-
structured data from everyday spontaneous activities, and
ii) rehabilitation activity data. The former provides a large
amount of data that captures real-world complexities, aiding
in model generalization; while the latter includes a wide
range of body movements encompassing rare movement
cases, thereby offering extensive body variation and motion
diversity. This comprehensive data bridge selection ensures
the subsequent KD transcends mere recognition of specific
movements and body parts under few environments.

Specifically, we collect datasets consisting of paired
image and RF data, represented as (XIM

i ,XRF
i ), where

i = 1, · · · , N . These datasets are gathered from the same
scenes to bridge the modalities. For each modality, data
is processed by the corresponding encoder, producing em-
beddings EIM and ERF. Note that in CKD, we utilize em-
beddings EIM generated by the camera colocated with the
radar as positive and negative samples, while cameras from
another perspective are solely used for instance localization.
While the representations of different modalities share some
common information, they do have some differences that
cannot be aligned. This means relying solely on rigid metrics
like the Euclidean distance in traditional KD is insufficient,
as discussed in § 2.3. Instead, we employ the mutual infor-
mation between modalities as the starting point for deriving
contrastive knowledge distillation (CKD) method, whose



7

training pipeline is illustrated in Fig. 8a. Mutual information
MI can be expressed using KL divergence as:

MI(EIM;ERF) = DKL(p(E
IM,ERF)∥p(EIM)p(ERF)), (8)

where p(EIM,ERF) represents the true joint probabil-
ity distribution of the image (IM) and RF embed-
dings, while p(EIM)p(ERF) represents the product of
their marginal distributions, i.e., the joint distribution that
would arise if these embeddings were statistically inde-
pendent. The KL divergence term, DKL(·∥·) thus measures
how much the actual joint behavior of the embeddings
p(EIM,ERF) deviates from this baseline assumption of
independence. Consequently, maximizing the mutual in-
formation MI(EIM;ERF) is equivalent to maximizing the
information-theoretic “distance” between the observed joint
distribution of the embeddings and the distribution cor-
responding to their independence. A larger MI value in-
herently signifies that the embeddings EIM (teacher) and
ERF (student) are more strongly dependent on each other.
This increased dependency implies that they share more
information, which is the foundation of achieving “struc-
tural consistency” across modalities. Our CKD method, by
maximizing a lower bound of this MI actively encourages
the student model (producing ERF) to learn representations
that capture information highly congruent with, and pre-
dictive of, the teacher model’s representations EIM. This
direct optimization for maximizing the shared informa-
tion between teacher and student modalities serves as the
core mechanism underpinning effective knowledge trans-
fer and improved cross-modal feature alignment, which is
crucial for storing information of the embeddings. Specif-
ically, to distill the interdependency information critical
for HAR, CKD maximizes the lower bound of the mutual
information MI between the image and RF embeddings
EIM and ERF. The mutual information: MI(EIM;ERF) =

Ep(EIM,ERF)

[
log p(ERF|EIM)

p(ERF)

]
. Assuming ERF follows a uni-

form distribution (i.e., p(ERF) = 1
N ), we have:

MI(EIM;ERF) = Ep(EIM,ERF)

[
log p(ERF|EIM)

]
+ logN.

The conditional probability p(ERF|EIM) is estimated as:

p(ERF|EIM) ≥ exp(sim(EIM,ERF))∑
ERF′∈P exp(sim(EIM,ERF′))

.

where sim(·) measures the similarity between EIM and ERF,
and P is the set of all possible samples ERF′

. Therefore we
have MI(EIM;ERF) ≥ logN − LCKD, where

LCKD = −Ep(EIM,ERF)

[
log

exp(sim(EIM,ERF))∑
ERF′∈P exp(sim(EIM,ERF′))

]
,

where sim(·) is defined as ⟨·, ·⟩/τ , with ⟨·, ·⟩ being the cosine
similarity, and τ being the temperature scaling parameter.
In CKD, for a given RF sample, positive examples are
derived from the same individual within the same frame
in the vision modality, while all other samples from the
vision modality (including those from different individuals
in the same frame and the same individual across differ-
ent frames) are treated as negative examples. It should be
noted that, while the mathematical structure of CKD loss
may resemble conventional InfoNCE-style [40] losses, its

Teacher

Student

FM

RF
model

(a) Basic idea. (b) |RIM −RRF|.

Fig. 8: Cross-modal CKD.

underlying computation process is considerably different.
First, the positive samples in CKD are drawn from the
teacher modality’s embeddings, which eliminates the need
for data augmentation. Second, in InfoNCE-style methods,
both encoders (e.g., vision and text) are randomly initialized
and jointly optimized to align with each other in the rep-
resentation space. In contrast, CKD adopts an asymmetric
optimization strategy: the vision foundation model is fixed
to serve as an anchor, and only the RF encoder is optimized
to align with it, which significantly reducing computational
overhead. Lastly, CKD leverages cosine similarity for mea-
suring similarities of the embeddings, thereby eliminating
the reliance on a critic model, as required by another cross-
modal distillation baseline CRD [41].

As shown in Fig. 8a, CKD reduces the distance between
embeddings of positive RF-image pairs, while increasing the
separation between negative pairs within the embedding
space. This contrastive method enhances the distillation
process by more effectively capturing the interdependencies
among the embedding elements. Additionally, Fig. 8b shows
a significant reduction of 0.2 on average, in the difference
between the correlation matrices of the FM and RF, denoted
as |RIM − RRF|, when utilizing CKD. This contrasts with
the outcomes observed with traditional KD, as depicted
in Fig. 4b. This observation underscores CKD’s superiority
in aligning the structural characteristics of the embeddings
across diversified modalities.

3.4 Zero- and Few-Shot HAR
Given that FMs are not trained by simply mapping samples
to fixed categories, but rather by understanding the relation-
ship between image content and arbitrary textual descrip-
tions, they are adept at handling certain zero-shot tasks,
capable of accurately identifying categories not present in
the training set. For instance, CLIP leverages image and
descriptive text matching to categorize 1,000 classes in
ImageNet within a zero-shot manner. RF models trained
under its supervision exhibit similar classification capabil-
ities. Specifically, for any HAR class described in natural
language, we can embed it into an appropriate prompt, such
as “A person {CLS}”, where CLS denotes activities like
“walking” or “squatting”. Subsequently, the text description
of this class is divided into individual words, known as
tokens. Each token is then transformed into a correspond-
ing numerical value that aligns with a vocabulary defined
during the encoder’s training phase. As a result, the CLIP
text encoder processes these representations rather than the
original natural language to generate a 512-D embedding.

Following cross-modal CKD, the RF encoder has been
endowed with the capability of the vision FMs to embed
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spatial information into the semantic space. Consequently, it
can embed RF data into 512-dimensional vectors, congruent
with the previously described text embedding structure.
The cosine similarity between embedding vectors from
different modalities serves as the criterion for their con-
gruence, with the highest scoring category being selected
for prediction t̂. The prediction process can be formulated
as t̂ = argmax

ETX

(
ETX·ERF

∥ETX∥∥ERF∥

)
, where ETX represents the

text embedding of the label. To optimize computation, we
stack the text embeddings of all candidate labels to create a
matrix Wzero-shot ∈ R512×k, whereby score =Wzero-shot ·EIM.
Given that each text embedding is normalized, we identify
the category corresponding to the highest score to make
prediction. In multi-person scenarios, the output of FM-
Fi 2.0 can be represented by a set O = {(t̂1, l̂1), . . . , (t̂i, l̂i)},
where l̂i is the instance location, and the size of O denotes
the number of people in the scene.

While zero-shot learning adequately addresses most
HAR tasks, for especially challenging ones characterized
by less distinct language descriptions, we introduce an
additional few-shot learning module. This module adopts
a metric-based approach utilizing a non-parametric method
to predict labels in the query set based on a weighted sum
of true labels in the support set. In contrast to conventional
metric-based learning, FM-Fi 2.0’s embedding space is se-
mantically rich. As such, we enhance the performance of
classification by utilizing the label text embeddings gener-
ated by FMs, further exploiting the semantic information
they contain. Specifically, we employ cosine similarity as
our metric function following the practice of CLIP, given its
superior ability to measure the similarity between semantic
vectors. Thus, we determine the likelihood of an unlabeled
sample belonging to class c as follows:

P (yc|Eq,Ds
c) =

∑
Es

c∈Ds
c
⟨Eq ·Es

c⟩+ γ⟨Eq ·ETX
c ⟩, (9)

where Ds is the support set, Es and Eq denote the embed-
dings of a support and query sample, ETX

c represents the
text embedding of class c, and γ is a hyperparameter that
signifies the weight of label text. Finally, we take the maxi-
mum of the computed likelihoods to yield the prediction.

4 DATASET AND IMPLEMENTATION

In this section, we introduce dataset collection/processing,
and system implementation of FM-Fi 2.0.

4.1 Dataset
For the RF modality, we acquire data using a Texas Instru-
ments (TI) IWR1443 Boost mmWave radar [42]. This radar
operates within the 76-81GHz frequency spectrum, offering
a bandwidth of 4 GHz. It employs a frequency-modulated
continuous-wave (FMCW) technique, which transmits a
chirp signal that linearly increases in frequency over time.
The system, upon receiving the reflected signals from the ob-
jects, constructs a point cloud. This point cloud aggregates
the data collected over a time span of 200 ms, and contains
information such as point coordinates (x, y, z), Doppler fea-
tures d, and signal intensity I . Our dataset for CKD consists
of 90,000 video samples (each 200 ms in length), totaling ap-
proximately 5 hours in duration. Given that the frequencies

of most human activities lie within the 0.1-10Hz range [43],
we set the radar sampling rate to 20 Hz. After denoising
with a constant false alarm rate (CFAR) filter, the resulting
point cloud data become Pi = (xi, yi, zi, di, Ii) , 1 ≤ i ≤ N ,
where N denotes the number of points per frame.

Similarly, we position a Microsoft Kinect V2 RGB cam-
era [44] at the same conditions as the aforementioned
mmWave radar to capture human activities on the X-Z
plane, while another camera is positioned orthogonally to
capture activities on the Y-Z plane. These cameras are set to
capture images with a resolution of 1920 × 1080 (1080P)
and a frame rate of 30 Hz. The Kinect V2 captures raw
data streams, which are then converted into JPG format to
align with the input requirements of the FM. To synchronize
these two modalities, which operate at different sampling
rates, we initially establish specific start and end actions to
assist in preliminary alignment. Subsequently, we select the
lower frequency, i.e., the radar frequency, as a reference and
identify the temporally closest camera frame for matching,
thereby constructing our dataset.

For data acquisition, the pair of radar and camera
sensors are positioned in various locations, including be-
ing mounted on different desktops, walls, and ceilings.
The subjects’ heights range from 152 to 186 cm, weights
from 51 to 109 kg, and ages from 10 to 35 years, with
an equal distribution of genders. The distance from the
sensor to the target ranges from 1 to 15 m. The dataset
is collected across 10 distinct environments: kitchen (KC),
living room (LR), bedroom (BR), gym (GM), parking lot
(PL), hallway (HW), staircase (SC), park (PK), street (ST),
stadium (SD), road intersection (RI), and outdoor fitness
area (OF). The kitchen, living room, bedroom, and hallway
represent limited-space living environments, each furnished
with scene-specific items (e.g., different furnitures, hydrants,
and ladders). The gym and parking lot are spacious in-
door scenes, equipped with fitness equipment and vehicles
respectively, and host a modest number of individuals.
As outdoor environments, park, street, and stadium are
open areas featuring different plants, vehicles, large sports
equipment, and pedestrians. The staircase, characterized by
its narrow space and complex environment, includes stairs
and railings. A road intersection is a high noise environment
with dynamic backgrounds including fast-moving vehicles,
bicycles, and pedestrians; and an outdoor fitness area is a
strong interference setting with metallic equipment moving
alongside human activities, which introduces overlapping
dynamic interference. Collectively, these 10 different envi-
ronments exhibit unique floor plans and background ob-
jects, underscoring the diversity of real-world scenarios.

Additionally, as elaborated in § 3.3, our dataset is di-
vided into two main parts: everyday spontaneous activi-
ties and structured rehabilitation exercises. For the former,
approximately 65,000 image-RF data pairs are collected,
capturing participants performing activities in accordance
with their natural behavior patterns. The latter category en-
compasses five exercises, each developed in accordance with
professional sports rehabilitation guidelines and performed
by subjects in compliance with a standardized regimen,
ultimately producing approximately 30,000 sample pairs
encompassing a broad range of body poses. Notably, this is a
newly collected multi-person HAR dataset, which is distinct
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from the dataset used in [36].

4.2 System Implementation
We conduct all experiments, including model training, infer-
ence, and saliency map generation, on 2 NVIDIA GeForce
RTX 4090 GPUs equipped with 48GB of RAM in total.
Regarding software, our framework is built upon Python
3.7 and PyTorch version 2.1.0, which supports CUDA 12.1.
Additionally, we employ OpenAI’s CLIP as our FM teacher
model. The CLIP library, released by OpenAI, facilitates easy
integration in Python, providing built-in data preprocessing
and a selection of vision encoders. For the RF modality, we
develop an mmWave point cloud encoder using PyTorch.
The specific configurations are as follows:

• We choose ViT-B/32 in CLIP as our vision encoder and
a custom mmWave point cloud encoder, outlined in
§ 3.2, featuring 1-d convolutional and linear layers with
batch normalization and a 0.3 dropout rate.

• We set the similarity threshold λ in § 3.1 to 1.2 and
select a Gaussian kernel for background blurring.

• Our CKD dataset consists of 90,000 pairs of image and
RF data. The labeled RF dataset has 15,000 samples, and
is split into validation and test sets at a 9:1 ratio.

• FM-Fi 2.0 uses continuous, non-overlapping frames for
training and testing, instead of random frame sampling,
to avoid overfitting due to neighboring frames.

5 EVALUATION

In this section, we report a thorough evaluation on FM-Fi 2.0
in several scenarios and under various parameter settings.

5.1 Experiment Setup
5.1.1 Baselines and Environments.
To evaluate the performance of FM-Fi 2.0, we select 3 sets
of baselines for comparison. First, we compare the FM-
Fi 2.0’s rapid adaptation capabilities in RF modality for
HAR with limited samples against state-of-the-art (SOTA)
meta-learning-based RF models, RF-Net [12], mmCLIP [45],
and MetaSense [46]. We also compare FM-Fi 2.0 with fully
supervised multi-person RF-HAR models, including PAL-
MAR [47], RF-Action [48], and Multi-HAR [49]. Further, we
compare the performance of FM-Fi 2.0 against SOTA point-
cloud models, PointNet++ [50] and Point Transformer [51].
Lastly, to assess FM-Fi 2.0’s performance in unseen envi-
ronments, we include its teacher model CLIP [25] for com-
parison. Since these baselines are not designed for multi-
person scenarios, we equip them with the instance-wise
partitioning module described in § 3.2. Each scene in our
experiments contains between 1 and 10 subjects, with an
average of approximately 4 subjects per scene.

• RF-Net employs a dual-path architecture to discern key
RF signal features for HAR and integrates a distance
metric network to facilitate few-shot learning.

• MetaSense trains on multiple tasks calibrated to indi-
vidual variances, enabling the model to quickly adapt
to new conditions with minimal samples.

• mmCLIP aligns high-level representation space of
mmWave signals and LLMs’ text space to facilitate zero-
shot recognition for unseen activities.

• Multi-HAR combines group tracking, 3D-CNN, and
LSTM to enable robust per-person activity inference
from clustered point cloud data.

• PALMAR integrates voxel-based fine-tuning, efficient
clustering and tracking with an adaptive-order HMM,
and adaptive deep domain adaptation.

• RF-Action translates the input to an intermediate
skeleton-based representation, learns from both vision-
based and RF-based datasets, and allows the two tasks
to help each other.

• Point Transformer introduces a self-attention-based ar-
chitecture tailored for 3D point cloud analysis that can
be used for segmentation and classification tasks.

• PointNet++ is an extension of the original PointNet
architecture, introducing hierarchical feature extraction
to better handle local structures in point clouds.

Although FM-Fi 2.0 does not limit the number of HAR
classes, we test it on 10 classes for clarity: waving hands
WH , squatting SQ, climbing CB, stretching ST , jumping
JP , walking WK, sitting ST , cycling CC, picking PK,
and pushing PS. We also prepare 10 new classes for fur-
ther evaluation: running RN , standing SD, lying down
LD, crawling CR, playing ball PB, dancing DN , boxing
BX , lifting LF , cleaning CL, and doing Yoga Y G. To
gain insights into the model’s predictive distribution, we
also employ confusion matrices to visually demonstrate the
model’s performance on each class. The experiments strictly
follow the IRB approved by our institution.

5.1.2 Evaluation Metric.
The two stages in the FM-Fi 2.0 pipeline operate at
different levels of granularity (i.e., instance-level separa-
tion/association and activity-level recognition), therefore,
a single unified metric cannot fairly evaluate the entire
system. Consequently, we evaluate FM-Fi 2.0’s performance
in two corresponding parts. For the former, we compute
precision and recall at both the point and subject level.
For the latter, to enable a clearer assessment at the activity
level, we first obtain a set of bounding boxes from the
image modality through instance-wise feature association,
with the number of boxes equal to the number of subjects.
Each bounding box defines a ground truth instance point
set composed of the points within it. We define Point IoU

(PIoU) as PIoU =
|Ppred ∩Pst |
|Ppred ∪Pst | , where Ppred is the set of

points in the predicted instance and Pgt is the set of points
in the ground truth instance. By definition, a higher PIoU
signifies better spatial correspondence. Based on this, we set
a relatively high threshold of 0.80 and evaluate the instance-
wise partitioning module on the validation set (the rationale
for selecting the threshold will be explained in § 5.2.1).
Given this, our accuracy is computed only on predicted
instances that have a PIoU greater than 0.80 with a ground
truth instance. Specifically, the accuracy is defined as activity
classification success rate for all detected instances, with
false positives inherently counted as misclassifications.

5.2 Micro-benchmark
In this section, we present micro-benchmark studies of the
instance-wise partitioning module of the RF encoder, and
cross-modal CKD of FM-Fi 2.0.
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(a) Instance-wise partitioning. (b) Cross-modal CKD.

Fig. 9: Micro-benchmarks.

5.2.1 Instance-wise Partitioning of the RF Encoder
We evaluate the RF encoder’s effectiveness in distinguishing
individual subjects within global input features. The results
demonstrate remarkable performance despite challenging
conditions. In a test scenario featuring three individuals rep-
resented by 128 points shown in Fig. 9a, FM-Fi 2.0 achieves a
point classification accuracy of 93.8%, even with ambiguous
boundaries between subjects. A detailed analysis presented
in Table 1 reveals consistently high performance metrics
across all individuals, with precision exceeding 90.0% and
recall above 85.7%. This exceptional performance can be
attributed to two key features of FM-Fi 2.0: its ability to cap-
ture point-to-point relationships in a global context, and its
ability to differentiate foreground from background. The lat-
ter is achieved through strategic placement of background
proxy points at significant distances from human-associated
points, substantially reducing clustering misclassification.

Subject 1 Subject 2 Subject 3

Precision 94.2% 91.7% 90.0%
Recall 89.0% 97.1% 85.7%

TABLE 1: Point-level
performance across individuals.

Following point-level evaluation, we transition to a more
holistic instance-level assessment. For this, we utilize a PIoU
threshold of 0.8, as introduced in § 5.1.2. This means a
subject is considered correctly partitioned if the predicted
point set Ppred (from the RF encoder) achieves at least an
80% overlap with the ground-truth point set Pgt (from the
vision modality). We conduct 30 trials across diverse sce-
narios featuring 1 to 10 subjects, each performing different
activities independently, with an average of approximately 4
subjects per scene. At this 0.8 PIoU threshold, our instance-
wise partitioning module achieves an impressive average
precision of 97.6% and an average recall of 98.3%. The
module’s ability to attain such high performance, signifying
negligible false positives and missed detections, justifies the
0.8 PIoU threshold. Specifically, by requiring a substantial
80% overlap, this threshold ensures that only genuinely
well-segmented instances are counted as correct, thereby
providing a clear and trustworthy foundation for further
assessing HAR.

5.2.2 Cross-modal CKD
We further compare CKD with KD, and extend the compar-
ison to include contrastive representation distillation (CRD)
[41] and correlation congruence for knowledge distillation
(CCKD) [37]. We compare their performance on a 10-class
zero-shot HAR task, as illustrated in Fig. 9b. We observe

τ=10
τ=1
τ=0.1

τ=30τ=50
τ=100

τ=200

τ=300 τ=1000

τ=5000

CRD

CCKD

KD

(a) Impact of temperature
parameter τ .

(b) Comparisons on accuracy and
stability.

Fig. 10: CKD evaluation.

that CKD achieves the highest accuracy in 8 out of 10
classes, only trailing the best method by less than 8.5% in the
rest 2 classes. Notably, CRD shows the highest variability
in accuracies, which can be attributed to the instability
inherent in its learning-based critic model used for similarity
assessment. CCKD’s approach, which prioritizes alignment
of instance distributions between image and RF embed-
dings without addressing the interdependencies among el-
ements, results in suboptimal performance. Similarly, KD’s
performance is compromised due to its inability to manage
the interdependencies within the embeddings’ elements. In
summary, CKD’s advantages arise from: a greater emphasis
on the interdependencies of embedding elements compared
to CCKD and KD, which transfers critical information to
enhance performance; and using cosine similarity instead of
a critic model, as in CRD, which reduces model complexity
and increases robustness.

To further understand CKD’s superiority, we analyze
the relationship between the FM-Fi 2.0 ’s accuracy and the
extent of interdependency information transfer. We employ
the mean differences in the correlation matrices of image/RF
embeddings to quantify interdependency transfer. By vary-
ing τ in the CKD loss, the correlation differences can be
adjusted. We select 10 values for τ from 0.1 to 5000. Our
findings shown in Fig. 10a demonstrate that the correlation
difference negatively impacts FM-Fi 2.0 ’s accuracy (τ = 10
yields the best performance). This trend further validates
FM-Fi 2.0 ’s principle: preserving the interdependency infor-
mation among the embedding elements is crucial for HAR.
In contrast, the inferior results of alternative approaches
(indicated by markers below the curve) can be attributed to
their pronounced correlation differences, which correspond
to a diminished efficacy in the transfer of interdependency
knowledge.

We also conduct 50 independent runs, and perform
statistical analysis of the accuracies of various distillation
methods, as shown in Fig. 10b. It can be seen that CKD
exhibits the highest median accuracy and narrowest in-
terquartile range (IQR). In contrast, CRD, CCKD, and KD
demonstrate lower accuracies and larger IQR. Notably, CRD

(a) CLIP. (b) FM-Fi 2.0.

Fig. 11: t-SNE plot of embeddings.
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(a) Zero-shot FM-Fi 2.0. (b) 1-shot FM-Fi 2.0. (c) 3-shot FM-Fi 2.0. (d) Zero-shot (10 new classes).

Fig. 12: Confusion matrices of FM-Fi 2.0 in zero-shot and few-shot scenarios.

shows the highest variability in accuracies, which can be
attributed to the instability inherent in its learning-based
critic model used for similarity assessment. CCKD’s ap-
proach, which prioritizes alignment of instance distributions
between image and RF embeddings without addressing the
interdependencies among elements, results in suboptimal
performance. Similarly, KD’s performance is compromised
due to its inability to manage the interdependencies within
the embeddings’ elements.

5.3 Overall Evaluation of FM-Fi 2.0

To evaluate whether FM-Fi 2.0 has acquired CLIP’s em-
bedding capability, we first encode image frame-RF sample
pairs from our test set into embedding pairs. These 512-
dimensional embeddings are then reduced to 2 dimensions
for visualization via t-SNE. From Fig. 11a, it is evident
that the embeddings produced by the CLIP encoder are
distinct and well-separated, indicating a high degree of
discriminability in the embedding space and a robust ca-
pacity for image understanding. Fig. 11b shows that FM-
Fi 2.0’s embeddings are separable and closely aligned with
the teacher model’s, indicating that FM-Fi 2.0 has effectively
captured the teacher model’s representational power.

In Fig. 12, we show FM-Fi 2.0’s performance across
various zero/few-shot scenarios. It can be seen that even
in the challenging zero-shot context, FM-Fi 2.0 is capable
of basic HAR tasks with a notable 73.4% accuracy. FM-Fi 2.0
also achieves accuracies of 84.4% and 93.6% for 1-shot and 3-
shot learning. For the 1-shot case, a significant concentration
of samples along the confusion matrix diagonal, indicates
that FM-Fi 2.0 maintains robust precision and recall for all
categories. This level of performance enables accurate HAR
task execution. With three labeled samples, the model’s
accuracy further improves, with the diagonal average ap-
proaching 95%, illustrating a high degree of prediction con-
fidence. Following the few-shot learning phase, we assess
FM-Fi 2.0’s performance on 10 new activities mentioned in
§ 5.1. Fig. 12d illustrates that the accuracy on new activities

Fig. 13: Impact of the num-
ber of classes.
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Fig. 14: Student vs. teacher
accuracy.

aligns with the results in Fig. 12a, indicating that the few-
shot learning module has a minimal impact on zero-shot
performance.

We assess the impact of the number of classes on model
accuracy by analyzing both zero-shot and 3-shot perfor-
mance when the number of classes ranges from 5 to 20,
as depicted in Fig. 13. The results reveal a decrement in
accuracy as the number of classes increases, with zero-shot
learning experiencing a more substantial reduction than 3-
shot learning. This trend can be attributed to decreased
inter-class distinction and increasing semantic overlap as
the number of classes increases, undermining the perfor-
mance of semantic-driven zero-shot methods. In contrast,
the metric-based few-shot classification, which utilizes an-
chors within the embedding space to enhance decision
boundaries, exhibits less performance degradation com-
pared its zero-shot counterpart.

Furthermore, we examine the impact of teacher model
performance on the effectiveness of the RF student model.
As shown in Fig. 14, a stronger teacher model is associated
with improved performance of the student model. This
results from the teacher’s ability to direct the optimization
process towards a more efficient trajectory. Notably, the
student model’s size constraints result in decreased per-
formance gains, indicative of an asymptotic trend. Conse-
quently, ViT-B/32 is chosen as our teacher model backbone
due to its superior accuracy of 79.3% on the zero-shot HAR
task, with the corresponding student model also evaluated
in the same setting, achieving 73.4% accuracy. Compared
with the vision modality, the RF modality shows no perfor-
mance decline, demonstrating that CKD effectively bridges
the modality gap within the embedding space.

Next, we investigate the impact of practical factors such
as the dataset size for CKD and model complexity on the
performance of FM-Fi 2.0. As depicted in Fig. 15a, the
zero-shot accuracy increases as the number of CKD data
samples increases from 10,000 to 90,000, but stops increasing
when the number of CKD data reaches 80,000, stabilizing
at approximately 75%. This is close to the 79.3% accuracy

(a) CKD dataset size. (b) Model size.

Fig. 15: Impact of practical factors.
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(a) Zero-shot HAR. (b) Resource usage.

Fig. 16: Comparison with FM baseline.

of the teacher model, indicating the efficacy of FM-Fi 2.0’s
CKD. We then examine the impact of the number of model
parameters, as shown in Fig. 15b. It can be observed that
FM-Fi 2.0’s zero-shot accuracy improves with as the number
of parameters increases, reaching a peak of 74% when the
number of parameters reaches 8 million. However, expand-
ing the model further to 10 million parameters leads to
overfitting and a notable decline in performance due to the
increased model complexity.

5.4 Superiority of FM-Fi 2.0

In this section, we compare FM-Fi 2.0 with baselines. To
ensure fair comparison, we equip all single-subject HAR
baselines with FM-Fi 2.0’s instance-wise partitioning mod-
ule in § 3.2.2, which has proven to be effective in § 5.2.

5.4.1 Comparison with FM
We compare FM-Fi 2.0 with FM by assessing their zero-
shot capabilities. As shown in Fig. 16a, the accuracy of FM-
Fi 2.0 closely matches that of CLIP across all 10 activity
classes, illustrating the overall effectiveness of FM-Fi 2.0.
An interesting phenomenon is that for the class CB, the RF-
based student model achieves higher accuracy than the FM-
based teacher model. The improvement can be attributed
to the fact that RF modality might be less susceptible to
background image patterns than FM, and our feature asso-
ciation method enables CKD to transfer knowledge without
irrelevant signals. Additionally, it should be noted that our
collected dataset of 90,000 image-RF pairs is sufficient for
CKD. It is also worth mentioning that FM-Fi 2.0’s model,
with its 8.0 million parameters, is significantly smaller than
CLIP’s 140 million parameters, as depicted in Fig. 16b.
Although the model-to-data size ratio of FM-Fi 2.0 exceeds
that of typical LLMs, it still achieves strong performance.
This distinction can be attributed to two key factors: first, the
knowledge distillation paradigm leverages the fact that the
teacher model (i.e., CLIP) is trained on an extensive dataset,

allowing it to transfer robust and useful representations
to the student model. Second, our smaller dataset, which
consists of both unstructured data and rehabilitation activity
data, is of high quality and highly relevant to the task at
hand. These observations highlight FM-Fi 2.0’s ability to
deliver competitive performance with considerably less data
and a more compact architecture.

5.4.2 Comparison with Zero/Few-shot Baselines
We further compare FM-Fi 2.0 with three few-shot base-
lines MetaSense, RF-Net, and mmCLIP, where mmCLIP also
supports zero-shot HAR. In the few-shot experiment, we
employ 10-way-K-shot learning by sampling K instances
from each of 10 classes, creating a shared training set for all
models. Specifically, we pretrain mmCLIP on the synthetic
dataset described in the original paper. Fig. 17 features
boxplots that detail the comparative performance of them
under 0, 1, 2, and 3-shot settings. In the zero-shot setting,
FM-Fi 2.0 achieves 5.8% higher accuracy than mmCLIP with
the instance-wise partitioning module. This is because the
synthetic dataset used by mmCLIP introduces a simulation-
to-reality gap, making it less effective than FM-Fi 2.0, which
is directly distilled from and trained on real-world data.
In the remaining three scenarios, FM-Fi 2.0 consistently
outperforms the three baselines by a significant margin.
Although as the number of samples increases, the median
accuracy of FM-Fi 2.0 does not rise as quickly as that of the
baselines, it still maintains a lead of at least 3.3% Further-
more, the interquartile range (IQR) of FM-Fi 2.0’s accuracy
is considerably smaller than that of the baselines, indicating
less variability across multiple experiments. To better high-
light the advantage of FM-Fi 2.0 over the baselines, Table 2
reports their average accuracy under different shot settings.
We also explicitly indicate the performance gaps, showing
that FM-Fi 2.0 achieves higher average accuracy than the
baselines by 2.1% in the 0-shot setting, 0.8% to 20.8% in the
1-shot setting, 1.7% to 25.0% in the 2-shot setting, and 1.1%
to 22.7% in the 3-shot setting.

5.4.3 Comparison with Supervised Baselines
We further compare FM-Fi 2.0 with three multi-person RF-
HAR baselines: Multi-HAR, PALMAR, and RF-Action, and
two point cloud processing baselines, PointNet++ and Point
Transformer, as shown in Fig. 18 and Table 3. These models
are trained on an expanded dataset (including 50,000 labeled
RF samples) without CKD. For ease of comparison, we
introduce an additional baseline model termed FM-Fi 2.0*,
which utilizes the same RF encoder as FM-Fi 2.0 (with an

2.1% 1.7%~25.0%

1.1%~22.7%0.8%~20.8%

Fig. 17: Few-shot comparisons.

TABLE 2: Few-shot compari-
son summary.

Acc. 0-shot 1-shot 2-shot 3-shot

FM-Fi 2.0 76.9% 83.9% 88.1% 93.4%

mmCLIP 74.8%
(2.1%↓)

83.1%
(0.8%↓)

86.4%
(1.7%↓)

92.3%
(1.1%↓)

RF-Net / 54.9%
(29.0%↓)

67.5%
(20.6%↓)

73.6%
(19.8%↓)

MetaSense / 57.8%
(26.1%↓)

63.1%
(25.0%↓)

70.7%
(22.7%↓)

6.3%~17.1%

Fig. 18: Supervised comparisons.

TABLE 3: Supervised
comparison summary.

Avg. Acc. Full dataset

FM-Fi 2.0
(3-shot) 93.4%

FM-Fi 2.0* 87.1% (6.3%↓)
Multi-HAR 83.7% (9.7%↓)
PALMAR 84.3% (9.1%↓)
RF-Action 84.0% (9.4%↓)
Point Tran-
sformer 82.5% (10.9%↓)

PointNet++ 76.3% (17.1%↓)
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(a) Different scenes. (b) Different subject numbers.

Fig. 19: Generalization across diverse settings.

ensuing multilayer perception for converting the embed-
ding to classification result). FM-Fi 2.0* is also trained on
the same 50,000-sample dataset without CKD. Using only
0.1% of the labeled data compared to the other three models,
3-shot FM-Fi 2.0 not only demonstrates superior accuracy
but also greater stability in performance. Specifically, FM-
Fi 2.0 achieves 6.3% to 17.1% higher average accuracy
than the baselines. These results highlight the efficacy of
CKD in learning robust representations while significantly
decreasing the dependency on annotated RF data. Further-
more, among the three fully supervised models specifically
designed for point clouds, FM-Fi 2.0* exhibits notably bet-
ter performance than the other two models, PointNet++
and Point Transformer. The superior performance of FM-
Fi 2.0* is due to its RF encoder which effectively integrates
point cloud coordinates with Doppler features and signal
intensity, thus utilizing the complete range of information
available in RF data. For the three baselines specifically de-
signed for multi-person RF-HAR, although they are trained
on significantly larger labeled RF datasets, FM-Fi 2.0 still
achieves notably higher accuracy and stability. This is be-
cause FM-Fi 2.0 learns rich prior knowledge from the vision
FM, which is effectively transferred to zero/few-shot HAR
tasks. As a result, with only limited labeled RF data, FM-
Fi 2.0 outperforms fully supervised models trained solely on
small RF datasets without such priors. This paradigm is not
explored by previous methods and demonstrates broader
applicability to diverse downstream tasks.

5.5 Generalization Capability
5.5.1 Cross-subject and Cross-environment Evaluation.
To evaluate the generalization capabilities of FM-Fi 2.0, we
firstly conduct tests on the 10 subjects (S1 − S10) and 10
environments mentioned in § 4.1. Specifically, we adopt a
leave-one-out strategy for 3-shot testing, where we train
on data from 9 environments or subjects and test on the
remaining one; for zero-shot testing, we directly conduct
tests without additional training. We conduct both zero-
shot and 3-shot tests in 100 settings (10 environments × 10
subjects) and the results shown in Fig. 19 are obtained by
averaging across either environments or subjects.

Overall, Fig. 19a shows that performance tends to be bet-
ter in outdoor scenes due to factors such as better lighting,
open space, less background features, and reduced occlu-
sion. However, street scenes yield poorer results because of
the interference from rapidly moving background objects
such as cars and pedestrians, which can disrupt RF signals.
In contrast, for primary RF-based HAR scenarios, especially
in domestic settings, FM-Fi 2.0 maintains performance levels
consistent with previous tests, demonstrating exceptional
capabilities. Moreover, as shown in Fig. 19b, despite a

Recall Precision

(a) Instance-partitioning capability. (b) HAR accuracy.

Fig. 20: Performance under human overlapping.

decrease in accuracy as the number of people in the scene
increases, FM-Fi 2.0 still maintains robust generalization ca-
pabilities. Even with up to 10 individuals present, it achieves
a zero-shot accuracy of at least 65.8% and a three-shot
accuracy of at least 77.6%. While extreme noise scenarios,
such as at road intersections, induce performance degra-
dation from multipath interference, FM-Fi 2.0 sustains an
average zero-shot accuracy of 63.6%. Similarly, in the high-
interference environment of outdoor fitness areas, reflec-
tions from exercise equipment coupled with human motion
reduce accuracy; FM-Fi 2.0 nonetheless achieves an average
zero-shot accuracy of 61.3%. These outcomes underscore
FM-Fi 2.0’s resilience, demonstrating robust performance
even under such adverse conditions.

5.5.2 Robustness to Human Overlap Scenarios.
We then evaluate the performance of FM-Fi 2.0 under
varying degrees of human overlap in two-person scenarios,
focusing on two aspects: instance-wise partitioning capabil-
ity and HAR accuracy. To create different levels of spatial
overlap, we vary the angle between the two subjects (2◦,
4◦, 6◦, 8◦) and their distances (1, 3, and 5 m). The average
distance from the subjects to the radar is 5 m. As shown
in Fig. 20a, even in highly overlapping scenarios, where
the subjects are only 1 m apart with an angle of 2◦, FM-
Fi 2.0 maintains a recall of 87.2% and a precision of 86.3%.
When the angle increases to 6◦, recall remains above 92.0%,
and precision stays above 90.1%. Regarding HAR accuracy,
Fig. 20b shows that even under distant overlap conditions
at 5m away, FM-Fi 2.0 achieves a 10-class zero-shot accuracy
of over 67.2% for each subject. Across the remaining over-
lapping settings, the accuracy consistently remains above
67.3%. These results demonstrate the robustness of FM-Fi 2.0
in handling complex and realistic human overlap scenarios.

5.6 Hyper-parameter Searching
5.6.1 Feature Elimination Threshold
In this work, we determine the threshold as λ times the
mean value of the entire similarity map, which establishes
the lower bound score for pixels exempt from blur trans-
formation. On one hand, a small λ preserves the original
image content, but fails to efficiently eliminate background
noise. On the other hand, a high λ value risks removing
critical image features, depriving the model of meaning-
ful input and thereby reducing the discriminability of the
generated cross-modal supervision signal. To search for the
optimal value of λ, we evaluate the zero-shot performance
of FM-Fi 2.0 at different λ values from 0.4 to 1.6 One may
readily observe in Fig. 21a that as λ initially increases, FM-
Fi 2.0 reaches the best performance at the optimal threshold
λ = 1.2. Any λ greater than that may cause the blur mask to
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erode the some of the human figures, adversely impacting
HAR performance. Consequently, as λ surpasses 1.2, there
is a significant decline in accuracy from 79.2% to 48.6%.

We further study the impact of velocity thresholds in
the RF modality. Instead of only removing the zero-velocity
component as in § 3.1.2, we set the velocity filtering thresh-
olds from 0 to 1.2 m/s, and show the relationship between
the model’s accuracy and the threshold in Fig. 21b. It is ob-
served that the model performs the best when the Doppler
threshold is set to 0, which corresponds to the removal of
static background. Increasing the Doppler threshold may
inadvertently filter out some moving background clutter;
however, it might also eliminate information pertinent to
human activities, leading to a decline in model performance.
When the Doppler threshold reaches 0.8 m/s, a significant
portion of human activity information is lost, resulting in
poor model performance. The experiment suggests that a
threshold of 0, which preserves all information of moving
objects while excluding static background features, opti-
mally supports the subsequent instance-wise partitioning
module in performing point selection.

5.6.2 Weight of Label Text in Few-shot Learning
We evaluate the impact of varying weights of label text γ
on FM-Fi 2.0’s performance across 1-shot, 2-shot, and 3-shot
learning scenarios. Initial assessments are conducted with
integer values of γ in the range 0 to 10, with results depicted
in Fig. 22a. We observe that for small values, accuracy
across all scenarios increased with γ, suggesting effective
semantic information extraction from the RF modality by
FM-Fi 2.0. As γ increases, performance across the three
scenarios tends to converge due to the text embedding
becoming the dominant factor. Such convergence results in
performance degradation, approaching zero-shot levels as γ
further increases. We aim to identify the best performance
point γ = 4 to γ = 6. As Fig. 22b demonstrates, the peak
performance is obtained at γ = 5, which we use as the
weight of text label in few-shot learning.

6 RELATED WORK AND DISCUSSION

Though RF-HAR literature covers enhancing generalizabil-
ity [12], [13], [46], [52], [53], [54], [55], improving the efficient
utilization of scarce labeled data [56], [57], and refining
model architectures [13], [58], [59], prominent RF-HAR pro-
posals have prioritized studies on generalizability. In par-
ticular, Widar3.0 [52] introduces a domain-independent and
signal-level feature, termed BVP, to enable generalizability.
Another study [53] applies adversarial domain adaptation
techniques [60], [61] to generalize across varying scenarios.
RF-Net [12] adopts metric-based meta-learning achieve fast
adaptation of its base networks in diverse environments.

Similarity threshold parameter  λ

(a) Image modality. (b) RF Modality.

Fig. 21: Impact of the thresholds.

γ

(a) Preliminary search.

γ

(b) Detailed search.

Fig. 22: Impact of the weight of label text.

While prior multi-person RF-HAR methods [47], [48], [49]
have advanced the field, FM-Fi 2.0 offers a distinct ad-
vantage. It uniquely harnesses the rich prior knowledge
from vision foundation models, employing cross-modal
CKD to transfer this knowledge to the RF modality. This
pioneering approach enables robust zero-shot and few-shot
HAR, a paradigm previously unexplored, and demonstrates
broader applicability to diverse downstream tasks.

The emergence of FMs has brought new potentials in
RF sensing in general, catering the need for more models
capable of capturing rich information. In current researches,
FM-Fi [36] employs cross-modal contrastive knowledge
distillation (CKD) to translate the prior knowledge from
vision-based FMs to enhance RF-based HAR systems. Mean-
while, mmCLIP [45] aligns mmWave signals with the tex-
tual space through cross-modality signal synthesis and ac-
tivity attribute decomposition. Compared to these single-
person HAR system, FM-Fi 2.0 explores the more commonly
seen multi-person scenarios, and introduces several key
modifications in system design compared to FM-Fi. First,
to maintain instance-wise feature correspondence across
modalities, it associates intra- and cross-modality features
by incorporating an additional viewpoint and correspond-
ing algorithms in the vision modality, as well as mod-
eling spatial relationships between modalities. Second, to
generate instance-wise embeddings, FM-Fi 2.0 includes a
module that explicitly aggregates RF features at the instance
level. Finally, the CKD negative sample pool is expanded
to include different instances from the same frame. In the
future, we would expect FM-Fi 2.0 to be able to support
other sensing tasks including gesture detection [62], gait
recognition [63], and even vibration monitoring [64], [65],
by modifying the target of interest; we plan to explore FM-
Fi 2.0’s potential beyond HAR in future work.

7 CONCLUSION

Taking [66] a significant stride in advancing HAR, we have
introduced FM-Fi 2.0, which harnesses the interpretative
power of FMs to facilitate cross-modal RF-HAR. By em-
ploying instance-wise feature association and CKD, the in-
novative RF encoder in FM-Fi 2.0 effectively assimilates the
semantic embedding derived from FMs. This enables precise
mapping of RF data for efficient zero/few-shot HAR appli-
cations, addressing the critical challenge of data scarcity in
RF-HAR. Our thorough experiment analysis across diverse
and complex scenarios confirms FM-Fi 2.0’s superiority over
conventional baselines. This research not only demonstrates
the effectiveness of our approach but also lays the ground-
work for further advancements in RF-HAR, while aiming
for broader RF sensing tasks in practical settings.
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