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Abstract—Multimodal sensing systems have gained widespread adoption in lIoT and edge intelligence, due to their ability to collect
more comprehensive information of the target, thus improving sensing accuracy. However, this improved accuracy often comes at
the cost of increased power consumption and computational overhead. Specifically, sensors require continuous power to collect data,
and data processing algorithms not only demand intensive computational resources, but also consume significant energy to analyze
the data, hindering the deployment of such systems on the edge. To address this issue, we propose E-M?, a framework for efficient
multimodal sensing by adaptive sensor-computation activation. First, E-M? selectively disables redundant modalities and corresponding
data processing modules, effectively reducing unnecessary power consumption and computational overhead. Second, E-M? employs
an exploration mechanism to reactivate disabled modalities, thus preventing “dead” modalities and enhancing overall system utilization.
Finally, E-M? conditions the data processing algorithms on the on/standby states of the modalities, thus alleviating the negative impacts
of sensor deactivation. Extensive evaluations demonstrate that E-M? reduces average power consumption by 40.75% and computational
overhead by 48.84% across various sensing tasks, all while maintaining the sensing performance.

Index Terms—Multimodal sensing, sensor-computation activation, power consumption, computational overhead.

1 INTRODUCTION

Edge intelligence is a critical component of the rapidly
growing Internet of Things (IoT), playing a vital role in
processing data closer to the source. In edge intelligence
systems, sensors are employed to capture data from targets
in the environments, which are then processed by data
processing modules that run neural networks to interpret
the data and produce insights. Edge intelligence is increas-
ingly adopting a multimodal approach, spurred by rapid
advancements in sensing technology, reduced sensor manu-
facturing costs, and the imperative to improve sensing per-
formance through complementary information from multi-
ple modalities. Research consistently demonstrates that the
use of complementary data from various sensing modal-
ities, can significantly improve sensing performance [1],
[2], [3], [4]. Consequently, leading consumer electronics
products, such as smartphones [5], [6], fitness trackers [7],
[8], and smart home systems [9], [10] are now equipped
with multiple modalities to improve functionalities such as
environment sensing [11], [12], health monitoring [13], [14],
and human-computer interactions [15], [16], making these
devices smarter and more responsive to user needs.

Despite their improved accuracy, multimodal systems
incur significant power and computational overhead, which
can be attributed to i) multimodal systems that incorporate
multiple sensors, each requiring energy-intensive data ac-
quisition and processing, and ii) the additional computa-
tional resources that must be allocated for processing data
from multiple modalities. Consider a typical multimodal
sensing system consisting of an RGB camera, a depth sen-
sor, and a radar. Compared with a unimodal system, this
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multimodal setup experiences a 2.63 x increase in power
consumption and an 8.24x increase in computational over-
head. Unfortunately, this high power and computational
overhead hinder the practical application of multimodal
sensing systems in edge computing environments. For ex-
ample, it is revealed that a lithium-polymer battery of
5000 mAh/3.7 V, commonly found in edge devices, can be
depleted within 1.8 hours by continuous monitoring using
a multimodal system [17]. Furthermore, a neural network
for multimodal sensing can easily reach a peak memory
usage of 10 GB, exceeding the typical memory limit of
8 GB available in edge environments [18]. Therefore, it is
imperative for academia and industry to optimize the power
and computational overhead of multimodal sensing and
computing systems [19], [20].

One effective strategy to reduce system overhead is
to actively remove redundant or underutilized modalities.
Redundancy occurs when modalities overlap in their func-
tionalities. For example, both the RGB camera and the
depth sensor capture texture and contour information [21],
[22], and both the depth sensor and the radar provide
radial distance information [23], [24]. In LoS scenarios with
ample lighting, RGB cameras alone can suffice to capture
most information, thereby allowing for the deactivation of
other sensors. Underutilized modalities, on the other hand,
capture little useful information under specific conditions.
In low-light scenarios, the passive nature of RGB cameras
renders them ineffective, providing minimal data. Similarly,
in occluded environments, both RGB cameras and depth
sensors struggle to sense subjects accurately, making radar
with penetration capability the preferred modality [25]. Fur-
thermore, distant targets outside the detection range of RGB
and depth cameras might require the use of radar with a
longer detection range. Although we have highlighted sev-
eral typical scenarios, it is impractical to design a set of rules



that account for all unique environment conditions [26], [27].

Due to the impracticality of rule-based methods,
researchers are increasingly adopting data-driven ap-
proaches [28], [29], [30] to automatically control sensing
modalities. While they improve efficiency by adaptively ac-
tivating computing modules (e.g., deep learning networks),
they fall short of achieving optimal power and computa-
tional efficiency. This limitation stems from their narrow
focus on computational components while leaving sensor
hardware continuously active, with associated computing
modules constantly processing sensor outputs. The sepa-
ration between hardware and software control layers cre-
ates a fundamental inefficiency, as the energy consumption
of always-on sensors often dominates the system’s power
budget. Moreover, this bifurcated approach fails to leverage
the intrinsic relationship between sensing and computation,
where intelligent sensor activation could significantly re-
duce downstream computational requirements. As such, it
is urgent for us to come up with an efficient multimodal
sensing framework adaptively activating both sensors and
computing modules.

While the high-level goal is intuitive, designing a prac-
tical framework for data-driven, joint hardware-software
optimization poses significant challenges that are not found
in single-sided optimization. First, the complex interdepen-
dency between sensing and computing requires a sophisti-
cated decision-making mechanism. This mechanism should
control both components simultaneously while adapting to
changing environment conditions and system states. Sec-
ond, deactivated sensing modalities create a critical reactiva-
tion problem: once a sensor enters standby, the system lacks
the information necessary to determine when it should be
reactivated, potentially leading to permanently inactive sen-
sors and suboptimal utilization of available sensing capabil-
ities. Third, the intermittent operation of sensing modalities
introduces anomalous values into the computing modules,
such as zeros or nulls that are not encountered during
standard training, causing unpredictable outputs and com-
promising the reliability of the entire framework [31].

To address these challenges, we propose a framework
for efficient multimodal sensing and computing, E-M?, as
shown in Fig. 1. E-M? dynamically deactivates non-essential
sensing and computing modules at runtime, thus adapting
to a variety of environments (e.g., daylight, low-light, occlu-
sions, and distant targets) while achieving optimal energy
and computational efficiency. E-M? employs a lightweight
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Fig. 1: E-M? employs a policy network to dynamically
control the on/standby states of sensing and computing
modules, adapting to ever-changing environments.
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differentiable dual-pronged policy network (DPPN) for se-
lecting sensing modalities and computing modules. DPPN
is trained using normal backpropagation [32] alongside the
sensing network itself, thereby avoiding a complicated rule-
based design. To further enhance performance, E-M? em-
ploys long short-term temperature scheduling to explore the
reactivation of deactivated modalities, maximizing overall
sensing performance and ensuring rapid adaptation to ever-
changing environments. Additionally, to address abnormal
values (e.g., 0’s and nulls) caused by deactivated modalities,
E-M? employs a modality-conditioned training strategy. It
explicitly informs the deep learning network about the
availability of various modalities, ensuring the network is
well-prepared to manage these anomalies during inference.
In summary, our major contributions in this paper are as
follows:

o To the best of our knowledge, E-M?2 is the first unified,
data-driven framework for efficient multimodal sensing
via adaptive sensor-computation activation.

e We design a unique DPPN to control the on/standby
states of sensing and computing modules, adapting to
ever-changing environments for optimal performance.

o We design a long short-term temperature scheduling
to explore the reactivation of deactivated modalities,
thereby maximizing overall modality utilization.

o We design a modality-conditioned training strategy to
ensure that the computing modules are resilient to
anomalies caused by deactivated modules.

« We implement E-M? prototype and evaluate E-M? with
extensive experiments. The promising results demon-
strate that E-M? can enable efficient multimodal sensing
and computing.

The rest of the paper is organized as follows. § 2 moti-
vates the design of E-M? by revealing the excessive power
consumption and computational overhead associated with
multimodal systems, as well as the redundancy inherent in
their multiple modalities. § 3 presents the system design of
E-M?2. § 4 introduces the datasets, system implementation,
and experiment setup. § 5 reports the evaluation results in
various scenarios. Finally, § 6 concludes the paper.

2 MOTIVATION

In this section, we explain E-M2’s motivation. First, we
demonstrate the existence of modality redundancy’ and
underutilization in multimodal systems. Next, we highlight
the ever-changing nature of the sensing environment, un-
derscoring the need for an adaptive framework to manage
the on/standby states of the modalities and turn on deacti-
vated modalities. Finally, we show that deactivating certain
modalities can introduce abnormal values, which motivates
the design of a modality-conditioned training strategy.

2.1 Modality Redundancy and Underutilization

A multimodal sensing system often experiences the issues
of modality redundancy and underutilization. For our anal-
ysis, we consider a representative one with an RGB camera,

1. The concept of “modality redundancy” (the cause, where modal-
ities provide overlapping information) should be distinguished from
modality collapse [33], a potential result. The latter is an undesirable
training-phase pathology where the model learns to ignore a modality.
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Fig. 2: Accuracy of different modality combinations in
daylight and occluded environments, in which modality
redundancy and underutilization occur

a depth sensor (hereafter, De), and a radar (hereafter, Ra).
Fig. 2(a) illustrates the issue of modality redundancy in a
daylight scenario. The figure presents the HAR accuracies
achieved by various sensor combinations. Although em-
ploying the full set of modalities yields the highest accu-
racy of 96%, a significant insight emerges as the number
of modalities is reduced: the drop in sensing accuracy is
minimal. For instance, the combinations “RGB+Ra” and
“De+Ra” achieve accuracies of 94% and 93%, respectively,
only a 2% and 3% decrease compared to the full modality
set. This evidence strongly indicates that RGB and depth
sensors are redundant, given their overlapping capabilities
in detecting target contours and textures.

We can also observe the issue of modality underuti-
lization in a non-LoS setup. As depicted in Fig. 2(b), the
accuracy of individual RGB or depth sensors approach the
level of random guessing. In stark contrast, radar modality
maintains a relatively high accuracy, reaching up to 72%.
Interestingly, when RGB and depth sensors are combined
with radar, the accuracy does not improve beyond that
of the radar alone, remaining around 72%. This lack of
improvement suggests that these additional modalities are
underutilized. These findings underscore the need for a
strategic mechanism to selectively disable both sensors and
corresponding computing modules of redundant and un-
derutilized modalities based on specific sensing scenarios,
optimizing the effectiveness of the system.

2.2 Time-varying Sensing Environment

In practical scenarios, the sensing environment exhibits
time-varying characteristics. For instance, we encounter pe-
riodic variations in lighting conditions and electromagnetic
fields throughout the day. Additionally, specific events, such
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Fig. 3: Optimal modality combination in a day.
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as a human subject entering or exiting a scene, can lead to
changes in the environment. In such dynamic contexts, the
optimal sensor combinations also evolve. To illustrate this
phenomenon, we deploy the sensing system described in
§ 2.1 to perform Human Activity Recognition (HAR) in a
living room over a 24-hour period. We collect full-modality
performance data (i.e., accuracy, power usage, and compu-
tational overhead) from all sensor and compute modules,
and conduct offline traversal experiments with different
modality combinations, employing distinct deep learning
networks for HAR. Our goal is to identify the optimal sensor
setup, i.e., the minimal overhead configuration that achieves
an accuracy within +2% of the full modality’s performance.
We record the on/standby states of the modalities in the
optimal setup in Fig. 3.

One may readily observe the frequent switching be-
tween on/standby states of the modalities throughout the
day, reflecting that the optimal sensor combination (i.e.,
the setup with low energy and computational overhead
while maintaining sufficient acuracy) is also time-varying.
Furthermore, we can observe some long- and short-term
trends in Fig. 3. First, there is a clear long-term trend. For
example, the RGB camera predominantly enters standby at
night while it is activated during the day. In contrast, the
depth sensor and radar tend to remain active at night to
compensate for the deactivated camera. Secondly, a short-
term trend is also noticeable. When the on/standby states of
the modalities change, switching oscillations occur within
the next few minutes. This phenomenon can be attributed
to the dynamic and bursty nature of human activities in the
scene. These insights from offline experiments underscore
the need for an automatic and real-time modality selection
mechanism that effectively addresses both long- and short-
term trends in sensing environments.

2.3 Modality Anomaly Due to Deactivation

One issue with deactivating modalities, particularly sensing
hardware, is the introduction of abnormal values such as 0’s
and nulls [34]. This is a crucial problem because the anoma-
lies cannot be handled just by reactivating the sensors. These
anomalies can propagate through deep learning computing
modules, leading to erroneous results. Although it is feasible
to train separate deep learning networks tailored to different
modality combinations (as in § 2.1), this approach is im-
practical due to the substantial computational and storage
overhead it necessitates. To illustrate the negative impact
of modality anomalies caused by deactivation, we again
deploy the sensing system described in § 2.1 for HAR and
gesture recognition. Here, anomalous data streams, espe-
cially those result from modality deactivation are filled with
0’s. The resulting accuracies, with and without anomalous
values, are presented in Fig. 4.

One may readily observe that while the baseline accura-
cies for HAR and gesture recognition exceed 90%, the intro-
duction of abnormal values dramatically decreases perfor-
mance. For early fusion, which combines data from different
modalities at the input stage [35], HAR accuracy falls to
79%, 10%, and 11% when abnormal values are introduced in
the RGB camera, depth sensor, and radar modalities, respec-
tively. Similarly, for late fusion, which processes each modal-
ity separately before integrating their high-level results [35],
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Fig. 4: Anomalies due to deactivated modalities cause accu-
racy degradation.

HAR accuracy drops to 85%, 49%, and 52% under the same
conditions. Gesture recognition experiences a comparable
decline in accuracy. Notably, the RGB modality experiences
the least accuracy drop due to it is accustomed to encounter
zeros in dark conditions. In contrast, the depth sensor and
radar, being active modalities, are relatively unfamiliar with
such anomalies. Additionally, late fusion exhibits a smaller
accuracy drop compared to early fusion. This is attributed
to the reduced coupling among modalities in late fusion,
which consequently diminishes anomaly propagation. It is
crucial to note that, in practice, these accuracy drops could
be even more pronounced due to the time-varying nature of
sensing environments, as discussed in § 2.2.

3 SYSTEM DESIGN

Based on the discussion in § 2, we introduce E-M?, a
framework for efficient multimodal sensing and comput-
ing. E-M? is described in three main steps, as shown in
Fig. 5. First, E-M? employs a lightweight DPPN 7 to dy-
namically control the on/standby states of the sensing and
computing modules. Second, to mitigate the information
deficit caused by the deactivated®> modalities, E-M? uses a
long-term, short-term temperature scheduling mechanism,
strategically activating the deactivated sensing modules,
enabling DPPN to acquire complete information and make
informed decisions. Third, to combat the accuracy degrada-
tion caused by anomalies due to deactivated modalities, E-
M? incorporates modality-conditioned layers that modulate
the features within the sensing network, thus improving
its robustness against such anomalies. In the following, we
initially concretely define our problem and then delve into
the specifics of E-M?.

3.1 Overview and Problem Statement

The goal of E-M? is to achieve efficient multimodal
sensing various tasks, including HAR, gesture recogni-
tion, and people counting. For a given task, we employ
a multimodal system consisting of K input modalities
{My,Ma,...,My,...,Mg}, 1<k < K.Each modality M
is associated with a specific sensor S), designed to capture
the relevant signals. To optimize the analysis and control
of these separate modalities, our system minimizes the
coupling between computing modules. Instead of process-
ing data from all modalities simultaneously, E-M? utilizes

2. Throughout this paper, the terms “deactivated” or “disabled” of
a E-M?’s sensor refers to a low-power standby mode, not a complete
power-off state.
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distinct computing modules Cj, for each modality, as shown
in Fig. 5. Without loss of generality, ResNet-50 is used as the
computing module for feature extraction across all modal-
ities [36]. To further enhance the low-coupledness of the
modalities, E-M? utilizes a late-fusion layer with trainable
parameters. This layer fuses the results extracted by each
computing module at the final layer, thereby preserving the
integrity of the data flow throughout earlier layers.

The key problem E-M? is trying to solve is how to
selectively turns on or standby both Sj and Cj (“dual-
pronged” means controlling both the sensors and comput-
ing modules) to achieve optimal energy and computational
efficiency. Our approach centers around the development
of a DPPN. This network processes data obtained from
the sensors S and emits control signals to manage the
on/standby state of both S, and C}, as will be explained
in § 3.2. The intertwined nature of sensing and computing
modules presents challenges, particularly when deactivat-
ing certain sensors. First, deactivating specific sensors can
lead to information loss, impeding the DPPN’s ability to
make accurate decisions. To address this, we propose a
method to ensure all sensors are activated at opportune
moments, thereby providing comprehensive data input, as
will be discussed in § 3.3. Second, entering standby some
sensors may result in anomalies for the perception network
(i.e., computing modules), as these scenarios are unseen
in the training data. To mitigate this issue, E-M2 informs
the computing modules of the current sensor states and
modulate their learning processes accordingly. Without loss
of generality, we choose RGB camera, depth sensor, and
radar modalities to implement E-M?’s prototype, due to
their widespread use. Nonetheless, E-M? is supposed to
generalize to other modalities as well.

3.2 Modality Selection

The challenge of optimal modality selection fundamentally
involves making discrete decisions: specifically, determining
whether sensors should be activated or deactivated. This
discrete nature poses a significant obstacle to the application
of conventional deep learning techniques, which rely on
differentiable processes for optimization through standard
backpropagation. One promising approach to address this
issue is to frame the decision-making policy within the
context of reinforcement learning (RL) [37]. This approach
allows for the estimation of policy parameters by calculating
the gradient of expected rewards. However, incorporating
RL introduces complexities in training, often necessitating
variance reduction techniques that add computational over-
head. To overcome these challenges, we propose a differen-
tiable dual-pronged policy network (DPPN) 7. This network
is specifically designed to solve the non-differentiable issue
for both hardware and the computing modules, allowing for
discrete decision policies aiming at reduced energy as well
as computational overheads.

DPPN works as follows: initially, a convolutional feature
extractor (with depthwise separable convolutional layers to
minimize computational overhead) captures spatial features
from the input data. These features are then fed into an
LSTM module [38] to further extract temporal causality
features. Subsequently, the spatial-temporal features are
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Fig. 5: System design of E-M?.

mapped to the logit space using a linear layer, yielding
scores )y ; for the computing and sensing modules of differ-
ent modalities k € {1,..., K} at the state [ € {on, standby}.
To make discrete decisions Y}, ; from the scores, E-M? lever-
ages the Gumbel-Softmax [39] technique. Gumbel-Softmax
addresses the non-differentiability issue of making discrete
decisions by providing a differentiable approximation to
the discrete sampling process. By introducing Gumbel noise
to the logits and applying the softmax function, Gumbel-
Softmax enables gradients to flow through the discrete
decisions during training. This facilitates the exploration of
different discrete configurations and promotes the learning
of robust and generalizable representations, ultimately en-
hancing the decision-making capabilities of the DPPN.

exp ((log (A1) + gr1) /7h)
Zje{on,standby} exXp ((IOg ()‘k,j) + gk»j) /Tk) ’

Yi, = ey

where gi,...,g; are iid samples drawn from Gum-
bel(0,1) [40], 7 is a temperature parameter [41] for each
modality which will be discussed in § 3.3. The dual-pronged
outputs of DPPN, denoted as 7, simultaneously control the
on/standby states of the sensors and the corresponding
computing modules. To effectively train DPPN, we define
the following loss function, which encourages the selection
of modules that minimize power consumption and compu-
tational overhead while maintaining sensing performance:

E(Vvy) ~Dhrain

Legc+ Y apSk + Zﬁkck:| : 2
k k

where Ly, represents standard cross-entropy [42] to mea-
sure the classification accuracy, and >, arSk, >_; BkCk
measure the overhead of the sensing and computing mod-
ules for the k-th modality, respectively. In the equation, we
have:

2 2
g (IS;‘O) correct and O (lc’;lo) correct
k= ; k=
0% else 13 else |
3)
Iselo ) lexlo )2
where S, = (2£°%) and C} = % represent the

proportion of time the k-th sensor and the corresponding
computing module is in the “on” state relative to the entire

time span p, assuming correct predictions during the train-
ing phase. Additionally, S, = v and C}, = & denote the
fixed cost associated with prediction errors, which acts as
an incentive for the model to minimize classification errors.

3.3 Long Short-term Temperature Scheduling

In §2.2, we have observed that sensing environments exhibit
time-varying characteristics, leading to the evolution of the
optimal sensor combination over time. Consequently, it is
impractical to perform modality selection just once and rely
on it indefinitely. Although the DPPN, as discussed in § 3.2,
can automatically select modalities, it lacks sufficient ex-
ploration capabilities and may become stuck in suboptimal
configurations. Unlike sensors-always-on systems, this issue
is particularly exacerbated when sensors enter standby:
DPPN cannot obtain sufficient information from an inactive
sensor, which may consequently never be reactivated. To
address this limitation, one potential mechanism for en-
hancing exploration is by increasing the temperature 7 in
Eq. (1). A higher temperature results in a more uniform
logit distribution, thereby encouraging the DPPN to explore
different on/standby states for sensors that have already
entered standby. Conversely, a lower temperature promotes
exploitation by increasing the discrepancy in the logit dis-
tribution, making the system more prone to make the “most
likely” decisions. To strike a balance between exploitation
and exploration that achieves maximal efficiency, we should
come up with a temperature scheduling mechanism that
adapts to the environment.

To effectively manage temperature scheduling, it is cru-
cial to understand the two trends in Fig. 3: the long-term
trend characterized by daily fluctuations, and the short-
term trend that follows in modality state changes. The long-
term temperature 7 predictably shifts over time in response
to circadian cycles influenced by ambient light variations,
environment dynamics, and human activities. In contrast,
the short-term temperature ¢ plays a vital role in adapting
to abrupt modality changes that may result in incomplete
modal data. An elevated 77 becomes crucial under such
incomplete conditions, as it reactivates the sensor, thereby
empowering DPPN with the necessary data to accurately
assess environment stability. Furthermore, if the system
identifies multiple environment oscillations within a set
time period (practically set to 1 min), TE will not reset,
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Fig. 6: Long- and short-term temperatures.

leading to a continuous reduction in temperature aimed at
preventing potential instability. Thus, the overall tempera-
ture is expressed as 7, = T + 7y, encompassing both long-
and short-term trends.

In the following, we detail the implementation of 7 and
3. A simplistic method might involve using fixed temper-
atures for every sensing environment. However, given the
varied nature of these environments and their associated
tasks, it is crucial for E-M? to adapt rather than apply a one-
size-fits-all solution. Therefore, we employ a learning-based
strategy, leveraging multilayer perceptrons (MLPs) [43] that
are designed to learn and adjust the temperatures dynam-
ically. Specifically, and 7+ = MLP}(t) and 77 = MLP}(t),
where ¢ represents the current timestamp. These MLPs are
trained concurrently with DPPN, using the timestamp as
input to output the appropriate temperature for that mo-
ment. This mapping can be effectively learned because the
MLPs receive a rich, task-relevant gradient from the subse-
quent computation graph, and the underlying relationship
between the scalar time input and the scalar temperature
output is highly structured. We present an example of the
trained 7Lz and TRgp in a living room inhabited by a
family of three. The results shown in Fig. 6 reveal that
the long-term temperature Thp is elevated during the day
and decreases at night, aligning with the family’s daily
routine. Furthermore, 75 starts at a higher value, which
aids in reactivating the RGB camera to gather comprehen-
sive environment data, before gradually declining as the
environment becomes stable. Note that the temperatures are
designed to be a “good fit” that renders robust temporal
priors but do not provide the system’s ultimate generaliz-
ability; the results shown in Fig. 6 are illustrative examples
of this mechanism’s behavior. In practice, our system learns
aggregate temperature accounting for all scenarios.

3.4 Modality-conditioned Training

Although our design in § 3.3 alleviates the negative impact
of modality deactivation, the negative impacts of anomalous
values makes it insufficient to only schedule the temper-
atures. As stated in § 2.3, deactivated sensors during sys-
tem operation might introduce anomalies unseen during
training, thus negatively impacting sensing performance.
This discrepancy arises not only because of feature missing,
but also because traditional training assumes full-modality
activation, an assumption that breaks down in scenarios
where both sensors and computing modules are dynami-
cally controlled. When some sensors are deactivated, data
distribution shifts occurs, leading to a mismatch between
the training and operational environments. To address this
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Fig. 7: E-M? modulates temporal multimodal representa-
tions by modality-conditioned training.

issue, we should come up with a method to explicitly inform
the computing modules of the on/standby states of the
sensors, therefore guiding a focused analysis on the sens-
ing data. To achieve this, we employ modality-conditioned
training to condition the computing modules on the sensor
states, allowing it to focus more on effective information
while dropping out anomalies. This approach ensures that
the system can dynamically adapt to changes in sensor
states, maintaining robust performance even in the presence
of unexpected anomalies.

We present the design of the modality-conditioned
training in Fig. 5. The module incorporates a modality-
conditioned queue Q of length p to store history of sensor
switching decisions. When the DPPN makes a new binary-
encoded sensor-related switching decision v to control the
sensors, v} is simultaneously enqueued in temporal order,
dequeuing the oldest control vector at the front of the queue.
Consequently, at time ¢, Q = [vi_pﬂ,vi_p, e ,vi?. The
contents of Q are then input into a data fusion module
consisting of Gated Recurrent Units (GRUs) [44] for extract-
ing temporal features from the sensor switching decision
history. Subsequently, a linear layer fuses these features and
produces weights and biases (w’, 8%) to modulate the n-th
temporal representation of the k-th modality as follows:

F(Ry|wy, By) = wiRy + By, @

where R” represent the n-th temporal representation of the
k-th modality. The proposed affine transformation effec-
tively modulates RF. This modulation process is achieved
through a Hadamard product [45] between the temporal
representations and learnable weights w¥, followed by the
addition of learnable biases 3%. This process enhances the
feature strength of valid information, reduces the focus on
invalid parts. Meanwhile, the biases 3% help fill in valid val-
ues and prevent anomalies, further enhancing the quality of
the modulated representations. The modality-conditioned
training strategy is computationally efficient, aligning with
E-M?’s overall efficiency goal, as it employs only an affine
transformation. Fig. 7 illustrates the modulation process in
the context of a gesture recognition task, showcasing how
the temporal representations from RGB and depth sensors
(capturing the human hand) and the spectrogram from
radar sensors are weighted and biased.



4 |IMPLEMENTATION

In this section, we describe the dataset, implementation, and
the evaluation setup used by E-M2.

4.1 Dataset

Due to the lack of publicly available datasets suited to our
needs, we have collected our own dataset covering sens-
ing tasks including HAR, gesture recognition, and people
counting. The entire dataset is not used across all tasks.
Instead, three independent datasets are collected, each ded-
icated to training and evaluating a corresponding model
for an individual task. For HAR, we have captured data
of 12 common human activities: walking, running, jump-
ing, squatting, turning around, sitting down, standing up,
falling down, fencing, bending, nodding, and leg raising.
For gesture recognition, we focus on 10 specific gestures:
swiping left, swiping right, swiping up, swiping down,
pinching in, pinching out, tapping, double tapping, and ro-
tating both clockwise and counterclockwise. These gestures
are chosen for their relevance and practical application in
user interfaces. The people counting task is designed to
accurately discern the number of individuals present in a
room, offering valuable insights for space management and
monitoring.

Our data covers various sensing orientations across 20
distinct scenarios: a auditorium, a hallway, a living room, a
kitchen, a bathroom, a dining room, a balcony, a library,
a gymnasium, 2 meeting rooms, 3 offices, 3 classrooms
and 3 bedrooms. Four extra sets are collected for further
evaluations, which is detailed described in §5.2. For each
class in each scenario in HAR and gesture recognition
tasks, we collect over 20,000 data samples by RGB camera,
depth sensor and radar. To synchronize the modalities, we
perform a rapid hand-waving in front of the sensors before
the subjects starts their actions. Subsequent data from each
modality is aligned according to the timing of this motion.
For people counting tasks, each scenario comprises 0-20
individuals in unique positions and poses. Over 20,000 data
samples are collected per scenario. For each of the three
task-specific datasets, the data is partitioned into a 80%
training set and a 20% test set. A 10% validation set is
randomly sampled from training set for each fold of the
cross-validation. This process ensures all partitions contain
samples from all scenarios. The experiments strictly follow
the IRB of our institution.

4.2 System Implementation

Hardware implementation: E-M? employs the following
sensors: a XeThru X4M05 IR-UWB radar [46] with a fre-
quency range of 7.29~8.75 GHz and a maximum sampling
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Fig. 8: E-M? prototype.
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rate of 2042 fps/s; a DCAM710 depth sensor [47] with a
detection range from 0.35m to 6 m, resolution of 640x480
and maximum frame rate of 30fps; and an RGB camera with
a resolution of 1920x1080 and frame rate of 30fps. To ensure
the consistency across the modalities, we place them on a
fixed tripod horizontally as shown in Fig. 8. A GPU work-
station equipped with two NVIDIA GeForce RTX 4090 [48]
graphics cards is used for training E-M?. We deploy E-M? on
a NVIDIA Jetson™ TX2 [49] edge computing device during
the inference stage. We also employ the WASITES PZ9002
digital power meter [50] with a power resolution of 0.01W,
to realize precise power consumption measurements.
Software implementation: Python 3.11.4 and PyTorch 2.2.1
with CUDA 12.1 support are used for developing the soft-
ware of E-M2. The computational overhead of the system,
measured in Giga Floating-point Operations (GFLOPs), is
evaluated using NVIDIA Nsight tools [51]. We use the
software FFmpeg [52] to perform data resampling and
standardization for aligning different modalities and easier
processing by the neural networks.

Power state transition protocols: The state switching is man-
aged by the NVIDIA Jetson TX2 host. For RGB camera, the
host sends suspend commands via USB 2.0 protocol using
standard UVC power management. The USB controller halts
video streaming, powers down the CMOS image sensor
and analog front-end circuits, while maintaining USB in-
terface logic for bus enumeration and wake-up detection.
For the depth sensor, the host sends standby commands
via USB 2.0 using Vzense SDK. The internal controller then
halts data streams and powers down IR VCSEL projector
and image sensors, maintaining USB interface circuitry for
resume detection and power monitoring logic. For radar,
the Jetson host commands the X4M05 module via USB 2.0
protocol to enter standby. The module’s controller ensures
data acquisition completion, then configures X4 chip power
registers via internal SPI to power down UWB transceiver
and clocks while maintaining embedded controller, low-
power oscillator, and wake-up logic.

4.3 Evaluation Setup

To evaluate E-M2, we define the evaluation metrics includ-
ing power consumption, computational overhead, and an
additional metric for sensing performance. In the context
of HAR and gesture recognition, this performance metric
is classification accuracy. For the people counting task, we
approach it as a classification problem, defining the metric
as the accuracy in predicting the number of individuals.

5 EVALUATION

In this section, we evaluate the performance of E-M? under
various experiment setups mentioned in 4.3. We also dis-
cuss the generalization capabilities, analyze the impact of
practical factors, and perform analysis of E-M?’s modules.

5.1 Overall Performance

In this subsection, we compare the performance of E-M?
with the baseline method for three tasks: HAR, gesture
recognition, and people counting. As a reference, we record



the average power consumption and computational over-
head of the RGB camera, depth sensor, and radar in run-
ning mode/standby mode during a single test. The power
consumption of RGB camera, depth sensor, and radar are
6.03W, 437 W, and 1.24 W in running mode, and 0.22 W,
0.20 W, and 0.08 W in standby mode, respectively. More-
over, the computational consumption of RGB camera, depth
sensor, and radar in running mode are 161.45 GFLOPs,
69.13 GFLOPs, and 32.67 GFLOPs, and all zeros in standby
mode, respectively.

5.1.1 HAR

Fig. 9 provides a comparative analysis of E-M? and conven-
tional baseline methods in the context of the HAR task. As
depicted in Fig. 9(a), E-M? demonstrates robust accuracy in
the HAR task. The figure reveals that irrespective of whether
the problem involves 5 classes or 10 classes, the average
accuracy of E-M? is on par with methods that leverage
all modalities simultaneously, and it significantly outper-
forms any dual-modality or single-modality approaches. E-
M? demonstrates enhanced stability in performance when
classes of the task increases for its capability to adapt
to various situations. Unlike the baseline methods, which
experience a notable drop in accuracy from the 5-class to
the 10-class problem, E-M? maintains its performance and
even surpasses the full-modality baseline method in certain
metrics. This can be potentially attributed to its capability
to selectively deactivate modalities that are detrimental and
potentially distracts the current task.

Fig. 9(b) reveals that E-M? reduces system power con-
sumption by approximately 41.35% compared to the base-
line method with full modalities, including the power con-
sumption of edge devices. Its energy efficiency even exceeds
that of some dual-modality combinations. The computa-
tional overhead curve exhibits a similar pattern to power
consumption. Overall, E-M? reduces computation by about
47.12%, which is only 83.22% of the RGB+De combination.
The single-modality data indicate that the RGB camera is
the primary contributor to power consumption and compu-
tational overhead. E-M? effectively mitigates these demands
through on-demand control of the RGB modality.
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Fig. 10: Performance of gesture recognition.

3.13% to 9.47%, primarily attributed to the inherent chal-
lenges radar faces in distinctly differentiating subtle hand
movements, while E-M? experiences a marginal decline of
approximately 2.7%. This once again proves the previously
discussed robustness of E-M?.

As shown in Fig. 10(b), the comparative analysis of
E-M? and baseline methods regarding power consump-
tion and computational overhead reveals that the gesture
recognition and HAR tasks exhibit similar trends. E-M?’s
power consumption and computational overhead are sit-
uated between those of most dual-modality combinations
and single-modality ones. A notable phenomenon is the
significant increase in power computational overhead for
gesture recognition when compared with HAR, possibly
attributed to the necessity of capturing subtle hand move-
ments which demands higher spatial resolution for detailed
information extraction. Despite the overhead increase, E-M?
strives to decrease these overheads by strategically disabling
redundant modalities, underscoring its superior efficiency.

5.1.3 People Counting

The people-counting accuracy of E-M? is shown in Fig. 11.
As seen in Fig. 11(a), the overall sensing capability of E-
M? closely matches that of its full-modality counterpart
while outperforming all other modality combinations. No-
tably, the counting accuracy decreases as the number of
people increases from 0 to 20. This is likely because as the
scene becomes more crowded, the probability of both inter-
person occlusion and partial person-object occlusion rises,
making it more challenging to distinguish individuals. Each
modality combination presents a unique accuracy curve
with a distinct “turning point,” after which the rate of
decline becomes more pronounced. This observation can
potentially be attributed to the limitations in the sensor’s
resolution. Despite this decline, E-M? demonstrates a more
stable accuracy as the number of people increases when
compared to the baselines.

Fig. 9: Performance of HAR.

5.1.2 Gesture Recognition

Fig. 10(a) reports the results of comparing E-M? with base-
line methods for the gesture recognition task. Due to the
smaller amplitude of movements, gesture recognition tasks
are harder to distinguish compared to HAR, resulting in
a certain drop in overall accuracy. Nevertheless, the base-
line method exhibits a reduction in accuracy ranging from
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We also inspect the power and computational overhead
as a function of the number of people, as shown in the
Fig. 11(b). It is shown that both power consumption and
computational overhead increase progressively with the
number of participants, which is particularly pronounced
when the number exceeds 7. This behavior highlights the
E-M?’s intelligent adaptation to scenarios with more partici-
pants, as it strategically allocates extra resources to main-
tain sensing performance in more complex and crowded
scenes. Additionally, we note two key observations from our
broader analysis that are not directly shown in this figure:
first, on average, E-M? reduces power and computational
overhead by 39.5% and 35.6% respectively compared to the
full-modality baseline; second, E-M?’s power and computa-
tional requirements slightly exceed those of a single depth
sensor. This demonstrates an effective decision, bypassing
the power-intensive RGB camera to strategically leverage
the more efficient depth sensor.

5.2 Generalization Capabilities

In this section, we evaluate the generalization capability of
E-M?. The scenarios are notably diverse, featuring various
environments and human subjects with differing heights,
weights, postures, and other physical traits.

5.2.1 Generalization to Different Environments

We further evaluate the generalization capability of E-M?
in 4 environments (lab, bedroom, office and playground)
unseen during training. Without loss of generality, we fix
the number of people in the scene to 5 for the people
counting task. The results of our experiments are illustrated
in Fig. 12(a). It is revealed that for the HAR task, the sensing
accuracy is minimally impacted, experiencing a decline of
no more than 2.87%. Although the gesture recognition and
people counting tasks face slight challenges due to varia-
tions in hand poses and individuals’ positions and postures,
E-M? consistently performs with an accuracy exceeding
90%, even in the most complex situations. This demonstrates
E-M?’s robust performance and adaptability in unfamiliar
environments.

We further inspect the system’s power consumption
and computational overdhead when generalizing to unseen
environments in Fig. 12(b). For all three tasks, different
environments cause significant variations in the system’s
modality usage decisions, leading to substantial fluctuations
in power and computational overhead. Nevertheless, for
all tasks, E-M?’s consumption remains under 70% of the
full modality as mentioned in § 5.1, demonstrating E-M?’s
capability to achieve efficiency by deactivating unnecessary
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Fig. 13: 7 obtained by the long short-term temperature
scheduling effectively captures the aggregate activity dy-
namics across various scenarios.

sensors and their corresponding computing modules in
complicated environments.

To provide evidence of the system’s generalizability
and the effective fit of the long short-term temperature
scheduling mechanism, we sample 7 days of data across all
scenarios and plot the average daily trends of: i) 7 = 7L+ 7°
(aggregated from all scenarios and averaged across all sen-
sors and days), ii) the number of sensor state changes and
iii) the number of human activities. The results visualized in
Fig. 13 illustrates an excellent fit among the three trends. It is
shown that higher values of T correspond to periods of more
frequent human activities, which in turn leads to a higher
rate of sensor state switchings made by the DPPN; while
lower T values align with the stable periods. This synergy
between the universal temporal prior and the data-driven
policy is the cornerstone of E-M?’s ability to generalize
effectively to new environments.

5.2.2 Generalization to Different Human Subjects

We further investigate the generalization capabilities of E-
M? across different human subjects, presenting the results
in Fig. 14. To maintain consistent notations across various
tasks, we use “PC” to denote people combinations. In the
context of HAR and gesture recognition, each human subject
is considered a single “PC,” while in people counting, a
group of people with the same number constitutes one
“PC.” Fig. 14(a) demonstrates that variations in people
combinations have a significant impact on HAR outcomes
due to the differing movement habits and patterns among
human subjects. In contrast, for gesture recognition, the
impact is less pronounced, likely because subjects are asked
to perform standardized gestures. For the people counting
task, sensing performance discrepancies across different
people combinations are minimal. This is likely because the
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neural network prioritizes the group as a whole rather than
focusing on individual habits.

We demonstrate how power consumption and computa-
tional overhead are affected when adapting to new human
subjects. As shown in Fig. 14(b), E-M? maintains consis-
tent overhead across various combinations of individuals, a
trend in stark contrast with the outcomes in § 5.2.1. This con-
sistency suggests that variations in human subjects do not
substantially alter the data features influencing the decision-
making of the DPPN. However, significant variations in
overhead are observed in the people counting task. This can
likely be attributed to the fact that the presence of multiple
individuals alters the environment, thereby impacting the
DPPN’s decision-making process.

5.3

We study the impact of practical factors in this section.
Note that all the HAR and gesture recognition tasks are still
evaluated in a single-person context, aligning with the scope
of our work. For the people counting task, the distributions
of the number of participants are consistent across differ-
ent factors. Unless otherwise noted, all evaluation metrics
reported in this section represent the average performance
across the three tasks.

Impact of Practical Factors

5.3.1

We conduct experiments on the system under typical indoor
and outdoor lighting conditions (0 to 20000 lux). As the
results shown in Fig. 15, the system maintains an accuracy
of over 89% under extremely low light conditions (< 10lux).
This is attributed to the use of depth sensors and radar
modalities, which are unaffected by lighting conditions.
Subsequently, the system opt to activate the RGB camera
modality, achieving an accuracy of over 95%. The power
consumption curve shows a corresponding increase, further
validating the system’s decision. Thereafter, as the illumi-
nation increases to over 19000 lux, the RGB images become
overexposed, prompting the system to deactivate the RGB
camera once again.

lllumination

5.3.2 Time of day

Fig. 16 reveals the impact of the time of day. Throughout
the 24-hour cycle in one day, various factors such as illumi-
nation, human activities, and electromagnetic field undergo
continuous changes. These fluctuations result in deviations
of the system’s accuracy and workload. As an example, the
system demands more energy and computation during the
day (7:00 to 18:00) than at night (18:00 to 7:00) because it
needs to process more frequent human activities. However,
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despite these external influences, E-M? consistently main-
tains an accuracy above 90%, demonstrating exceptional
robustness. Additionally, although certain special circum-
stances necessitate higher power consumption to achieve
sensing accuracy, the average power consumption remains
within 9 W, ensures excellent energy efficiency while main-
taining high accuracy.
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Fig. 17: Correlation matrices of sensor states.

Over a 24-hour monitoring period, we observe a interest-
ing phenomenon where certain modalities shows significant
correlations. This prompts us to investigate potential im-
provements. We plot the correlation matrices of all modal-
ities in different tasks in Fig. 17. According to Fig. 17(a),
RGB cameras and depth sensors exhibits a marked negative
correlation in HAR tasks, likely due to their alternating
operation with the 24-hour cycle. In gesture recognition
tasks, as illustrated in Fig. 17(b), depth sensors and radar
show a strong positive correlation, because both depth senor
and radar have strong capabilities to accurately capture
depth information, while RGB camera can only capture
information such as color and contour. Considering the
significance of depth in gesture recognition, it is plausible to
assume that RGB camera might remain inactive for longer
durations in this task. In people counting tasks, as depicted
in Fig. 17(c), a strong correlation between RGB and depth
sensors is noted, suggesting that radar’s resolution might
be inadequate for densely populated scenes, whereas the
other two sensors are more effective in such scenarios.

5.3.3 Occlusion

Target occlusion is a critical factor influencing perception
accuracy. We define occlusion as the obstruction of the
view of sensors. In our experiments, we access its impact
by measuring the system performance while changing the
sensors’ Field of View percentage (%FoV). Results in Fig. 18
indicated that when %FoV is below 42%, RGB cameras and
depth sensors are nearly ineffective, leading E-M? to deac-
tivate these modalities for better power and computation
efficiency. Beyond this threshold, the system activates all
modalities to enhance accuracy. After 85%, RGB sensors
alone suffice for accurate sensing, allowing the system to
deactivate redundant radar and depth modalities to for
optimized efficiency.
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5.3.4 Distance

The distance between the sensor and the sensing target also
markedly influences accuracy. System performance in differ-
ent sensing distances is shown in Fig. 19. Within the sensor’s
effective range, sensing accuracy declines slowly as the dis-
tance increases. A minor accuracy drop shows up at around
6.0 m, which is the maximum operational distance of the
depth sensor used in this study. At greater distances, accu-
racy experiences a brief improvement, along with increased
power consumption and computational overhead, suggest-
ing the system engages additional modalities to maintain
sensing functionality. Within the experimental range of up
to 10 m, the worst accuracy observed is 89.75%, which is
adequate for most indoor and outdoor sensing applications.

5.3.5 Participant Orientation

Beyond the factors previously discussed, we further inves-
tigate the impact of participant orientation, focusing on
HAR and gesture recognition tasks as people counting is
fundamentally insensitive to facing directions. The results
are shown in Fig. 20. For the HAR task shown in Fig. 20(a),
the system maintains stable, with accuracy consistently ex-
ceeding 95% across a wide orientation range from 0° to
150°. While a slight decline is observed as the participant
reaches a full 180° back-facing orientation, the system ac-
tively preserves high performance by allocating more re-
source. Gesture recognition is more sensitive to orientation
as Fig. 20(b) reveals. The system’s performance is stable up
to 145°, after which it gradually decreases to a final accuracy
of approximately 52% at 180°. Notably, accuracy remains
significantly above random chance even when the torso
completely obstructs gestures beyond 145°. This suggests
that E-M? effectively utilizes radar and learns to infer from
secondary cues, such as subtle torso movements. Despite
this performance variation, the increase in system overhead
at extreme angles is similar for both HAR and gesture
recognition. This reveals an adaptive mechanism where E-
M? strategically trades higher power and computational
overhead to preserve sensing performance under challeng-
ing conditions.
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5.4 Module Analysis

In this section, we analyze the effects of E-M?’s modules.

5.4.1 DPPN

DPPN functions to decide the on/standby states of sen-
sors and their corresponding computing modules based on
sensing environment. Besides DPPN, RL methods [53] and
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Fig. 21: Comparison of DPPN module and its counterparts
on system performance.

single-pronged approaches [28], [54] can also achieve sim-
ilar goals. However, not all methods are equally effective.
Fig. 21 presents a comparison among them. The RL method
achieves the highest accuracy across three tasks. However,
its design necessitates sophisticated strategy optimization
and value function estimation, alongside the management
of high-dimensional state spaces during environment in-
teractions, leading to significant power consumption and
computational burden. Therefore, despite the RL method’s
superior accuracy, E-M? is more appropriate for practical
edge environments due to its manageable overhead.

On the other hand, the single-pronged method, which
perpetually activates all sensors to acquire environment
data and make comprehensive decisions on whether to
activate the corresponding computing modules, achieves
high accuracy by relying on complete environment informa-
tion. This approach can significantly reduce computational
overhead but still fails to address the problem of excessive
system power consumption according to Fig. 21(b). Keeping
all sensors active at all times means the system consumes
energy even when not needed, resulting in low overall
energy efficiency. DPPN has comprehensive and unique
advantages over the other two methods. It integrates the
high accuracy of RL methods with the low computational
cost of single-pronged approaches, making it a more ideal
choice in edge computing environments.

5.4.2 Long Short-term Temperature Scheduling

E-M? is trained with a dynamic 7 that accounts for both
long-term and short-term variations in the sensing envi-
ronment. For comparison, we assess E-M? against two
alternative approaches: one involves training a single 7,
and another with a fixed 7. The comparative results are
illustrated in Fig. 22. Specifically, Fig. 22(a) highlights the
accuracy outcomes, demonstrating that E-M? consistently
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surpasses the other methods by approximately 3% and
7% across all tasks. This performance quantitatively vali-
dates the effectiveness of E-M? in learning the dynamics of
7, indicating that employing long short-term temperature
scheduling effectively captures both daily and short-term
environment dynamics. Conversely, the single-r method
struggles to adapt to changes, often leading to improper
modality usage strategies that overlook critical information.
This limitation is even more pronounced when the temper-
ature is fixed.

Fig. 22(b) further presents a comparative analysis of
energy and computational overhead for E-M?, the single-
7 method, and the fixed-T approach. Throughout a typical
sensor monitoring cycle, E-M? demonstrates superior sens-
ing performance through dynamic adaptation to changing
environments. This enhanced performance comes with the a
slight increase in power and computational overhead: com-
pared with the single-7 method, E-M? incurs an additional
overhead of 1W and 30 GFLOPs. When compared with the
fixed-T method, these numbers rise to approximately 2 W
and 50GFLOPs. Despite these slight increases, the improve-
ment in sensing performance is substantial, underscoring
the efficacy of E-M2.

5.4.3 Modality-conditioned Training

We conduct an ablation study to evaluate the impact of
the modality-conditioned training strategy of E-M?. Fig. 23
presents a performance comparison between models trained
with and without this strategy, revealing an average accu-
racy improvement of 18.62% across various tasks when em-
ploying the modality-conditioned training strategy. While
this strategy significantly enhances accuracy, it does intro-
duce some extra overhead. This is primarily due to the
maintenance of the queue within the modality state pipeline
and the integration and synthesis of data streams within the
GRUs in the data fusion pipeline. However, this overhead is
minor compared to the scale of the sensing neural network,
rendering it negligible. In conclusion, the improvements in
both accuracy and efficiency make this strategy a worth-
while enhancement to multimodal sensing and computing
systems.
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5.5 Hyper-parameter Tuning

We examine how hyper-parameters influence the perfor-
mance of E-M?, specifically focusing on the weights «y
and fj in the loss function described in Eq. (2). Without
loss of generality, we choose to evaluate on the HAR task.

12

—RGB 0.25
ap. 0.05 —De
—§ —Ra

0.06

“D

Qe 0.04

©
P

Accuracy (%)
Accuracy (%)
ES

©
=]

9 92 94 96 98 10 180 182 184 186 188 190
Average Power (W) Comp. Overhead (GFLOPs)

(a) Accuracy vs. power consump<{b) Accuracy vs. comp. overhead.

tion.

Fig. 24: Impact of o on accuracy and overhead.

During our analysis, we systematically adjust one hyper-
parameter at a time while keeping all others at their default
settings: args = 0.3, ape = 0.35, ara = 0.75, Brge = 0.25,
Bpe = 0.4, and Bra = 0.8. The default values ensure E-
M? maintains a sensing accuracy within 1% of its full-
modality version. Figures 24 illustrates the effects of varying
o, on sensing accuracy and overhead. Our analysis reveals
a general trend: increased accuracy coincides with higher
power consumption or computational overhead. This obser-
vation aligns with information theory principles, where an
enhanced signal-to-noise ratio allows for better information
extraction about the target. Furthermore, increasing o, acts
as a penalty for excessive power and computation , reducing
both overheads. Notably, tuning ap. significantly impacts
accuracy, because the depth sensor offers substantial infor-
mation with minimal power and computational demands.
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Fig. 25: Impact of 5 on accuracy and overhead.

Fig. 25 clearly demonstrates the impact of adjusting the
overhead weight [ associated with computing modules.
One may observe a positive correlation persists between
accuracy and average power/computational overhead, mir-
roring the effects observed when fine-tuning o). However,
unlike oy, B, influences only the computing module usage,
resulting in a comparatively smaller effect on overall system
performance. Notably, sensing accuracy is most sensitive
to frgp linked with the RGB camera, owing to the rich
information it gathers and the feature extraction by comput-
ing modules. Together, Figures 24 and 25 offer valuable in-
sights into selecting optimal parameters o, and Sy, thereby
enabling adaptations to diverse power and computational
constraints in varying edge environments.

5.6 Modality Extension

In this section, we conduct experiments with additional
modalities to validate the extensibility of our system. We
incorporate Livox Mid-360 LiDAR [55] (denoted as “Li”)
and the 802.11ax channel state information (CSI) of the
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Fig. 26: Extending E-M? to more modalities.

ASUS RT-AX86U Pro router [56] (denoted as “Wi”) to per-
form HAR. These two modalities are particularly valuable
for HAR applications: LiDAR captures pointclouds with
contour and reflectivity information of the target, while
WiFi detects human activity by channel variations caused by
interactions between RF signals and the target. However, the
computational resources and hardware constraints in edge
environments, such as insufficient data ports mentioned in
§ 1, make it challenging to achieve synchronization and
efficient data processing across all modalities on a single
computing unit. As a practical alternative, we implement
a 3-modality configuration that combines RGB camera, Li-
DAR, and WiFi for supplementary experiments.

The results depicted in Fig. 26 demonstrate the overall
performance of the corresponding models. Comparing the
7-th box of Fig. 26(a) and Fig. 9(a), LIDAR demonstrates
superior accuracy compared to the depth sensor, mainly
because it yields richer contour and geometric informa-
tion for the recognition network. Similarly, the 8-th box
in both figures reveals that WiFi exhibits lower accuracy
than radar. This discrepancy stems from WiFi signals’ in-
herently lower range and angular resolution. Moreover, the
communication-oriented beam-forming technique further
diminishes the signal quantity available for sensing pur-
poses. Despite these, E-M? strategically utilized the informa-
tion from WiFi together with other modalities, enabling the
system to achieve an 95.7% mean accuracy. Fig. 26(b) shows
the participation of LiIDAR introduces additional energy and
computational costs. Nevertheless, when compared with
full modalities, E-M? demonstrates 44.03% energy savings
and 35.38% reduced computational overhead while sustain-
ing high accuracy performance, aligning with our previous
experimental results.

5.7 Extension to Other Datasets

In this subsection, we introduce that E-M? functionally has
the ability to support more modalities and activities. We
extend E-M? to MM-Fi dataset [57] for offline simulation
experiments. This HAR dataset features a comprehensive
collection of five key modalities: RGB images, depth images,
LiDAR point clouds, radar data, and WiFi CSI data. This
robust combination captures 27 distinct human activities,
all thoroughly validated through rigorous testing in peer-
reviewed literature. When evaluating MM-Fi’s practical im-
plementation, we consider both power and computational
requirements. According to device specifications, LiDAR
consumes 6.50 W during operation and 0.30 W in standby
mode, while WiFi requires 1.21 W and 0.01 W respectively.
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Fig. 27: HAR performance of E-M? on the MM-Fi dataset.

Computationally, LiDAR demands 73.44 GFLOPS during
active use compared to WiFi’s 31.64 GFLOPS, with both
requiring negligible resources in standby. To thoroughly as-
sess performance across configurations, we develop and test
multiple models: one utilizing all five modalities, separate
models for each possible four-modality combination, and a
specialized “RGB+Li+Wi” configuration.

Fig. 27 demonstrates the performance of various modal-
ity combinations in the MM-Fi dataset. The expansion of the
HAR task to encompass 27 distinct classes results in an over-
all accuracy decrease, as illustrated in Fig. 27(a). Though
both depth sensors and LiDAR are imaging modalities,
removing depth sensors causes more significant accuracy
degradation since they provide more comprehensive textu-
ral information of human body surfaces, enabling more ac-
curate recognition network determinations. Similarly, while
radar and WiFi are both RF devices with penetration capa-
bilities utilizing the Doppler effect, radar elimination has
a more detrimental impact on accuracy for reasons de-
tailed in §5.6. Fig. 27(b) shows that introducing LiDAR and
WiFi increases costs. Although these additions confirm the
E-M?%’s generalizability and marginally enhance accuracy,
these improvements don’t justify the additional resource
consumption, validating our original modality selection.

6 CONCLUSION

In this study, we have introduced E-M2, a significant step to-
wards enhancing the efficiency of AloT systems. E-M? effec-
tively reduces both power consumption and computational
overhead by adaptively activating sensors and computing
modules. By employing a novel policy network to minimize
modality redundancy and underutilization, and dealing
with time variation and modality anomalies, E-M? enhances
the efficiency of multimodal systems without compromising
sensing performance, thereby enabling their seamless inte-
gration into edge devices for broader adoption. Extensive
experiments across various sensing tasks, modalities, and
environments have underscored E-M? ’s promising perfor-
mance in efficient multimodal sensing. Looking forward, we
plan to collaborate with industry partners to incorporate
our technology into consumer electronics, driving wider
acceptance in real-world applications.
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