EarPCG: Recovering Heart Sounds from in-Ear Audio via
Physics-Informed Neural Network

Junyi Zhou!  Yiyi Zhang! Henglin Pu?

Peng Guo!

Tianyue Zheng® Chao Cai* Jun Luo’

1School of Electronic Information and Communications, Huazhong University of Science and Technology, China
2Elmore family School of electrical and computer engineering, Perdue University, USA
3School of Computer Science and Engineering, Southern University of Science and Technology, China
4College of Life Science and Technology, Huazhong University of Science and Technology, China
3College of Computing and Data Science, Nanyang Technological University, Singapore

Email: chriscai@hust.edu.cn, junluo@ntu.edu.sg

Abstract

While earables present a promising avenue for cardiac sens-
ing, whether they may replace the stethoscope to perform heart
sound (a.k.a. PCG) monitoring remains questionable. The latest
effort attempts to generate PCG-like waveform out of in-ear au-
dio collected via earphones, yet its data-driven approach does not
seem to be grounded in the underlying physics. To this end, this
paper introduces EarPCG, a system for continuous PCG monitor-
ing leveraging physics-informed neural models. As opposed to the
debatable belief that bone-conducted PCG appears within ear canal,
EarPCG generates PCG waveforms from the (actually existing) pho-
toplethysmography (PPG) waveforms conveyed via blood vessels.
Arising from pressure variations induced by heartbeats, PPG can be
mathematically described by a Partial Differential Equation (PDE).
Therefore, solving this PDE inversely may reconstruct cardiac dy-
namics and in turn enable the generation of PCG waveforms with
another PDE characterizing the pressure oscillations propagating
through soft tissues. Pipelining the two PDE-solving neural models,
EarPCG achieves accurate PCG monitoring from in-ear audio, while
requiring minimal training. Our extensive experiments leveraging
a custom-built prototype demonstrate the efficacy of our proposed
system. Furthermore, we have conducted clinical trials, with clini-
cians reporting no perceptible difference between authentic PCG
and the sounds reconstructed by EarPCG.
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Figure 1: As the existence of PCG in ear canal remains ques-
tionable, EarPCG aims to generate PCG from passively col-
lected in-ear audio, grounded in a biophysical model.
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1 Introduction

Representing a global health crisis, cardiovascular diseases are
responsible for an estimated 17.9 million deaths each year [39]. As
the primary tool for practical diagnosis, stethoscope allows med-
ical professionals to interpret heart sounds, formally known as
the phonocardiogram (PCG). The analysis of PCG irregularities is
critical for the early detection of serious conditions such as valve
disease [28], congenital heart defects [60], and cardiomyopathy [58].
Despite its diagnostic power, the conventional method of PCG ac-
quisition suffers from significant practical limitations: its reliance
on specialized expertise and instrumentation, making it unsuit-
able for continuous and long-term monitoring outside of a clinical
setting [36, 50]. This constraint can delay timely diagnosis and
intervention [2, 31, 43], creating a growing demand for alternative
PCG monitoring solutions that are continuous and convenient.

In recent years, wireless sensing has emerged as a prominent ap-
proach within the research community for remote cardiac monitor-
ing [65, 66]. However, these motion-sensing methods face difficulty
in “hearing” acoustic PCG remotely as the induced vibration is too
weak. Instead, they primarily acquire signal waveforms from body
vibrations caused by blood pressure; in other words, wireless sens-
ing obtains only Photoplethysmography (PPG) [1]. For instance,
the work in [16] utilizes a wide-band radar to sense miniature chest
displacements due to cardiac activity to indirectly retrieve heart-
beat waveforms. A similar work from [22] explores mmWave radar
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for Seismocardiogram (SCG) sensing, but SCG is not as widely ac-
cepted in clinical diagnosis as its acoustic counterpart PCG [69].
Currently, remote wireless cardiac monitoring is infeasible due to
the notable challenges in distinguishing cardiac activity from respi-
ratory interference [70]. Furthermore, their active sensing nature
often entails considerable hardware complexity [16] and high en-
ergy consumption. These reasons shift the interest towards current
earable sensing.

Earable sensing becomes a promising alternative for those wire-
less techniques in cardiac monitoring thanks to: (i) the passive
sensing nature that offers energy efficiency and reduced hardware
complexity; (ii) the occlusion effect that can amplify internal body
sounds. This approach is built on the principle that the occluded ear
canal passively amplifies faint, bone-conducted signals [35]—a con-
cept successfully applied in areas like user authentication [8, 25] and
activity recognition [23, 45]. Inspired by this principle, EarAck [9]
claims that PCG transmitted via bone-conduction can be captured
with in-ear microphones, and the binaural discrepancy of PCG even
carries unique identities [7]. Asclepius [14] further claims to have
observed in-ear PCG that suffers from significant frequency and
energy loss; it hence involves additional hardware to boost sensi-
tivity and employs a neural network to compensate for these losses.
Despite tremendous efforts, this body of work faces a common
obstacle: their premise that bone-conducted PCG can be reliably
detectable within ear canal lacks rigorous physical validation.

Our measurements, however, challenge the above hypothesis
that bone-conducted PCG is directly detectable within the occluded
in-ear chamber. Specifically, we observed a consistent temporal
latency of approximately 100 ms between the in-ear audio signal
and externally measured PCG. This significant delay is inconsistent
with the rapid propagation speed of acoustic waves through solid
media (i.e., bone) over the relatively short anatomical distances in-
volved, thus questioning the direct bone-conduction pathway as the
primary source. Consequently, the direct acquisition of true PCG
from within the ear canal via this mechanism appears improbable.
This finding led us to propose an alternative mechanism: the in-ear
audio is not bone-conducted PCG but is instead acoustic PPG due
to arterial pulse wave, propagating through blood vessels connect-
ing the cardiovascular system to the ear. Crucially, this hypothesis
perfectly aligns with our key observation. The known propagation
velocity of blood pulses (4-12 m/s [46, 64]) precisely accounts for
the 100ms delay we measured. Therefore, while direct PCG acqui-
sition seems unlikely, this robust pulse wave signal provides a new,
physically plausible pathway from which to infer cardiac dynamics.

To this end, we introduce EarPCG, a physics-inspired system to
infer PCG signals from passive in-ear audio using a comprehensive
biophysical model, as shown in Figure 1. EarPCG is a software-
oriented solution that (i) requires no extra hardware, (ii) can be
deployed on common headsets with in-ear microphones, say the
Active Noise Cancellation (ANC) earphones, (iii) and entails even
less network parameters than the comparable hardware-software
co-optimized approach [14]. Our core innovation is a model of two
distinct physical pathways originating from cardiac activity. First,
we model the hemodynamic pathway where cardiac pressure waves
generate the in-ear audio signal, described by a Partial Differential
Equation (PDE) and an Ordinary Differential Equation (ODE). Sec-
ond, we model the cardiodynamic pathway where the same cardiac
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activity produces mechanical vibrations that manifest as the PCG.
To link these, EarPCG first inverts the hemodynamic model to esti-
mate the source cardiac pressure from the captured in-ear audio. A
neural network then transforms this estimated pressure—bridging
the gap from hemodynamics to cardiodynamics—into the initial me-
chanical vibrations, which are propagated through a tissue model
to synthesize the final PCG signal. To summarize, this paper makes
the following contributions:

e We propose a physical model to analytically explain the root
cause of in-ear audio.

e We design a physical-informed deep neural network to ac-
curately reconstruct PCG from in-ear audio.

e We have implemented a system prototype and carried out
extensive measurements. Results demonstrate that the pro-
posed model can precisely reconstruct the morphological,
diagnostic, and auditory features of PCG. The usability study
further confirms high potential for cardiac monitoring.

The rest of our paper is organized as follows: Section 2 introduces
the background and the motivational measurements, Section 3
presents our system design, and Section 4 demonstrates the im-
plementation of EarPCG. Section 5 reports the experiment results;
Section 6 introduces the related work about cardiac status monitor-
ing. Section 7 concludes the paper.

2 BACKGROUND AND MOTIVATION
2.1 Background

This section initially presents preliminary studies that explore the
use of In-Ear Microphones (IEMs) for cardiac vital sign monitor-
ing. IEMs are hypothesized to capture cardiac physiological signals
within the ear canal, an ability attributed primarily to the occlusion
effect [35]. The occlusion effect is a phenomenon wherein a con-
fined space, such as the sealed ear canal in this context, passively
amplifies low-frequency body sounds through mechanisms like
signal superposition and acoustic resonance [10, 56]. Given that the
dominant spectral energy of PCG resides within this low-frequency
range (20 to 150 Hz [38]) and that in-ear audio captured via IEMs
exhibits temporal characteristics resembling PCG, several existing
methods commonly treat in-ear audio as bone-conducted PCG.

As an example, the authors of [9] engineer a versatile ear-worn
sensing platform with IEMs from ANC erables for the extraction of
bone-conducted PCG. And they even leverage binaural disparities
of in-ear PCGs for user identification [8]. Another work in [6]
further utilizes in-ear PCG for Heart Rate (HR) estimation. Zhao et
al. [71] utilize the temporal interval between the first and second
components of PCG (S1 and S2) identified via in-ear audio, which
they also classify as PCG for blood pressure estimation. While the
authors of [14] further claim to have captured in-ear PCG that
experiences significant frequency and energy loss. They hence
design customized hardware with active amplifiers, as well as a
sophisticated impedance matching circuit, to increase sensitivity.
Meanwhile, a deep neural network is employed to compensate for
complex frequency and energy loss. Nonetheless, all these works
are built on a premise that bone-conducted PCG can reach the ear
canal but without detailed physical validation.
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Figure 2: Motivational study: (a) The measurement setup of synchronized acquisition of in-ear audio and PCG. (b) PCG and in-ear
audio in time domain. (c) Spectrograms of 5 seconds PCG (lower) and corresponding in-ear audio (upper). (d) The measurement
setup for synchronized acquisition of PCG in the apex area and the other six locations. (e¢) The waveform comparison between

the (reference) apex area and other body locations.

2.2 Does In-Ear Audio Really Contains
Bone-conducted PCG?

To characterize in-ear audio and distinguish it from the PCG, we
have conducted a measurement study using our upgraded EarAce
platform [12]. We let two synchronous earphones to record PCG and
in-ear audio simultaneously. The PCG is recorded by inserting an
earphone into the ear tips of a stethoscope, which is positioned on
the subject’s apex area. Concurrently, a separate earphone is placed
in the subject’s ear canal to acquire in-ear audio. The setup, as well
as results, are shown in Figure 2. Our findings reveal significant tem-
poral and spectral disparities that refute the hypothesis that in-ear
audio is simply bone-conducted PCG. First, we observe a consistent
latency of approximately 100 ms (calculated by counting the sample
index of peaks) in in-ear audio relative to PCG (Figure 2(b)). This
significant delay is incompatible with bone conduction; given the
respective propagation velocities in bone (4000 m/s) and a stetho-
scope tube (340 m/s) over similar path lengths, any delay should be
negligible (<1 ms)[49]. Second, the signals differ spectrally. While
the PCG exhibits a broad frequency range (up to 400 Hz), the in-ear
audio’s energy is concentrated in the low frequencies (< 80 Hz), as
seen in Figure 2(c). A cumulative spectral analysis confirms this,
with the 90th percentile of energy at 23 Hz for in-ear audio versus
56 Hz for the PCG. Collectively, these temporal and spectral dis-
crepancies strongly compel us to re-evaluate whether direct PCG
acquisition from in-ear canal is feasible.

To verify the above hypothesis, we next carry out more measure-
ment studies. Our setup involves two synchronous stethoscopes: a
reference stethoscope at the apex area and a second one at various
other body locations, such as the thorax, clavicle, carotid artery, and
several points on the head (Figure 2(d)). To maximize sensitivity, we
capture the signals with IEMs connected to a Programmable Gain
Amplifier (PGA) with 27 dB of gain, a level that would typically clip
standard in-ear audio. To more clearly demonstrate the character-
istics, the acquired waveforms above head are further amplified.
Our results are clear: even though signals resembling PCG at other
body locations can be acquired, the temporal latency relative to
true PCG refutes that they are bone-conducted PCGs. However,
judging from the waveform morphology and spectral features, they
are more akin to in-ear audio.

Based on these measurement results, along with our detailed
investigation on the anatomical structure of human body, we reason-
ably suspect in-ear audio may be acoustic PPG signal. PPG signals
arise from blood vessel volume changes and can be generated lo-
cally throughout the body, making them far more accessible. In
contrast, the propagation of PCG signals through the body is funda-
mentally different, as it can be only sourced by cardiac activities. We
hypothesize that PCG signals encounter severe attenuation(more
than 45dB from heart to chest [48]), allowing them to travel only
a short distance from the heart. Even if we assume the possibility
of PCG reaching the ear bones via bone conduction (which our



SenSys’26, Saint-Malo, France

data does not support), the signal would still need to traverse soft
tissues, causing further damping. More critically, the physics of
the occluded ear canal favors PPG (a frequency range from 0 to
20Hz [15]) detection. The ear canal’s small volume (around 2 cc)
causes it to function as an acoustic resonator that amplifies very
low frequencies (20 Hz) [21]. Consequently, it boosts PPG signals,
which fall within this infrasonic range, while distorting or failing to
amplify the higher-frequency PCG signals. Therefore, we conclude
that it is nearly impossible to directly sense PCG within the ear
canal. The primary obstacles are the severe signal attenuation over
distance and the overwhelming presence of the PPG signal, which is
both locally sourced and amplified by the ear canal itself. Although
we attempted to isolate a potential PCG signal with pre-sampling
filters, we were still unable to capture it. Crucially, this necessary
filtering is absent in existing literature, such as the work by Chen
et al. [14]. For these reasons, the signals reported in that study
are highly unlikely to be PCG, motivating the needs for further
research.

2.3 The Physics that Generates In-ear Audio

Based on our findings, we propose a new model for the generation
of in-ear biosignals. We model the sealed ear canal as a closed air
cavity acoustically coupled to the nearby carotid artery through soft
tissue—a configuration analogous to a cuff-based blood pressure
monitor, where a sensor in a sealed chamber indirectly measures
arterial pressure waves [21]. Therefore, we hypothesize that the
detected signal is not an attenuated PCG, but rather the arterial
pulse wave itself, originating from the arteria labyrinthi near the
inner ear. This pressure wave causes the tympanic membrane and
surrounding tissues to vibrate, which is then detected by the in-ear
microphone. This mechanism effectively defines the in-ear signal
as a form of acoustic PPG. Crucially, unlike traditional optical coun-
terpart, this acoustic PPG possesses remarkably high fidelity. The
proximity of blood vessels to the skin in the ear canal preserves
morphological details of cardiac activity that are often lost at other
body sites. This high quality is so pronounced that, as we have
noted, prior researchers have consistently treated in-ear audio as
PCG. This unique combination of accessibility and fidelity makes
in-ear PPG an ideal proxy from which to computationally recon-
struct true PCG. This allows our system to support more versatile
applications than in-ear audio, which loses valuable high-frequency
components crucial for diagnosis.

3 System Design

EarPCG is the first passive system that exploits in-ear audio
for PCG reconstruction via explicit physical models. This recon-
struction is decomposed into three distinct phases, each handled
by a corresponding module, as illustrated in Figure 3. The first
phase primarily involves a hemodynamic process: a pulse wave,
generated by cardiac activity, propagates through blood vessels and
then couples to the sealed ear canal. This phase is modeled by a
Physics-Informed Neural Networks (PINNs) (HermoNet in Figure 3),
which infers the underlying pulse wave dynamics at the heart’s
origin from in-ear audio. We propose that these dynamics represent
part of kinetic energy from cardiac activity. The second phase fo-
cuses on the cardiodynamic process, also driven by cardiac activity,
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Figure 3: System architecture of EarPCG.

which generates PCG that propagates through soft tissues to the
apex area. This process is modeled by another PINNs (CardiNet in
Figure 3). While both hemodynamic and cardiodynamic processes
originate from the same cardiac activity and are interconnected at
the heart. To establish a connection between the aforementioned
two processes, the third phase (MappingNet in Figure 3) employs a
Transformer network to model this complex relationship.

3.1 Physical Model

In this section, we derive the behind physical models for our EarPCG.
To start with, we model the generation of in-ear audio in two stages:
first, the propagation of the arterial pulse wave from the heart to
the ear; second, the structure-acoustic coupling that converts this
pressure wave into a measurable sound in the sealed ear canal, as
illustrated in Figure 4.

The first stage, pulse wave propagation (the process 1 in Figure 4),
is fundamentally governed by the one-dimensional Navier-Stokes
equations for fluid dynamics [30]. These equations relate the arte-
rial pressure wave pg(x, t) to the vessel cross-section and volume
flow rate, where x denotes the distance to the source pressure
and t represents time index. While comprehensive, this model con-
tains complex terms for nonlinear convection (inertial effects) and
viscous damping (shear stress). However, for blood flow in large
arteries, we can introduce two key simplifications. First, under the
low Mach number approximation common for arterial flow, the
nonlinear convection term can be neglected [42]. Second, viscous
effects are primarily confined to the boundary layer and have a min-
imal impact on the mainstream pulse wave, allowing the damping
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Figure 4: Modeling for the generation of in-ear audio.
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term to be omitted from the one-dimensional averaging theory [19]. d”ps(t) e dps(t) ol _ I 3

: R ) : 3 wyps(t) = ype (L, 1). ®)
After applying these simplifications and introducing the vascular dt dt

compliance equation [30] to create a closed system of equations,
the model reduces to the standard one-dimensional wave equation:

Ciz % = %, where ¢ = \/QZC is the pulse wave velocity,
which we treat as a learnable parameter constrained to the physio-
logical range of 4-12 m/s. Meanwhile, to account for unmodeled
physical phenomena, such as arterial wave reflections or minor
nonlinearities, we introduce a compensation term ®(x, t), yielding

our final propagation model, as shown in Eq. (1).

1 &pp(xt) _ Ppp(x,t)

2 a2 ox?
To ensure model-completeness, the above model’s boundary condi-
tions are the aortic pressure wave at the heart origin, p¢(0, ), and
the pressure pg(L, t) arriving near the ear at the end of the vessel.
In the second stage, the arriving pulse wave pg(L, t) acts on the
eardrum and surrounding tissues, generating a sound pressure vari-
ation, ps(t), within the sealed ear canal (process 2 in Figure 4). We
model this process by idealizing the eardrum as a forced harmonic
oscillator. The equation for the eardrum’s displacement, x(t), is

+®(x, ). 1)

given by:

d%x(t) dx(t)
" b dt

where m, b, and k are the mass, damping coefficient, and stiffness of
the eardrum. Ay, is the eardrum’s effective area. The key step is to
relate the resulting sound pressure ps(t) to this displacement x(#).
By modeling the sealed ear canal as a cavity undergoing isothermal
compression, the pressure change can be linearly approximated
for small displacements: ps(¢) = pt(¢) — Py = Py /%,—:)"x(t), where Py
and Vj are the static atmospheric pressure and the canal volume,
respectively, and p¢(t) denotes the absolute pressure in the sealed
ear canal.

Substituting this linear relationship back into Eq. (2) allows us
to eliminate the displacement variable x(t). After rearranging, we
arrive at a standard second-order ODE that directly governs the
measurable in-ear sound pressure ps(t) as a response to the arterial
pulse wave pg(L, t):

+kx(t) = Am(pe(L, 1) = ps(8)),  (2)

In this final lumped-element model, { is the effective damping
coefficient, wy is the natural resonant frequency of the coupled

eardrum-cavity system, and y is a coupling gain coefficient that
quantifies the efficiency of the pressure transmission. These co-
efficients, together with those in Eq. (2), reflect subject-specific
anatomical variabilities.

The initial phase of our work involves the challenging task of
reconstructing the source cardiac pulse waveform at its heart ori-
gin based on in-ear sound measurements. This problem can be
formulated as identifying the unknown input pressure p¢(0, t) at
the heart origin that leads to the observed acoustic pressure ps(t),
but without the usual support of boundary or initial conditions.
This lack of prior information classifies it as an ill-posed inversion
problem. Moreover, the challenge is further complicated by the
presence of unknown parameters ®(x, t) within the Eq. (1) and
unknown parameter y in Eq. (3). These unknown conditions ren-
der classical numerical methods [40], e.g., finite elements or finite
differences, infeasible. Furthermore, the scarcity of labeled data,
specifically, pulse waves measured directly at the heart’s origin,
which are nearly impossible to obtain, precludes the application of
traditional deep learning approaches.

In this paper, we employ PINNs [47], a method that combines
physical constraints with deep learning models to resolve the first
and second phase problem. Compared with the traditional numer-
ical methods, PINNs are mesh-free, without computationally ex-
pensive mesh generation, and thus can easily handle the above
case [29]. Meanwhile, compared with traditional deep learning,
PINNs have the advantages of fast convergence and generaliza-
tion ability in the small data regime. The embedding of physical
information provides the model with prior knowledge, enabling
it to make reasonable predictions for unseen data. In particular,
the aforementioned subject-specific anatomical variabilities can
be readily addressed in its optimization process. The PINNs allow
us to resolve both the first and the second phase modeling. For
the third phase, we leverage a deep neural network to learn the
mapping itself. By incorporating these three modules, we finally
built a mapping between in-ear audio ps(t) to apex area PCG.
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Figure 6: Architecture of HermoNet.

3.2 Networks Design

We resolve the aforementioned hemodynamic and cardiodynamic
models using PINNs and establish the mapping relationship leverag-
ing the Transformer. The whole network architecture is illustrated
in Figure 5. In this section, we introduce the neural network design.

3.2.1 HermoNet The primary objective of HermoNet is to infer
the source pressure waveform p¢ (0, t) at the heart’s origin based
on the observed in-ear audio ps(t). The problem can be regarded
as a typical spatiotemporal inverse problem driven by the coupling
of PDE and ODE.

We design the entire network of two parts according to the
physical process, as illustrated in Figure 6. The left part of the
network (comprising Ns and N ) is designed to invert the pressure
pe(L, t) at the distal end, based on the observed in-ear audio ps(t)
(the process 2 in Figure 4), where L denotes the distance from the
heart source to the blood vessel near the ear canal. Conversely, the
right part (consisting of N and N¢) further utilizes p¢ (L, t) to invert
and obtain the pressure waveform p¢(0, ) at the heart (the process
1in Figure 4). Herein, both Ny and N, are designed using Multiple
Layer Perceptron (MLP) with identical architectures, taking ¢ as
input. Their outputs correspond to the observed in-ear audio ps(t)
and the inverted distal pressure ps(L, t), respectively.

In this architecture, the role of N is to fit in-ear audio samples.
And Ny, enforces the network to follow the physical laws (defined
by Eq. 3). Np can be readily implemented via Automatic Differenti-
ation (AD) [4] of a deep learning framework. To train this network,
we introduce two loss terms: the observation loss L, and the
physical loss Lopg. The observation loss Ly is the supervised
error term that measures the discrepancy between the neural net-
work’s predictions and the observed data; and the physical loss
Lopg corresponds to the physical residual loss, an unsupervised
term that enforces the governing physics by measuring the discrep-
ancy when the network’s output is substituted into the differential
equation. Therefore, we define the observation loss L} as the
squared error between in-ear audio ps(t) and the output of Nj:

Nobs

Lobs = Z NG (£ W, bs) — ps(t)llz, (¢ € [0,T]),  (4)

Nobs im1

where N (t;; Ws, bs) denotes the network function parameterized
by W and bg and takes time index #; as its input, ps(#;) is the in-ear

Process 1 (PDE) 92pe(x, )
cos(2nf;t) ——
) G — O ~0t?
sin(2nfjt) 2
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cos(2mf;x) 6 G - N x2
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v Ne(x, t; We, by,) E E AD i
_______ S B S|
M i
Liotz = A3Lppp+ AaLpe  4============= -
audio observed at time index t;, || - ||2 represents the Ly norm of the

quantities, Nyps and T are receptively denote the sample length and
duration of the in-ear audio sequence. The loss Lopg is defined as:

Nobe ;2 ~ ~
d ti) dps (i
LopEg = g Il dstg ' p;(t )

—ype(L.ti)ll2, (£ € [0,T]),  (5)

where ps(t;) and pg(L, t;) are the predicted outputs of N and Ny at
time index t;, respectively, Nopg is the number of samples involved
in the calculation. Overall, the total loss is formulated as Liot1 =
M LopE + A2 Lops, where A1 and Az are two coefficients.

The submodule N of the network aims to approximate physical
process of the pressure dynamics along blood vessels. As shown in
Figure 6, the network N is a MLP that takes coordinates (x, t),x €
[0,L], ¢ € [0, T] as inputs and outputs estimated pressure waveform
pe(x, t). To train this neural network, we also define two loss terms,
a boundary condition loss Lpc and a physics-based loss LppE.
The loss term Lppg enforces the structure imposed by standard
one-dimensional wave equation (Eq. (1)) at a finite set of sampling
points; and Lpc guides the model to correct the solution under
physical constraints by matching the observed data, improving its
ability to approximate the solution. The boundary condition loss
Lpc is defined by the square error between predicted pressure
waveforms at x = L and the predicted waveform p¢(L, t) from N :

Nobs
Z IN (L, tis e, W,b) = pe(L )
i=1

()Ps(tt)

Lpc =

(x=L,t€[0,T)), (6)

where N (L, t;; W, b) denotes the network function. Another loss
function Lppg is constructed by embedding Eq. (1) into the loss:

R 1 % Pf(xz,tz)

Lppg =

~V2pe(xi, ti)llz,xi € [0, L], t; € [0,T], )

where {x;,t;} are the sampling points (N, in total) in spatial-

temporal domain, and pr(x;, t;) is predicted output of network N
5 -

corresponding to input {x;, t;}. Each % requires the derivatives

of the network output p¢(x, t) with respect to the input (x, ¢), which

are evaluated exactly and efficiently via AD. The total loss is then
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constructed by Liotz = A3 Lppg + Aa Lpc, where {13, A4} are differ-
ent weights for each specific loss term. In this paper, an adaptive
weight algorithm is applied [61] to address the mismatch in the
convergence rate of different losses.

However, due to incomplete physical constraints ®(x, t) in Eq. (1),
and scarcity of ground truth labels at the heart origin, the above
design is hard to converge and tends to exhibit high-frequency
oscillations. To this end, we incorporate a Fourier Feature Layer
(FFL) [26] and a compensatory network A.

The Fourier Feature Layer The inclusion of Fourier Feature Layer
(FFL) within the network architecture enables the PINNs to accu-
rately resolve high-frequency, low-amplitude oscillations super-
imposed on dominant low-frequency signals. This capability sig-
nificantly improves their overall representational fidelity. The un-
derlying key enabler is that FFL applies a high-dimensional peri-
odic transformation to input coordinates (x, t), which explicitly
introduces multiscale frequency information. This transformation
allows the network to more effectively capture high-frequency de-
tails [26]. In our case, we put FFL at the entrance of N as shown
in Figure 6. This FFL maps the neural network inputs by apply-
ing sinusoidal functions (sine and cosine) at multiple frequencies:
Fout = [sin(27rfjx), cos(2xfjx), sin(2xfjt), cos(2xfjt), . .. ] fi €
[ fmin> fmax], where f; is the j-th frequency in [ fiin, fmax]-

The Compensation Network The compensation network A here
is used to balance the convergence mismatch between boundary
loss and PDE loss, due to the remaining unknown term ®(x, t)
in the governing Eq. (1). Without this module, the boundary loss
Lpc would remain quite high, while the PDE loss Lppg is rapidly
minimized. Inspired by the work in [72], we introduce a compensa-
tion network Nc(x, t; We, be) to fit the unknown term ®(x, t). This
network is also represented by an MLP as shown in Figure 6. Its
output pc(x, t) is added to the PDE residual loss to compensate for
the mismatch error. Therefore, the term Lppg in the loss function
Eq. (7) is reformulated as:

1 Neol

1 Ppe(xinti) o
Lipg = Neoy 24 — "~V pe(xi, t;)

¢z o2 (8)

—pe(xi, ti)lly,xi € [0,L], t; € [0,T].

The total loss Lotz is then given by L/ ., = /13£I,>DE +A4.LpC.

3.22 CardiNet The CardiNet module is designed to model the
propagation of the PCG from its anatomical source, through soft
tissue, to the chest surface. Since PCG is essentially acoustic pres-
sure wave, this tissue-mediated propagation hence can be modeled
by a PDE. The primary challenge is that the source PCG is un-
known and requires invasive measurement, while the resulting
PCG on the chest surface is non-invasively accessible. This sce-
nario—an unknown source and known boundary condition—is an
ideal application for PINN. Therefore, CardiNet reuses the PDE
solver architecture (N, N;) from HermoNet, but is trained using
the non-invasively auscultated PCG as its observation data.

3.2.3 MappingNet The MappingNet is designed to establish a cor-
respondence between pulse waves originating from the heart (ob-
tained in HermoNet) and the reconstructed source PCG (from Car-
diNet). This establishment would finally allow us to deduce PCG
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at the apex area from in-ear audio measurements. To formalize
this relationship, we train a neural network to learn the nonlin-
ear mapping between them, a simplified schematic of which has
been illustrated in Figure 5. To achieve high-fidelity mapping with-
out losing any details in both temporal and spectral features, we
adopt a symmetric U-shaped network architecture, specifically an
“Encoder-Transformer-Decoder” design. The encoder employs a
three-stage progressive structure, integrating Multi-Scale Convo-
lution (MSC) feature fusion, a Residual Block (Res-B), and a Time-
Frequency Attention (TFA) module. The Transformer, in particular
its self-attention mechanism, has global weight correlations among
the multi-scale features extracted by the encoder, enabling the au-
tonomous identification of key temporal patterns in the in-ear audio
that are crucial for PCG reconstruction.

The decoder mirrors the encoder structure to maintain a strict
spatiotemporal mapping, ensuring that the low-frequency (in-ear
audio) features extracted during encoding accurately guide the
reconstruction of high-frequency (PCG) details. This symmetric de-
sign preserves the temporal dynamics of PCG signals and enhances
the reconstruction quality, ensuring that the reconstructed PCG
aligns with the rhythmic sense of the PCG obtained on auscultation.

Physic-guided Attention To enhance the model’s capability of
identifying and reconstructing critical events within the PCG (e.g.,
S1, S2, premature beats, and murmurs), we introduce a physics-
guided attention mechanism, rather than a data-hungry learning
method. The key insight of our model is to enforce the network
to focus on particular events, for instance S1 and S2, which can
be readily and analytically extracted via short-term energy and
spectral centroid [37]. This temporal attention, manifested as a
binarized time window of resultant events, allows us to apply more
weights on the PCG waveform where the critical event occurs, thus
preserving its morphology and diagnostic features. This temporal
attention is also applied in the time-frequency domain to preserve
the spectral features.

Loss function We establish the loss function based on tempo-
ral and spectral differences between the source PCG sy, inferred
using the CardioNet and the source pressure wave sp = p¢(0,t)
predicted by the HermoNet. This composite loss function is for-
mulated as £ = aMrpLspec + fMr Liemp, where a and  are the
respective coefficients, Lspec = [|STFT (sm) — STFT(sp)||2 denotes
the loss computed by the Short Time Fourier Transform (STFT),
including both amplitude and phase. And Ltemp = |lsm — spll2
characterizes waveform distinctions. The Mtg and My represent
the time-frequency domain and time domain masks generated by
the physics-guided attention mechanism.

4 IMPLEMENTATION

This section elaborates on the implementation details. Our setup
uses the upgraded EarAck platform [12] with a 4 kHz sampling rate.
In-ear audio is recorded with W380NB earphones, and the PCG is
captured using a YUWELL versatile stethoscope [63]. The neural
networks are implemented using PyTorch and trained on NVIDIA
3090 GPUs. We recruit volunteers with a diverse range of ages (21
to 63 years) and Body Mass Index (BMI) values (17.1 to 27.5). To
ensure safety, all trials take place on closed test tracks while strictly
following our IRB regulations.
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4.1 The Network Configurations of EarPCG

The HermoNet architecture is composed of several modules. Its
input networks, Ns and Nj, each consist of two Fully Connected
(FC) layers with 64 neurons and a Tanh activation function. The
main processing blocks—the backbone network A and the compen-
sation network N;—share an identical architecture of five FC layers
with 128 neurons each, using a sinusoidal activation function. The
crucial distinction is that the input to  is first encoded by an FFL
with a frequency range of 0-20 Hz and a step size of 2 Hz. The Car-
diNet module adapts this architecture with two key modifications.
First, to capture the higher-frequency details of the PCG, its FFL
is configured with a wider frequency range (0-200 Hz, 4 Hz step),
and its core networks (N and N;) are expanded to 256 neurons per
layer. Second, CardiNet is structurally simpler, consisting only of
the N and N; modules and excluding the N; and Ny networks.
The MappingNet architecture is composed of an encoder, a Trans-
former module, and a decoder. The encoder consists of three se-
quential layers, each containing an MSC block, a Res-B, and a
max-pooling layer. The MSC block employs four parallel 1D con-
volutions with varying kernel sizes ([3, 7, 15, 31]), concatenating
their outputs before applying Batch Normalization (BN) and PReLU.
The Res-B further processes this output, containing another MSC
block, a TFA module, a 1D convolution (kernel=3, padding=1), and
a final BN. The TFA module is notable for its dual-branch design,
using both FFT-based spectral filtering and temporal convolution to
generate attention weights. For downsampling, each encoder layer
concludes with a max-pooling operation (kernel size=4, stride=4),
and a channel-doubling strategy is employed across the layers to
increase the feature dimension from 1 to 256. Following the en-
coder, a Transformer module with four encoder layers processes
the sequence. Each layer features an 8-head self-attention mecha-
nism and a Feedforward Network with a dimension of 1024, with a
dropout rate of 0.1 applied for regularization. Finally, the decoder
reconstructs the signal by first using three up-sampling layers (scale
factor=4) to restore temporal resolution, followed by a progressive
channel-reducing strategy ([256, 128, 64, 1]) to map the features
back to a single-channel output. The whole network has 6.59M
parameters in FP32 format, occupying 25.12MB memory storage,
rendering it plausible to be deployed on constrained mobile devices.

4.2 Pre-Processing and Training

4.2.1  Pre-processing The captured in-ear audio and PCG require
pre-processing before being utilized in network training. The pre-
processing procedure involves the following stages: 1) low-pass
filtering, with a cutoff frequency of 30 Hz for in-ear audio and
500 Hz for PCG, 2) segmentation using an envelope analysis [51],
3) normalization by scaling samples to the range of [-1, 1].

4.2.2  Network Training The training procedure for our system is
conducted sequentially, beginning with HemoNet, followed by Car-
diNet, and concluding with MappingNet. The training of HemoNet
proceeds in a two-stage manner, combining both supervised and
unsupervised learning. Initially, the input sub-networks, N; and
NfL, are trained independently for 2000 epochs using the AdamW
optimizer with a learning rate of 1e~3. During this phase, the core
PINNs modules (N and A;) remain frozen, and network updates
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are guided solely by the loss term Liot1, with weights A; = 1 and
A2 = 50. Subsequently, the pre-trained input modules are frozen,
and training shifts to the core modules N and N. These are op-
timized according to the loss term Lior2 (with weights A3 = 1,
A4 = 5), which comprises a supervised boundary condition loss
(£Lpc) and an unsupervised PDE residual loss (£j;). The Lpc
is calculated using 4096 boundary points from the p¢(L, t), while
the L], is calculated on 4096 spatiotemporal points sampled via
Sobol sequence [41]. This core training is further divided into a 500
epochs pre-training phase using only £Lpc with the Adam optimizer
(learning rate is 1e~3), followed by a 2000 epochs fine-tuning phase
(learning rate is 8e~*) where both loss terms are optimized concur-
rently. An adaptive weighting strategy [61] is also applied every
500 epochs during fine-tuning. The CardiNet follows an identical
training protocol for its core modules, with the sole distinction that
its boundary condition is defined by the PCG signal acquired from
the apex area. Noted that this ground truth PCG is only required at
the training phase. During inference, in-ear audio is the only input.

Following the training of the PINNs, the MappingNet is trained
in a supervised fashion. It uses the source pressure waveforms
from the trained CardiNet as input and the corresponding source
PCG signals from the trained CardiNet as the ground-truth. To
ensure stable convergence, we employ module-specific initialization
strategies: Kaiming initialization for the MSC modules and Xavier
initialization for the TFA and Transformer modules. The network is
optimized using the AdlamW optimizer with a learning rate of 5e ™4,
a batch size of 64, and a weight decay of 0.05. The weights for the
loss function £ are set to = 1 and f§ = 10. To prevent overfitting,
we also incorporate an early stopping mechanism.

5 Evaluation

5.1 Feasibility Study

We first conduct a feasibility study to evaluate the ability of our
physics-informed model, HemoNet, to accurately infer source sig-
nals from distal measurements. Due to the challenges of collecting
suitable in-vivo data, we performed this validation using an ex-vivo
simulation.

5.1.1 Experiment setup. To validate our physical models with ac-
cessible ground truth, we constructed an in-vitro cardiovascular
simulation system, as depicted in Figure 7. This system is designed
to emulate key biophysical processes: a pulsatile cardiac pump,
pressure wave propagation through an arterial pathway, and the
resulting pressure fluctuations within a sealed distal cavity that
mimics the occluded ear canal. The setup consists of a flow gen-
eration unit and a multi-channel measurement system. The flow
generator uses a high-precision EDU-P110 peristaltic pump (+1%
accuracy) to drive a Gaussian pressure pulse through medical-grade
silicone tubing. This tubing terminates in a sealed cavity (length:
23 mm, inner diameter: 6 mm) enclosed by an elastic membrane
to simulate the ear canal structure. For data acquisition, a WWL-
801M-1M-M20 pressure sensor (0-20 kPa, +£10.5% linearity error) is
placed proximally to capture the ground-truth source pressure. A
microphone is positioned 40 cm downstream within the sealed cav-
ity to record the distal, observed signal. Both sensors are sampled
at 1kHz with 16-bit resolution via a DAQ122 data acquisition card.
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Figure 7: Heartbeat simulation system.

5.1.2  Result Analysis. The reconstructed waveform is shown in
Figure 8. To quantify the waveform reconstruction accuracy, we
use Root Mean Square Error (RMSE) [14] and Structural Similarity
Image Measurement (SSIM) [55]. The RMSE between reconstructed
waveform and ground truth is 0.0482, and the SSIM reaches 97.5 %,
demonstrating the effectiveness and high accuracy of our model in
reconstructing source pressure waveform.

5.2 Overall Performance Evaluation

5.2.1 Experiments Setup To evaluate the performance of our model,
we collect data from a cohort of 26 volunteers: 21 healthy individu-
als and 5 patients with diagnosed heart conditions from Zhongnan
Hospital of Wuhan University. The experimental setup is identical
to that shown in Figure 2(a). During data collection, participants are
instructed to remain still, either sitting or lying down, to minimize
motion artifacts (see Figure 9). The audio data are collected under
common background noises, including footstep sounds, machine
noises, light conversations, etc. To specifically test our model’s gen-
eralizability under data-scarce conditions, we intentionally create a
modest dataset of 1094 audio clips, each lasting for 30 seconds and
is sampled at 4kHz. For evaluation, we employ a leave-subject-out
cross-validation scheme. Unless otherwise noted, data from one
subject is reserved for testing, a second subject’s data is used for
validation, and the model is trained on the data from the remaining
participants.

Evaluation metrics: To assess the clinical utility of our recon-
structed waveforms, we move beyond generic signal-level metrics
(RMSE, SSIM). And we evaluate four key diagnostic parameters de-
rived from the PCG signal, as illustrated in Figure 10. These include
the S1 duration (Ts; ), S2 duration (Tsz), the systolic interval between
them (Tint ), and the S1/S2 energy ratio (E;atio ). The formulas for
these are given by Ts1 = ts1e —ts1p, Ts2 = ts2e —tsob, Tint = tsob — sies
and Epaio = 5 s(t)z/ztsze s(t)? respectively, following es-

t=tsp t=tsp
tablished methods [44].
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Figure 10: Key physiological metric visualization.
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Figure 8: Simulation result.
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Figure 9: The setup for data acquisition.

These parameters correspond directly to critical aspects of car-
diac function. For example, Ts; provides insight into ventricular
contraction synchronicity [5], while an extended T2 can indicate
conditions like pulmonary hypertension [3]. The systolic interval,
Tint, is a vital indicator of cardiac functional status [33], and the
energy ratio, Eptijo, correlates with myocardial contractility and car-
diac output [67]. When evaluating the accuracy of these temporal
parameters, we establish a clinically relevant error tolerance. Since
PCG diagnosis is fundamentally an auditory task, temporal errors
below 20ms are imperceptible to the human ear [13]. Therefore, we
consider our model’s predictions to be clinically acceptable if the
deviation from ground-truth parameters is less than this threshold,
as such differences would not affect a physician’s diagnosis.

5.2.2  Overall Performance We evaluated the overall performance
of EarPCG using a leave-one-out cross-validation methodology
across the entire cohort of 26 subjects. Figure 11 illustrates the re-
constructed PCG waveforms for these unseen subjects. The system
achieves excellent morphological fidelity, with a mean RMSE of
2.935 % and a mean SSIM of 97.148 %. These results demonstrate
that EarPCG can accurately reconstruct both the overall shape and
fine-grained details of PCG signals.

Beyond visual similarity, we evaluate the model’s ability to pre-
serve key physiological signatures. Figure 12 presents the error
distributions for four critical diagnostic parameters, augmented
with Kernel Density Estimates (KDEs).

For the S1 and S2 durations (Figures 12(a) and 12(b)), the er-
rors are tightly concentrated within +5 ms. This yields an Mean
Absolute Error (MAE) of 3.42 ms for S1 and 3.12ms for S2, both
well below the 10ms human auditory perception threshold. These
correspond to low relative errors of 2.89 % and 3.65 %, respectively.
This high precision confirms the model’s capability to accurately
identify the onset and offset of key cardiac events. Similarly, the
error for S1-S2 interval is minimal (Figure 12(c)), with a low MAE
of 4.67 ms (2.56 % relative error). This demonstrates the model’s
accuracy in restoring the systolic timing and overall cardiac rhythm.
Lastly, the analysis of the S1/S2 energy ratio (Figure 12(d)) shows
that the reconstruction error is tightly controlled within +0.02. This
corresponds to an approximate relative error of 2 %, suggesting that
the model effectively preserves the energy characteristics of PCG.
In summary, this strong performance indicates that the recovered
PCG can be readily used for a range of time-domain cardiac anal-
yses, such as detecting cardiac events and measuring heart rate
variability.

5.2.3 Evaluation of Heart Rate Variability We next evaluate the
reconstruction of Heart Rate Variability (HRV), a key indicator
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Figure 11: Overall system performance across 26 users.

10
& of g opit
i i
-10
- -20 -
Subject Subject
o o
5 ‘” ‘ S dl
3 | [P I | S
-10 0 10 -20 -10 0 10
Error (ms) Error (ms)
(a) S1 duration error. (b) S2 duration error.
20 01
S o - Se®
E o0 = 0.0
-0.1
—20 Subject Subject
€ mq € T
=] 7 =] * r
S i hh L S Al
-20 -10 0 10 20 —0.06 0.00 0.06
Error (ms) Error (ratio)

(c) S1/S2 interval error. (d) S1/S2 energy ratio error.

Figure 12: Error distribution of four physiological metrics
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ratio) related to PCG. For each subplot, the top row shows the
distribution of errors for different subjects, while the bottom
row presents the corresponding histograms and KDE.

of cardiovascular health derived from beat-to-beat timing fluctua-
tions [54]. We focus on two standard HRV metrics: the Inter-Beat
Interval (IBI) and its standard deviation (SDNN). As shown in Fig-
ure 14, the reconstructed IBI has a mean error of 6.48 ms, which is
only 1% deviation from the ground-truth average (607.6 ms). The
error for SDNN is also low at 6.14 ms, or 4.9 % of the average SDNN
(124.6 ms). These low error rates demonstrate that EarPCG accu-
rately captures the dynamic, beat-to-beat fluctuations essential for
HRV analysis.

5.2.4  Evaluation of abnormal PCG To further explore its diagnostic
capability, we tested EarPCG on subjects with four common car-
diac abnormalities: S1 splitting, Premature Ventricular Contraction
(PVC) [11], Mitral Regurgitation (MR) [17], and Tricuspid Regurgita-
tion (TR) [53]. These conditions present distinct acoustic signatures:
S1 splitting causes a double-peaked S1 sound due to asynchronous
ventricular contraction; PVC generates a premature, ectopic beat;
and both MR and TR produce continuous systolic murmurs due
to incomplete valve closure. Figure 13 presents the reconstructed
PCG and their time-frequency spectra. The results demonstrate that
EarPCG accurately captures the key pathological features in each
case. Quantitative evaluation confirms this high performance. In
the time domain, the model achieved high SSIM values (S1 splitting:
93.4 %, PVC: 93.5 %, MR: 91.2 %, TR: 92.6 %) and low RMSE values
(0.0726, 0.0548, 0.096, and 0.082, respectively). This demonstrates
excellent waveform fidelity. In the frequency domain, the average
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Figure 13: Comparison between the ground truth and recon-
structed waveforms and their corresponding spectrograms
for abnormal PCG, including (a) S1 splitting, (b) PVC, (c) MR,
and (d) MR and TR. From top to bottom in each sub-figure
are in-ear audio, time-domain waveforms including recon-
structed and ground truth PCG, spectra of reconstructed PCG,
and ground truth PCG.

(d) Mitral and tricuspid regurgitation.

log-spectral distance [32] and spectral convergence [52] across the
four conditions were 2.36 dB and 0.084. These low values signify
that the auditory difference is negligible, preserving the diagnostic
information for clinicians.

5.3 Ablation Studies

Next, we carry out ablation studies to investigate the contributions
of physics-inspired modules, including PINNs and physics-guided
attention, to performance gain.

5.3.1 Performance With and Without PINNs To quantify the con-
tribution of our physics-informed design, we conduct an ablation
study. We compare our full model against a baseline network with
an identical architecture but trained without the PINN-based con-
straints and loss function. The results confirm that incorporating
physics provides critical advantages in both training efficiency and
generalization.

The benefits are apparent as demonstrated by results shown in
Figure 15. The PINN-informed model demonstrates significantly
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faster convergence, achieving a much lower loss after the first
epoch (2.76 vs. 19.4) and reaching its final loss value approximately
200 epochs earlier than the baseline. Furthermore, the PINN-based
model shows superior generalization, achieving a final validation
loss of 0.0795, a 26.5 % improvement over the baseline’s 0.1083.
The smaller gap between its training and validation losses (0.023
vs. 0.0418) also indicates reduced overfitting, a common benefit of
physics-based regularization [59].

Crucially, these training advantages translate directly to im-
proved reconstruction performance on unseen data. As shown in
Figure 17, incorporating PINNs improved all evaluation metrics
for a representative unseen subject. For instance, RMSE improved
by 1.2 % and SSIM by 0.9 %. In summary, the ablation study con-
firms that PINNs not only accelerate model convergence but, more
importantly, enhance their generalization ability, leading to more
accurate and reliable PCG reconstruction.

5.3.2  Performance With and Without the Compensation Network
We next conduct an ablation study to evaluate the impact of the
compensation network, following the same methodology as the
experiments in Section 5.3.1. The results, depicted in Figure 16,
demonstrate several key benefits. First, the compensation network
significantly accelerates the convergence of the boundary loss and
enables the model to reach a lower final loss value (from an average
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structed w. and w.o. FFL. w. and w.o. ph. attention.
of 2.26 to 0.0047). Furthermore, it also reduces the PDE residual

loss (from an average of 0.0048 to 0.0009), effectively balancing
its magnitude with that of the boundary loss. Results successfully
demonstrate the effectiveness design of the compensation network.

5.3.3  Performance With and Without the Fourier Feature Layer
Following the above experiments, we further explore the impact
of FFL on the network performance. As shown in Figure 18, the
model incorporating a FFL successfully captures the rapid, tran-
sient features of both the S1 and S2 components of PCG. In contrast,
the baseline model without FFL suffers from significant waveform
blunting. This is particularly evident in the S1 region, where its out-
put waveform is considerably wider than the ground-truth signal
from the apex, and it fails to reconstruct the S2 component entirely.
Overall, the baseline model exhibits a characteristic over-smoothing
of the signal. This comparison demonstrates that FFL effectively
enhances the network’s capacity to represent high-frequency infor-
mation, thereby improving the inversion fidelity for the transient
characteristics of PCG.

5.34 Performance With and Without Physical-guided Attention
We finally evaluate the impact of our proposed physical-guided
attention loss, which is designed to force the model to focus on di-
agnostically critical regions of PCG. The results, shown in Figure 19,
reveal the baseline’s limitations. Without the attention mechanism,
the model struggles to accurately reconstruct key pathological fea-
tures, leading to significant amplitude attenuation in PVC events
and timing errors in the S1 heart sound. In contrast, the physical-
guided attention loss yields substantial improvements. By directing
the model’s focus, it reduces the local RMSE in the PVC region from
0.098 to 0.025 and decreases the S1 peak timing error from 2.0ms
to just 0.75ms. This confirms that the physical-guided attention is
crucial for enhancing model’s ability to identify and precisely align
key diagnostic features, thereby improving reconstruction fidelity.

5.4 Usability Study

To validate the usability of EarPCG in clinical practice, we design a
subjective evaluation experiment. Experienced clinicians are asked
to score the quality of reconstructed PCG based on ground truth
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to assess their utility in medical diagnosis. To mitigate subjective
bias, the audio samples are presented anonymously and in random
order. After listening, clinicians rate the reconstructed PCG based
on the following dimensions: 1) Audio Similarity — the overall
perceptual resemblance between the reconstructed and ground
truth; 2) Preservation of Diagnostic Features — whether key
medical characteristics such as $S1/S2 sounds, murmurs, and rhythm
abnormalities are clearly identifiable and preserved; and 3) Clinical
Interpretability — whether the reconstructed sound possess value
for preliminary assessment during clinical auscultation. The score
ranges from 0 to 5.

A total of 160 reconstructed PCG audio clips, each lasting for
20s, are played on a Thinkpad X1 Carbon laptop. The employed
doctors wear a BOSE SoundTrue Ultra earphone to listen to the
PCG for evaluation. Based on expert evaluation, the average scores
on the three dimensions of “Audio Similarity," “Preservation of
Diagnostic Features," and “Clinical Interpretability" are 4.9 + 0.25,
4.82 + 0.14, and 4.89 + 0.30, respectively. The high overall scores
and small variance indicate that expert generally considers the
reconstructed PCG to be highly consistent with those obtained by
traditional stethoscopes. Results successfully demonstrate good
clinical application prospects of EarPCG.

6 Related Work and Discussions

Earable sensing has recently emerged as a compelling platform
for cardiac monitoring, attractive for its non-invasive nature and
ubiquity compared to conventional systems [7, 27, 68]. Current ap-
proaches are generally categorized into active and passive sensing.

Active sensing methods primarily rely on emitting signals into
the ear canal and analyzing the reflected signals modulated by phys-
iological activities. For instance, the system proposed in APG [18]
utilizes ultrasound emitted into the ear canal to detect volumetric
changes modulated by vascular deformation, akin to PPG sensing,
thereby indirectly estimating heart rate (HR) and HRV. This ap-
proach achieves estimation errors of 3.21 % and 2.70 % for HR and
HRYV, respectively, even during subject motion. Similar methods
have also been proposed in Earmonitor [57].

Passive sensing, on the other hand, involves the earphone’s
built-in microphone listening for passive in-ear audio related to
human physiological activities [6, 9, 23, 24, 34]. These systems
are built on the premise that the occlusion effect [35] of a sealed
ear canal has adequate passive gain to sense faint bone-conducted
body sounds. Based on this principle, the authors of EarAck [9]
posit that bone-conducted PCG can be detectable within an ear
canal. They hence customize a versatile acoustic sensing platform
based on commodity ANC earphones that is capable of extracting
cardiac activity-related indicators (such as systole and diastole)
under various wearing conditions and motion interference. They
report median errors of 4.77% and 2.95% in systolic and diastolic
period monitoring, respectively. This principle is also applied by the
authors from HearBP [71] and hEARt [6] to estimate blood pressure
and heart rate. hEARt achieves a resting heart rate monitoring
accuracy of 3.02+2.97 Beats Per Minute (BPM). And HearBP reports
standard deviation errors of 3.13mmHg and 3.56mmHg for diastolic
and systolic blood pressure measurements.
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The work in [14] also claims to be able to extract PCG from
in-ear canal. As bone-conducted PCG is subtle, due to frequency
and energy distortions, they hence design customized hardware,
including active amplifiers and impedance matching circuits, to
improve sensitivity. In addition, a deep neural network is employed
to compensate for those distortions. However, this body of passive
sensing work rests on a questionable physical foundation. This more
fundamental issue, which we identify in our own measurements, is
a significant temporal latency (100ms) between the in-ear signal
and the true PCG. This latency is incompatible with the speed of
sound through bone and challenges the core premise of all prior
passive sensing work.

In contrast to prior work, EarPCG resolves this discrepancy by
re-interpreting the in-ear signal not as a degraded PCG, but as a
local measurement of the arterial pulse wave (an acoustic PPG).
We note that although initial studies [20, 62] suggest that in-ear
audio originates from vascular movement, they lack a comprehen-
sive model of the underlying mechanism. In contrast, we develop
a physics-informed model that accurately describes the signal’s
propagation and transduction, and we employ PINNSs to solve the
inverse problem of reconstructing true PCG. While our results
demonstrate strong potential for continuous cardiac monitoring,
we acknowledge limitations: our system has been validated only
under static, moderate noise conditions. Future work will focus on
improving robustness in dynamic environments, likely by incorpo-
rating multi-modal sensing with inertial measurement units and
external microphones, to address motion artifacts and strong rever-
berations. Meanwhile, the current investigation is conducted with a
limited number of participants, and thus, the generalizability of our
findings may be constrained. To ascertain the clinical significance
of our approach, extensive validation on a more diverse and larger
patient population is required.

7 Conclusion

This paper presented EarPCG, a novel system for continuous car-
diac monitoring using in-ear audio. We established a new physical
model that interprets the in-ear signal as an acoustic PPG, resolv-
ing inconsistencies in prior work. By leveraging physics-informed
neural network to invert this model, we successfully reconstructed
high-fidelity PCG waveforms from commodity earphones. Our
evaluation demonstrated that EarPCG achieves high reconstruction
accuracy (RMSE: 2.935%, SSIM: 97.148%) across diverse subjects and
accurately captures key clinical features, including the timing of
cardiac events and signatures of pathology. These findings validate
the potential of earable devices as a viable and powerful platform
for clinical cardiac monitoring.
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