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Abstract
While earables present a promising avenue for cardiac sens-

ing, whether they may replace the stethoscope to perform heart

sound (a.k.a. PCG) monitoring remains questionable. The latest

effort attempts to generate PCG-like waveform out of in-ear au-

dio collected via earphones, yet its data-driven approach does not

seem to be grounded in the underlying physics. To this end, this

paper introduces EarPCG, a system for continuous PCG monitor-

ing leveraging physics-informed neural models. As opposed to the

debatable belief that bone-conducted PCG appears within ear canal,

EarPCG generates PCG waveforms from the (actually existing) pho-

toplethysmography (PPG) waveforms conveyed via blood vessels.

Arising from pressure variations induced by heartbeats, PPG can be

mathematically described by a Partial Differential Equation (PDE).

Therefore, solving this PDE inversely may reconstruct cardiac dy-

namics and in turn enable the generation of PCG waveforms with

another PDE characterizing the pressure oscillations propagating

through soft tissues. Pipelining the two PDE-solving neural models,

EarPCG achieves accurate PCGmonitoring from in-ear audio, while

requiring minimal training. Our extensive experiments leveraging

a custom-built prototype demonstrate the efficacy of our proposed

system. Furthermore, we have conducted clinical trials, with clini-

cians reporting no perceptible difference between authentic PCG

and the sounds reconstructed by EarPCG.
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Figure 1: As the existence of PCG in ear canal remains ques-
tionable, EarPCG aims to generate PCG from passively col-
lected in-ear audio, grounded in a biophysical model.
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1 Introduction
Representing a global health crisis, cardiovascular diseases are

responsible for an estimated 17.9 million deaths each year [39]. As

the primary tool for practical diagnosis, stethoscope allows med-

ical professionals to interpret heart sounds, formally known as

the phonocardiogram (PCG). The analysis of PCG irregularities is

critical for the early detection of serious conditions such as valve

disease [28], congenital heart defects [60], and cardiomyopathy [58].

Despite its diagnostic power, the conventional method of PCG ac-

quisition suffers from significant practical limitations: its reliance

on specialized expertise and instrumentation, making it unsuit-

able for continuous and long-term monitoring outside of a clinical

setting [36, 50]. This constraint can delay timely diagnosis and

intervention [2, 31, 43], creating a growing demand for alternative

PCG monitoring solutions that are continuous and convenient.

In recent years, wireless sensing has emerged as a prominent ap-

proach within the research community for remote cardiac monitor-

ing [65, 66]. However, these motion-sensing methods face difficulty

in “hearing” acoustic PCG remotely as the induced vibration is too

weak. Instead, they primarily acquire signal waveforms from body

vibrations caused by blood pressure; in other words, wireless sens-

ing obtains only Photoplethysmography (PPG) [1]. For instance,

the work in [16] utilizes a wide-band radar to sense miniature chest

displacements due to cardiac activity to indirectly retrieve heart-

beat waveforms. A similar work from [22] explores mmWave radar
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for Seismocardiogram (SCG) sensing, but SCG is not as widely ac-

cepted in clinical diagnosis as its acoustic counterpart PCG [69].

Currently, remote wireless cardiac monitoring is infeasible due to

the notable challenges in distinguishing cardiac activity from respi-

ratory interference [70]. Furthermore, their active sensing nature

often entails considerable hardware complexity [16] and high en-

ergy consumption. These reasons shift the interest towards current

earable sensing.

Earable sensing becomes a promising alternative for those wire-

less techniques in cardiac monitoring thanks to: (i) the passive

sensing nature that offers energy efficiency and reduced hardware

complexity; (ii) the occlusion effect that can amplify internal body

sounds. This approach is built on the principle that the occluded ear

canal passively amplifies faint, bone-conducted signals [35]—a con-

cept successfully applied in areas like user authentication [8, 25] and

activity recognition [23, 45]. Inspired by this principle, EarAce [9]

claims that PCG transmitted via bone-conduction can be captured

with in-ear microphones, and the binaural discrepancy of PCG even

carries unique identities [7]. Asclepius [14] further claims to have

observed in-ear PCG that suffers from significant frequency and

energy loss; it hence involves additional hardware to boost sensi-

tivity and employs a neural network to compensate for these losses.

Despite tremendous efforts, this body of work faces a common

obstacle: their premise that bone-conducted PCG can be reliably

detectable within ear canal lacks rigorous physical validation.

Our measurements, however, challenge the above hypothesis

that bone-conducted PCG is directly detectable within the occluded

in-ear chamber. Specifically, we observed a consistent temporal

latency of approximately 100ms between the in-ear audio signal

and externally measured PCG. This significant delay is inconsistent

with the rapid propagation speed of acoustic waves through solid

media (i.e., bone) over the relatively short anatomical distances in-

volved, thus questioning the direct bone-conduction pathway as the

primary source. Consequently, the direct acquisition of true PCG

from within the ear canal via this mechanism appears improbable.

This finding led us to propose an alternative mechanism: the in-ear

audio is not bone-conducted PCG but is instead acoustic PPG due

to arterial pulse wave, propagating through blood vessels connect-

ing the cardiovascular system to the ear. Crucially, this hypothesis

perfectly aligns with our key observation. The known propagation

velocity of blood pulses (4–12 m/s [46, 64]) precisely accounts for

the 100ms delay we measured. Therefore, while direct PCG acqui-

sition seems unlikely, this robust pulse wave signal provides a new,

physically plausible pathway from which to infer cardiac dynamics.

To this end, we introduce EarPCG, a physics-inspired system to

infer PCG signals from passive in-ear audio using a comprehensive

biophysical model, as shown in Figure 1. EarPCG is a software-

oriented solution that (i) requires no extra hardware, (ii) can be

deployed on common headsets with in-ear microphones, say the

Active Noise Cancellation (ANC) earphones, (iii) and entails even

less network parameters than the comparable hardware-software

co-optimized approach [14]. Our core innovation is a model of two

distinct physical pathways originating from cardiac activity. First,

we model the hemodynamic pathway where cardiac pressure waves

generate the in-ear audio signal, described by a Partial Differential

Equation (PDE) and an Ordinary Differential Equation (ODE). Sec-

ond, we model the cardiodynamic pathway where the same cardiac

activity produces mechanical vibrations that manifest as the PCG.

To link these, EarPCG first inverts the hemodynamic model to esti-

mate the source cardiac pressure from the captured in-ear audio. A

neural network then transforms this estimated pressure—bridging

the gap from hemodynamics to cardiodynamics—into the initial me-

chanical vibrations, which are propagated through a tissue model

to synthesize the final PCG signal. To summarize, this paper makes

the following contributions:

• We propose a physical model to analytically explain the root

cause of in-ear audio.

• We design a physical-informed deep neural network to ac-

curately reconstruct PCG from in-ear audio.

• We have implemented a system prototype and carried out

extensive measurements. Results demonstrate that the pro-

posed model can precisely reconstruct the morphological,

diagnostic, and auditory features of PCG. The usability study

further confirms high potential for cardiac monitoring.

The rest of our paper is organized as follows: Section 2 introduces

the background and the motivational measurements, Section 3

presents our system design, and Section 4 demonstrates the im-

plementation of EarPCG. Section 5 reports the experiment results;

Section 6 introduces the related work about cardiac status monitor-

ing. Section 7 concludes the paper.

2 BACKGROUND AND MOTIVATION

2.1 Background
This section initially presents preliminary studies that explore the

use of In-Ear Microphones (IEMs) for cardiac vital sign monitor-

ing. IEMs are hypothesized to capture cardiac physiological signals

within the ear canal, an ability attributed primarily to the occlusion

effect [35]. The occlusion effect is a phenomenon wherein a con-

fined space, such as the sealed ear canal in this context, passively

amplifies low-frequency body sounds through mechanisms like

signal superposition and acoustic resonance [10, 56]. Given that the

dominant spectral energy of PCG resides within this low-frequency

range (20 to 150Hz [38]) and that in-ear audio captured via IEMs

exhibits temporal characteristics resembling PCG, several existing

methods commonly treat in-ear audio as bone-conducted PCG.

As an example, the authors of [9] engineer a versatile ear-worn

sensing platform with IEMs from ANC erables for the extraction of

bone-conducted PCG. And they even leverage binaural disparities

of in-ear PCGs for user identification [8]. Another work in [6]

further utilizes in-ear PCG for Heart Rate (HR) estimation. Zhao et

al. [71] utilize the temporal interval between the first and second

components of PCG (S1 and S2) identified via in-ear audio, which

they also classify as PCG for blood pressure estimation. While the

authors of [14] further claim to have captured in-ear PCG that

experiences significant frequency and energy loss. They hence

design customized hardware with active amplifiers, as well as a

sophisticated impedance matching circuit, to increase sensitivity.

Meanwhile, a deep neural network is employed to compensate for

complex frequency and energy loss. Nonetheless, all these works

are built on a premise that bone-conducted PCG can reach the ear

canal but without detailed physical validation.
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Figure 2: Motivational study: (a) Themeasurement setup of synchronized acquisition of in-ear audio and PCG. (b) PCG and in-ear
audio in time domain. (c) Spectrograms of 5 seconds PCG (lower) and corresponding in-ear audio (upper). (d) The measurement
setup for synchronized acquisition of PCG in the apex area and the other six locations. (e) The waveform comparison between
the (reference) apex area and other body locations.

2.2 Does In-Ear Audio Really Contains
Bone-conducted PCG?

To characterize in-ear audio and distinguish it from the PCG, we

have conducted a measurement study using our upgraded EarAce

platform [12].We let two synchronous earphones to record PCG and

in-ear audio simultaneously. The PCG is recorded by inserting an

earphone into the ear tips of a stethoscope, which is positioned on

the subject’s apex area. Concurrently, a separate earphone is placed

in the subject’s ear canal to acquire in-ear audio. The setup, as well

as results, are shown in Figure 2. Our findings reveal significant tem-

poral and spectral disparities that refute the hypothesis that in-ear

audio is simply bone-conducted PCG. First, we observe a consistent

latency of approximately 100ms (calculated by counting the sample

index of peaks) in in-ear audio relative to PCG (Figure 2(b)). This

significant delay is incompatible with bone conduction; given the

respective propagation velocities in bone (4000m/s) and a stetho-

scope tube (340m/s) over similar path lengths, any delay should be

negligible (<1ms)[49]. Second, the signals differ spectrally. While

the PCG exhibits a broad frequency range (up to 400Hz), the in-ear

audio’s energy is concentrated in the low frequencies (< 80Hz), as

seen in Figure 2(c). A cumulative spectral analysis confirms this,

with the 90th percentile of energy at 23Hz for in-ear audio versus

56Hz for the PCG. Collectively, these temporal and spectral dis-

crepancies strongly compel us to re-evaluate whether direct PCG

acquisition from in-ear canal is feasible.

To verify the above hypothesis, we next carry out more measure-

ment studies. Our setup involves two synchronous stethoscopes: a

reference stethoscope at the apex area and a second one at various

other body locations, such as the thorax, clavicle, carotid artery, and

several points on the head (Figure 2(d)). To maximize sensitivity, we

capture the signals with IEMs connected to a Programmable Gain

Amplifier (PGA) with 27 dB of gain, a level that would typically clip

standard in-ear audio. To more clearly demonstrate the character-

istics, the acquired waveforms above head are further amplified.

Our results are clear: even though signals resembling PCG at other

body locations can be acquired, the temporal latency relative to

true PCG refutes that they are bone-conducted PCGs. However,

judging from the waveform morphology and spectral features, they

are more akin to in-ear audio.

Based on these measurement results, along with our detailed

investigation on the anatomical structure of human body, we reason-

ably suspect in-ear audio may be acoustic PPG signal. PPG signals

arise from blood vessel volume changes and can be generated lo-

cally throughout the body, making them far more accessible. In

contrast, the propagation of PCG signals through the body is funda-

mentally different, as it can be only sourced by cardiac activities. We

hypothesize that PCG signals encounter severe attenuation(more

than 45dB from heart to chest [48]), allowing them to travel only

a short distance from the heart. Even if we assume the possibility

of PCG reaching the ear bones via bone conduction (which our
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data does not support), the signal would still need to traverse soft

tissues, causing further damping. More critically, the physics of

the occluded ear canal favors PPG (a frequency range from 0 to

20Hz [15]) detection. The ear canal’s small volume (around 2 cc)

causes it to function as an acoustic resonator that amplifies very

low frequencies (20Hz) [21]. Consequently, it boosts PPG signals,

which fall within this infrasonic range, while distorting or failing to

amplify the higher-frequency PCG signals. Therefore, we conclude

that it is nearly impossible to directly sense PCG within the ear

canal. The primary obstacles are the severe signal attenuation over

distance and the overwhelming presence of the PPG signal, which is

both locally sourced and amplified by the ear canal itself. Although

we attempted to isolate a potential PCG signal with pre-sampling

filters, we were still unable to capture it. Crucially, this necessary

filtering is absent in existing literature, such as the work by Chen

et al. [14]. For these reasons, the signals reported in that study

are highly unlikely to be PCG, motivating the needs for further

research.

2.3 The Physics that Generates In-ear Audio
Based on our findings, we propose a new model for the generation

of in-ear biosignals. We model the sealed ear canal as a closed air

cavity acoustically coupled to the nearby carotid artery through soft

tissue—a configuration analogous to a cuff-based blood pressure

monitor, where a sensor in a sealed chamber indirectly measures

arterial pressure waves [21]. Therefore, we hypothesize that the

detected signal is not an attenuated PCG, but rather the arterial

pulse wave itself, originating from the arteria labyrinthi near the

inner ear. This pressure wave causes the tympanic membrane and

surrounding tissues to vibrate, which is then detected by the in-ear

microphone. This mechanism effectively defines the in-ear signal

as a form of acoustic PPG. Crucially, unlike traditional optical coun-

terpart, this acoustic PPG possesses remarkably high fidelity. The

proximity of blood vessels to the skin in the ear canal preserves

morphological details of cardiac activity that are often lost at other

body sites. This high quality is so pronounced that, as we have

noted, prior researchers have consistently treated in-ear audio as

PCG. This unique combination of accessibility and fidelity makes

in-ear PPG an ideal proxy from which to computationally recon-

struct true PCG. This allows our system to support more versatile

applications than in-ear audio, which loses valuable high-frequency

components crucial for diagnosis.

3 System Design
EarPCG is the first passive system that exploits in-ear audio

for PCG reconstruction via explicit physical models. This recon-

struction is decomposed into three distinct phases, each handled

by a corresponding module, as illustrated in Figure 3. The first

phase primarily involves a hemodynamic process: a pulse wave,

generated by cardiac activity, propagates through blood vessels and

then couples to the sealed ear canal. This phase is modeled by a

Physics-Informed Neural Networks (PINNs) (HermoNet in Figure 3),

which infers the underlying pulse wave dynamics at the heart’s

origin from in-ear audio. We propose that these dynamics represent

part of kinetic energy from cardiac activity. The second phase fo-

cuses on the cardiodynamic process, also driven by cardiac activity,
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Figure 3: System architecture of EarPCG.

which generates PCG that propagates through soft tissues to the

apex area. This process is modeled by another PINNs (CardiNet in

Figure 3). While both hemodynamic and cardiodynamic processes

originate from the same cardiac activity and are interconnected at

the heart. To establish a connection between the aforementioned

two processes, the third phase (MappingNet in Figure 3) employs a

Transformer network to model this complex relationship.

3.1 Physical Model
In this section, we derive the behind physicalmodels for our EarPCG.

To start with, we model the generation of in-ear audio in two stages:

first, the propagation of the arterial pulse wave from the heart to

the ear; second, the structure-acoustic coupling that converts this

pressure wave into a measurable sound in the sealed ear canal, as

illustrated in Figure 4.

The first stage, pulse wave propagation (the process 1 in Figure 4),

is fundamentally governed by the one-dimensional Navier-Stokes

equations for fluid dynamics [30]. These equations relate the arte-

rial pressure wave 𝑝
f
(𝑥, 𝑡) to the vessel cross-section and volume

flow rate, where 𝑥 denotes the distance to the source pressure

and 𝑡 represents time index. While comprehensive, this model con-

tains complex terms for nonlinear convection (inertial effects) and

viscous damping (shear stress). However, for blood flow in large

arteries, we can introduce two key simplifications. First, under the

low Mach number approximation common for arterial flow, the

nonlinear convection term can be neglected [42]. Second, viscous

effects are primarily confined to the boundary layer and have a min-

imal impact on the mainstream pulse wave, allowing the damping
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Figure 4: Modeling for the generation of in-ear audio.
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term to be omitted from the one-dimensional averaging theory [19].

After applying these simplifications and introducing the vascular

compliance equation [30] to create a closed system of equations,

the model reduces to the standard one-dimensional wave equation:

1

𝑐2
𝜕2𝑝

f
(𝑥,𝑡 )

𝜕𝑡2
=

𝜕2𝑝
f
(𝑥,𝑡 )

𝜕𝑥2
, where 𝑐 =

√︃
𝐴
𝜚𝐶

is the pulse wave velocity,

which we treat as a learnable parameter constrained to the physio-

logical range of 4–12m/s. Meanwhile, to account for unmodeled

physical phenomena, such as arterial wave reflections or minor

nonlinearities, we introduce a compensation term Φ(𝑥, 𝑡), yielding
our final propagation model, as shown in Eq. (1).

1

𝑐2

𝜕2𝑝
f
(𝑥, 𝑡)

𝜕𝑡2
=

𝜕2𝑝
f
(𝑥, 𝑡)

𝜕𝑥2
+ Φ(𝑥, 𝑡). (1)

To ensure model-completeness, the above model’s boundary condi-

tions are the aortic pressure wave at the heart origin, 𝑝
f
(0, 𝑡), and

the pressure 𝑝
f
(𝐿, 𝑡) arriving near the ear at the end of the vessel.

In the second stage, the arriving pulse wave 𝑝
f
(𝐿, 𝑡) acts on the

eardrum and surrounding tissues, generating a sound pressure vari-

ation, 𝑝s (𝑡), within the sealed ear canal (process 2 in Figure 4). We

model this process by idealizing the eardrum as a forced harmonic

oscillator. The equation for the eardrum’s displacement, 𝑥 (𝑡), is
given by:

𝑚
𝑑2𝑥 (𝑡)
𝑑𝑡2

+ 𝑏𝑑𝑥 (𝑡)
𝑑𝑡

+ 𝑘𝑥 (𝑡) = 𝐴m (𝑝
f
(𝐿, 𝑡) − 𝑝s (𝑡)), (2)

where𝑚, 𝑏, and 𝑘 are the mass, damping coefficient, and stiffness of

the eardrum. 𝐴m is the eardrum’s effective area. The key step is to

relate the resulting sound pressure 𝑝s (𝑡) to this displacement 𝑥 (𝑡).
By modeling the sealed ear canal as a cavity undergoing isothermal

compression, the pressure change can be linearly approximated

for small displacements: 𝑝s (𝑡) = 𝑝t (𝑡) − 𝑃0 ≈ 𝑃0
𝐴𝑚

𝑉0

𝑥 (𝑡), where 𝑃0
and 𝑉0 are the static atmospheric pressure and the canal volume,

respectively, and 𝑝t (𝑡) denotes the absolute pressure in the sealed

ear canal.

Substituting this linear relationship back into Eq. (2) allows us

to eliminate the displacement variable 𝑥 (𝑡). After rearranging, we
arrive at a standard second-order ODE that directly governs the

measurable in-ear sound pressure 𝑝s (𝑡) as a response to the arterial
pulse wave 𝑝

f
(𝐿, 𝑡):

𝑑2𝑝s (𝑡)
𝑑𝑡2

+ 𝜁
𝑑𝑝s (𝑡)
𝑑𝑡

+ 𝜔2

0
𝑝s (𝑡) = 𝛾𝑝

f
(𝐿, 𝑡). (3)

In this final lumped-element model, 𝜁 is the effective damping

coefficient, 𝜔0 is the natural resonant frequency of the coupled

eardrum-cavity system, and 𝛾 is a coupling gain coefficient that

quantifies the efficiency of the pressure transmission. These co-

efficients, together with those in Eq. (2), reflect subject-specific

anatomical variabilities.

The initial phase of our work involves the challenging task of

reconstructing the source cardiac pulse waveform at its heart ori-

gin based on in-ear sound measurements. This problem can be

formulated as identifying the unknown input pressure 𝑝
f
(0, 𝑡) at

the heart origin that leads to the observed acoustic pressure 𝑝s (𝑡),
but without the usual support of boundary or initial conditions.

This lack of prior information classifies it as an ill-posed inversion

problem. Moreover, the challenge is further complicated by the

presence of unknown parameters Φ(𝑥, 𝑡) within the Eq. (1) and

unknown parameter 𝛾 in Eq. (3). These unknown conditions ren-

der classical numerical methods [40], e.g., finite elements or finite

differences, infeasible. Furthermore, the scarcity of labeled data,

specifically, pulse waves measured directly at the heart’s origin,

which are nearly impossible to obtain, precludes the application of

traditional deep learning approaches.

In this paper, we employ PINNs [47], a method that combines

physical constraints with deep learning models to resolve the first

and second phase problem. Compared with the traditional numer-

ical methods, PINNs are mesh-free, without computationally ex-

pensive mesh generation, and thus can easily handle the above

case [29]. Meanwhile, compared with traditional deep learning,

PINNs have the advantages of fast convergence and generaliza-

tion ability in the small data regime. The embedding of physical

information provides the model with prior knowledge, enabling

it to make reasonable predictions for unseen data. In particular,

the aforementioned subject-specific anatomical variabilities can

be readily addressed in its optimization process. The PINNs allow

us to resolve both the first and the second phase modeling. For

the third phase, we leverage a deep neural network to learn the

mapping itself. By incorporating these three modules, we finally

built a mapping between in-ear audio 𝑝s (𝑡) to apex area PCG.
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Figure 6: Architecture of HermoNet.

3.2 Networks Design
We resolve the aforementioned hemodynamic and cardiodynamic

models using PINNs and establish the mapping relationship leverag-

ing the Transformer. The whole network architecture is illustrated

in Figure 5. In this section, we introduce the neural network design.

3.2.1 HermoNet The primary objective of HermoNet is to infer

the source pressure waveform 𝑝
f
(0, 𝑡) at the heart’s origin based

on the observed in-ear audio 𝑝s (𝑡). The problem can be regarded

as a typical spatiotemporal inverse problem driven by the coupling

of PDE and ODE.

We design the entire network of two parts according to the

physical process, as illustrated in Figure 6. The left part of the

network (comprisingNs andNfL
) is designed to invert the pressure

𝑝
f
(𝐿, 𝑡) at the distal end, based on the observed in-ear audio 𝑝s (𝑡)

(the process 2 in Figure 4), where 𝐿 denotes the distance from the

heart source to the blood vessel near the ear canal. Conversely, the

right part (consisting ofN andNc) further utilizes 𝑝f (𝐿, 𝑡) to invert
and obtain the pressure waveform 𝑝

f
(0, 𝑡) at the heart (the process

1 in Figure 4). Herein, bothNs andNfL
are designed using Multiple

Layer Perceptron (MLP) with identical architectures, taking 𝑡 as

input. Their outputs correspond to the observed in-ear audio 𝑝s (𝑡)
and the inverted distal pressure 𝑝

f
(𝐿, 𝑡), respectively.

In this architecture, the role of Ns is to fit in-ear audio samples.

And N
fL
enforces the network to follow the physical laws (defined

by Eq. 3).N
fL
can be readily implemented via Automatic Differenti-

ation (AD) [4] of a deep learning framework. To train this network,

we introduce two loss terms: the observation loss L
obs

and the

physical loss LODE. The observation loss 𝐿
obs

is the supervised

error term that measures the discrepancy between the neural net-

work’s predictions and the observed data; and the physical loss

𝐿ODE corresponds to the physical residual loss, an unsupervised

term that enforces the governing physics by measuring the discrep-

ancy when the network’s output is substituted into the differential

equation. Therefore, we define the observation loss L
obs

as the

squared error between in-ear audio 𝑝s (𝑡) and the output of Ns:

L
obs

=
1

𝑁
obs

𝑁
obs∑︁

𝑖=1

∥Ns (𝑡𝑖 ;Ws, bs) − 𝑝s (𝑡𝑖 )∥2, (𝑡 ∈ [0,𝑇 ]), (4)

where Ns (𝑡𝑖 ;Ws, bs) denotes the network function parameterized

byWs and bs and takes time index 𝑡𝑖 as its input, 𝑝s (𝑡𝑖 ) is the in-ear

audio observed at time index 𝑡𝑖 , ∥ · ∥2 represents the 𝐿2 norm of the

quantities, 𝑁
obs

and𝑇 are receptively denote the sample length and

duration of the in-ear audio sequence. The loss LODE is defined as:

LODE =
1

𝑁ODE

𝑁ODE∑︁
𝑖=1

∥𝑑
2𝑝s (𝑡𝑖 )
𝑑𝑡2

+ 𝜁
𝑑𝑝s (𝑡𝑖 )
𝑑𝑡

+ 𝜔2

0
𝑝s (𝑡𝑖 )

−𝛾𝑝
f
(𝐿, 𝑡𝑖 )∥2, (𝑡 ∈ [0,𝑇 ]), (5)

where 𝑝s (𝑡𝑖 ) and 𝑝f (𝐿, 𝑡𝑖 ) are the predicted outputs ofNs andNfL
at

time index 𝑡𝑖 , respectively, 𝑁ODE is the number of samples involved

in the calculation. Overall, the total loss is formulated as Ltot1 =

𝜆1LODE + 𝜆2Lobs
, where 𝜆1 and 𝜆2 are two coefficients.

The submodule N of the network aims to approximate physical

process of the pressure dynamics along blood vessels. As shown in

Figure 6, the network N is a MLP that takes coordinates (𝑥, 𝑡), 𝑥 ∈
[0, 𝐿], 𝑡 ∈ [0,𝑇 ] as inputs and outputs estimated pressure waveform

𝑝
f
(𝑥, 𝑡). To train this neural network, we also define two loss terms,

a boundary condition loss LBC and a physics-based loss LPDE.

The loss term LPDE enforces the structure imposed by standard

one-dimensional wave equation (Eq. (1)) at a finite set of sampling

points; and LBC guides the model to correct the solution under

physical constraints by matching the observed data, improving its

ability to approximate the solution. The boundary condition loss

LBC is defined by the square error between predicted pressure

waveforms at 𝑥 = 𝐿 and the predicted waveform 𝑝
f
(𝐿, 𝑡) from N

fL
:

LBC =
1

𝑁
obs

𝑁
obs∑︁

𝑖=1

∥N (𝐿, 𝑡𝑖 ; 𝑐,W, b) − 𝑝
f
(𝐿, 𝑡𝑖 )∥2,

(𝑥 = 𝐿, 𝑡 ∈ [0,𝑇 ]), (6)

where N(𝐿, 𝑡𝑖 ;W, b) denotes the network function. Another loss

function LPDE is constructed by embedding Eq. (1) into the loss:

LPDE =
1

𝑁
col

𝑁
col∑︁

𝑖=1

∥ 1

𝑐2

𝜕2𝑝
f
(𝑥𝑖 , 𝑡𝑖 )
𝜕𝑡2

−∇2𝑝
f
(𝑥𝑖 , 𝑡𝑖 )∥2, 𝑥𝑖 ∈ [0, 𝐿], 𝑡𝑖 ∈ [0,𝑇 ], (7)

where {𝑥𝑖 , 𝑡𝑖 } are the sampling points (𝑁
col

in total) in spatial-

temporal domain, and 𝑝
f
(𝑥𝑖 , 𝑡𝑖 ) is predicted output of network N

corresponding to input {𝑥𝑖 , 𝑡𝑖 }. Each 𝜕2𝑝̃
f

𝜕 requires the derivatives

of the network output 𝑝
f
(𝑥, 𝑡) with respect to the input (𝑥, 𝑡), which

are evaluated exactly and efficiently via AD. The total loss is then
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constructed by Ltot2 = 𝜆3LPDE + 𝜆4LBC, where {𝜆3, 𝜆4} are differ-
ent weights for each specific loss term. In this paper, an adaptive

weight algorithm is applied [61] to address the mismatch in the

convergence rate of different losses.

However, due to incomplete physical constraintsΦ(𝑥, 𝑡) in Eq. (1),
and scarcity of ground truth labels at the heart origin, the above

design is hard to converge and tends to exhibit high-frequency

oscillations. To this end, we incorporate a Fourier Feature Layer

(FFL) [26] and a compensatory network Nc.

The Fourier Feature Layer The inclusion of Fourier Feature Layer

(FFL) within the network architecture enables the PINNs to accu-

rately resolve high-frequency, low-amplitude oscillations super-

imposed on dominant low-frequency signals. This capability sig-

nificantly improves their overall representational fidelity. The un-

derlying key enabler is that FFL applies a high-dimensional peri-

odic transformation to input coordinates (𝑥, 𝑡), which explicitly

introduces multiscale frequency information. This transformation

allows the network to more effectively capture high-frequency de-

tails [26]. In our case, we put FFL at the entrance of N as shown

in Figure 6. This FFL maps the neural network inputs by apply-

ing sinusoidal functions (sine and cosine) at multiple frequencies:

𝐹out =
[
sin(2𝜋 𝑓𝑗𝑥), cos(2𝜋 𝑓𝑗𝑥), sin(2𝜋 𝑓𝑗 𝑡), cos(2𝜋 𝑓𝑗 𝑡), . . .

]
𝑓𝑗 ∈

[𝑓min, 𝑓max], where 𝑓𝑗 is the 𝑗-th frequency in [𝑓min, 𝑓max].

The Compensation Network The compensation network Nc here

is used to balance the convergence mismatch between boundary

loss and PDE loss, due to the remaining unknown term Φ(𝑥, 𝑡)
in the governing Eq. (1). Without this module, the boundary loss

LBC would remain quite high, while the PDE loss LPDE is rapidly

minimized. Inspired by the work in [72], we introduce a compensa-

tion networkNc (𝑥, 𝑡 ;Wc, bc) to fit the unknown term Φ(𝑥, 𝑡). This
network is also represented by an MLP as shown in Figure 6. Its

output 𝑝c (𝑥, 𝑡) is added to the PDE residual loss to compensate for

the mismatch error. Therefore, the term LPDE in the loss function

Eq. (7) is reformulated as:

L′
PDE

=
1

𝑁
col

𝑁
col∑︁

𝑖=1





 1

𝑐2

𝜕2𝑝
f
(𝑥𝑖 , 𝑡𝑖 )
𝜕𝑡2

− ∇2𝑝
f
(𝑥𝑖 , 𝑡𝑖 )

−𝑝c (𝑥𝑖 , 𝑡𝑖 )∥2 , 𝑥𝑖 ∈ [0, 𝐿], 𝑡𝑖 ∈ [0,𝑇 ] .
(8)

The total loss Ltot2 is then given by L′
tot2

= 𝜆3L′
PDE

+ 𝜆4LBC.

3.2.2 CardiNet The CardiNet module is designed to model the

propagation of the PCG from its anatomical source, through soft

tissue, to the chest surface. Since PCG is essentially acoustic pres-

sure wave, this tissue-mediated propagation hence can be modeled

by a PDE. The primary challenge is that the source PCG is un-

known and requires invasive measurement, while the resulting

PCG on the chest surface is non-invasively accessible. This sce-

nario—an unknown source and known boundary condition—is an

ideal application for PINN. Therefore, CardiNet reuses the PDE

solver architecture (N ,N𝑐 ) from HermoNet, but is trained using

the non-invasively auscultated PCG as its observation data.

3.2.3 MappingNet The MappingNet is designed to establish a cor-

respondence between pulse waves originating from the heart (ob-

tained in HermoNet) and the reconstructed source PCG (from Car-

diNet). This establishment would finally allow us to deduce PCG

at the apex area from in-ear audio measurements. To formalize

this relationship, we train a neural network to learn the nonlin-

ear mapping between them, a simplified schematic of which has

been illustrated in Figure 5. To achieve high-fidelity mapping with-

out losing any details in both temporal and spectral features, we

adopt a symmetric U-shaped network architecture, specifically an

“Encoder-Transformer-Decoder” design. The encoder employs a

three-stage progressive structure, integrating Multi-Scale Convo-

lution (MSC) feature fusion, a Residual Block (Res-B), and a Time-

Frequency Attention (TFA) module. The Transformer, in particular

its self-attention mechanism, has global weight correlations among

the multi-scale features extracted by the encoder, enabling the au-

tonomous identification of key temporal patterns in the in-ear audio

that are crucial for PCG reconstruction.

The decoder mirrors the encoder structure to maintain a strict

spatiotemporal mapping, ensuring that the low-frequency (in-ear

audio) features extracted during encoding accurately guide the

reconstruction of high-frequency (PCG) details. This symmetric de-

sign preserves the temporal dynamics of PCG signals and enhances

the reconstruction quality, ensuring that the reconstructed PCG

aligns with the rhythmic sense of the PCG obtained on auscultation.

Physic-guided Attention To enhance the model’s capability of

identifying and reconstructing critical events within the PCG (e.g.,

S1, S2, premature beats, and murmurs), we introduce a physics-

guided attention mechanism, rather than a data-hungry learning

method. The key insight of our model is to enforce the network

to focus on particular events, for instance S1 and S2, which can

be readily and analytically extracted via short-term energy and

spectral centroid [37]. This temporal attention, manifested as a

binarized time window of resultant events, allows us to apply more

weights on the PCG waveform where the critical event occurs, thus

preserving its morphology and diagnostic features. This temporal

attention is also applied in the time-frequency domain to preserve

the spectral features.

Loss function We establish the loss function based on tempo-

ral and spectral differences between the source PCG sm inferred

using the CardioNet and the source pressure wave sp = 𝑝 𝑓 (0, 𝑡)
predicted by the HermoNet. This composite loss function is for-

mulated as L = 𝛼𝑀TFLspec + 𝛽𝑀TLtemp, where 𝛼 and 𝛽 are the

respective coefficients, Lspec = | |𝑆𝑇𝐹𝑇 (sm) − 𝑆𝑇𝐹𝑇 (sp) | |2 denotes
the loss computed by the Short Time Fourier Transform (STFT),

including both amplitude and phase. And Ltemp = | |sm − sp | |2
characterizes waveform distinctions. The 𝑀TF and 𝑀T represent

the time-frequency domain and time domain masks generated by

the physics-guided attention mechanism.

4 IMPLEMENTATION
This section elaborates on the implementation details. Our setup

uses the upgraded EarAce platform [12] with a 4 kHz sampling rate.

In-ear audio is recorded with W380NB earphones, and the PCG is

captured using a YUWELL versatile stethoscope [63]. The neural

networks are implemented using PyTorch and trained on NVIDIA

3090 GPUs. We recruit volunteers with a diverse range of ages (21

to 63 years) and Body Mass Index (BMI) values (17.1 to 27.5). To

ensure safety, all trials take place on closed test tracks while strictly

following our IRB regulations.
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4.1 The Network Configurations of EarPCG
The HermoNet architecture is composed of several modules. Its

input networks, Ns and N
fL
, each consist of two Fully Connected

(FC) layers with 64 neurons and a Tanh activation function. The

main processing blocks—the backbone networkN and the compen-

sation networkNc—share an identical architecture of five FC layers

with 128 neurons each, using a sinusoidal activation function. The

crucial distinction is that the input to N is first encoded by an FFL

with a frequency range of 0-20Hz and a step size of 2Hz. The Car-

diNet module adapts this architecture with two key modifications.

First, to capture the higher-frequency details of the PCG, its FFL

is configured with a wider frequency range (0–200 Hz, 4 Hz step),

and its core networks (N andNc) are expanded to 256 neurons per

layer. Second, CardiNet is structurally simpler, consisting only of

the N and Nc modules and excluding the Ns and N
fL
networks.

TheMappingNet architecture is composed of an encoder, a Trans-

former module, and a decoder. The encoder consists of three se-

quential layers, each containing an MSC block, a Res-B, and a

max-pooling layer. The MSC block employs four parallel 1D con-

volutions with varying kernel sizes ([3, 7, 15, 31]), concatenating

their outputs before applying Batch Normalization (BN) and PReLU.

The Res-B further processes this output, containing another MSC

block, a TFA module, a 1D convolution (kernel=3, padding=1), and

a final BN. The TFA module is notable for its dual-branch design,

using both FFT-based spectral filtering and temporal convolution to

generate attention weights. For downsampling, each encoder layer

concludes with a max-pooling operation (kernel size=4, stride=4),

and a channel-doubling strategy is employed across the layers to

increase the feature dimension from 1 to 256. Following the en-

coder, a Transformer module with four encoder layers processes

the sequence. Each layer features an 8-head self-attention mecha-

nism and a Feedforward Network with a dimension of 1024, with a

dropout rate of 0.1 applied for regularization. Finally, the decoder

reconstructs the signal by first using three up-sampling layers (scale

factor=4) to restore temporal resolution, followed by a progressive

channel-reducing strategy ([256, 128, 64, 1]) to map the features

back to a single-channel output. The whole network has 6.59M

parameters in FP32 format, occupying 25.12MB memory storage,

rendering it plausible to be deployed on constrained mobile devices.

4.2 Pre-Processing and Training
4.2.1 Pre-processing The captured in-ear audio and PCG require

pre-processing before being utilized in network training. The pre-

processing procedure involves the following stages: 1) low-pass

filtering, with a cutoff frequency of 30Hz for in-ear audio and

500Hz for PCG, 2) segmentation using an envelope analysis [51],

3) normalization by scaling samples to the range of [-1, 1].

4.2.2 Network Training The training procedure for our system is

conducted sequentially, beginning with HemoNet, followed by Car-

diNet, and concluding with MappingNet. The training of HemoNet

proceeds in a two-stage manner, combining both supervised and

unsupervised learning. Initially, the input sub-networks, Ns and

N
fL
, are trained independently for 2000 epochs using the AdamW

optimizer with a learning rate of 1e
−3
. During this phase, the core

PINNs modules (N and Nc) remain frozen, and network updates

are guided solely by the loss term Ltot1, with weights 𝜆1 = 1 and

𝜆2 = 50. Subsequently, the pre-trained input modules are frozen,

and training shifts to the core modules N and Nc. These are op-

timized according to the loss term Ltot2 (with weights 𝜆3 = 1,

𝜆4 = 5), which comprises a supervised boundary condition loss

(LBC) and an unsupervised PDE residual loss (L′
PDE

). The LBC

is calculated using 4096 boundary points from the 𝑝
f
(𝐿, 𝑡), while

the L′
PDE

is calculated on 4096 spatiotemporal points sampled via

Sobol sequence [41]. This core training is further divided into a 500

epochs pre-training phase using onlyLBC with the Adam optimizer

(learning rate is 1e
−3

), followed by a 2000 epochs fine-tuning phase

(learning rate is 8e
−4
) where both loss terms are optimized concur-

rently. An adaptive weighting strategy [61] is also applied every

500 epochs during fine-tuning. The CardiNet follows an identical

training protocol for its core modules, with the sole distinction that

its boundary condition is defined by the PCG signal acquired from

the apex area. Noted that this ground truth PCG is only required at

the training phase. During inference, in-ear audio is the only input.

Following the training of the PINNs, the MappingNet is trained

in a supervised fashion. It uses the source pressure waveforms

from the trained CardiNet as input and the corresponding source

PCG signals from the trained CardiNet as the ground-truth. To

ensure stable convergence, we employmodule-specific initialization

strategies: Kaiming initialization for the MSC modules and Xavier

initialization for the TFA and Transformer modules. The network is

optimized using the AdamW optimizer with a learning rate of 5e
−4

,

a batch size of 64, and a weight decay of 0.05. The weights for the

loss function L are set to 𝛼 = 1 and 𝛽 = 10. To prevent overfitting,

we also incorporate an early stopping mechanism.

5 Evaluation

5.1 Feasibility Study
We first conduct a feasibility study to evaluate the ability of our

physics-informed model, HemoNet, to accurately infer source sig-

nals from distal measurements. Due to the challenges of collecting

suitable in-vivo data, we performed this validation using an ex-vivo

simulation.

5.1.1 Experiment setup. To validate our physical models with ac-

cessible ground truth, we constructed an in-vitro cardiovascular

simulation system, as depicted in Figure 7. This system is designed

to emulate key biophysical processes: a pulsatile cardiac pump,

pressure wave propagation through an arterial pathway, and the

resulting pressure fluctuations within a sealed distal cavity that

mimics the occluded ear canal. The setup consists of a flow gen-

eration unit and a multi-channel measurement system. The flow

generator uses a high-precision EDU-P110 peristaltic pump (±1%
accuracy) to drive a Gaussian pressure pulse through medical-grade

silicone tubing. This tubing terminates in a sealed cavity (length:

23mm, inner diameter: 6mm) enclosed by an elastic membrane

to simulate the ear canal structure. For data acquisition, a WWL-

801M-1M-M20 pressure sensor (0-20 kPa, ±10.5% linearity error) is

placed proximally to capture the ground-truth source pressure. A

microphone is positioned 40cm downstream within the sealed cav-

ity to record the distal, observed signal. Both sensors are sampled

at 1kHz with 16-bit resolution via a DAQ122 data acquisition card.
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Figure 7: Heartbeat simulation system.
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5.1.2 Result Analysis. The reconstructed waveform is shown in

Figure 8. To quantify the waveform reconstruction accuracy, we

use Root Mean Square Error (RMSE) [14] and Structural Similarity

Image Measurement (SSIM) [55]. The RMSE between reconstructed

waveform and ground truth is 0.0482, and the SSIM reaches 97.5 %,

demonstrating the effectiveness and high accuracy of our model in

reconstructing source pressure waveform.

5.2 Overall Performance Evaluation
5.2.1 Experiments Setup To evaluate the performance of ourmodel,

we collect data from a cohort of 26 volunteers: 21 healthy individu-

als and 5 patients with diagnosed heart conditions from Zhongnan

Hospital of Wuhan University. The experimental setup is identical

to that shown in Figure 2(a). During data collection, participants are

instructed to remain still, either sitting or lying down, to minimize

motion artifacts (see Figure 9). The audio data are collected under

common background noises, including footstep sounds, machine

noises, light conversations, etc. To specifically test our model’s gen-

eralizability under data-scarce conditions, we intentionally create a

modest dataset of 1094 audio clips, each lasting for 30 seconds and

is sampled at 4kHz. For evaluation, we employ a leave-subject-out

cross-validation scheme. Unless otherwise noted, data from one

subject is reserved for testing, a second subject’s data is used for

validation, and the model is trained on the data from the remaining

participants.

Evaluation metrics: To assess the clinical utility of our recon-

structed waveforms, we move beyond generic signal-level metrics

(RMSE, SSIM). And we evaluate four key diagnostic parameters de-

rived from the PCG signal, as illustrated in Figure 10. These include

the S1 duration (𝑇s1 ), S2 duration (𝑇s2), the systolic interval between

them (𝑇int ), and the S1/S2 energy ratio (𝐸ratio ). The formulas for

these are given by𝑇s1 = 𝑡s1e−𝑡s1b,𝑇s2 = 𝑡s2e−𝑡s2b,𝑇int = 𝑡
s2b

−𝑡s1e,
and 𝐸ratio =

∑𝑡s1e
𝑡=𝑡

s1b

𝑠 (𝑡)2/∑𝑡s2e
𝑡=𝑡

s2b

𝑠 (𝑡)2 respectively, following es-

tablished methods [44].

Ts1 Tint

𝑡s1b 𝑡s1e 𝑡s2b 𝑡s2e

Ts2

IBI

Figure 10: Key physiological metric visualization.

These parameters correspond directly to critical aspects of car-

diac function. For example, 𝑇s1 provides insight into ventricular

contraction synchronicity [5], while an extended 𝑇s2 can indicate

conditions like pulmonary hypertension [3]. The systolic interval,

𝑇int, is a vital indicator of cardiac functional status [33], and the

energy ratio, 𝐸ratio, correlates with myocardial contractility and car-

diac output [67]. When evaluating the accuracy of these temporal

parameters, we establish a clinically relevant error tolerance. Since

PCG diagnosis is fundamentally an auditory task, temporal errors

below 20ms are imperceptible to the human ear [13]. Therefore, we

consider our model’s predictions to be clinically acceptable if the

deviation from ground-truth parameters is less than this threshold,

as such differences would not affect a physician’s diagnosis.

5.2.2 Overall Performance We evaluated the overall performance

of EarPCG using a leave-one-out cross-validation methodology

across the entire cohort of 26 subjects. Figure 11 illustrates the re-

constructed PCG waveforms for these unseen subjects. The system

achieves excellent morphological fidelity, with a mean RMSE of

2.935% and a mean SSIM of 97.148%. These results demonstrate

that EarPCG can accurately reconstruct both the overall shape and

fine-grained details of PCG signals.

Beyond visual similarity, we evaluate the model’s ability to pre-

serve key physiological signatures. Figure 12 presents the error

distributions for four critical diagnostic parameters, augmented

with Kernel Density Estimates (KDEs).

For the S1 and S2 durations (Figures 12(a) and 12(b)), the er-

rors are tightly concentrated within ±5ms. This yields an Mean

Absolute Error (MAE) of 3.42ms for S1 and 3.12ms for S2, both

well below the 10ms human auditory perception threshold. These

correspond to low relative errors of 2.89 % and 3.65 %, respectively.

This high precision confirms the model’s capability to accurately

identify the onset and offset of key cardiac events. Similarly, the

error for S1-S2 interval is minimal (Figure 12(c)), with a low MAE

of 4.67ms (2.56% relative error). This demonstrates the model’s

accuracy in restoring the systolic timing and overall cardiac rhythm.

Lastly, the analysis of the S1/S2 energy ratio (Figure 12(d)) shows

that the reconstruction error is tightly controlled within ±0.02. This
corresponds to an approximate relative error of 2 %, suggesting that

the model effectively preserves the energy characteristics of PCG.

In summary, this strong performance indicates that the recovered

PCG can be readily used for a range of time-domain cardiac anal-

yses, such as detecting cardiac events and measuring heart rate

variability.

5.2.3 Evaluation of Heart Rate Variability We next evaluate the

reconstruction of Heart Rate Variability (HRV), a key indicator
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Figure 11: Overall system performance across 26 users.
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Figure 12: Error distribution of four physiological metrics
(S1 duration, S2 duration, S1/S2 interval and S1/S2 energy
ratio) related to PCG. For each subplot, the top row shows the
distribution of errors for different subjects, while the bottom
row presents the corresponding histograms and KDE.

of cardiovascular health derived from beat-to-beat timing fluctua-

tions [54]. We focus on two standard HRV metrics: the Inter-Beat

Interval (IBI) and its standard deviation (SDNN). As shown in Fig-

ure 14, the reconstructed IBI has a mean error of 6.48ms, which is

only 1 % deviation from the ground-truth average (607.6ms). The

error for SDNN is also low at 6.14ms, or 4.9 % of the average SDNN

(124.6ms). These low error rates demonstrate that EarPCG accu-

rately captures the dynamic, beat-to-beat fluctuations essential for

HRV analysis.

5.2.4 Evaluation of abnormal PCG To further explore its diagnostic

capability, we tested EarPCG on subjects with four common car-

diac abnormalities: S1 splitting, Premature Ventricular Contraction

(PVC) [11], Mitral Regurgitation (MR) [17], and Tricuspid Regurgita-

tion (TR) [53]. These conditions present distinct acoustic signatures:

S1 splitting causes a double-peaked S1 sound due to asynchronous

ventricular contraction; PVC generates a premature, ectopic beat;

and both MR and TR produce continuous systolic murmurs due

to incomplete valve closure. Figure 13 presents the reconstructed

PCG and their time-frequency spectra. The results demonstrate that

EarPCG accurately captures the key pathological features in each

case. Quantitative evaluation confirms this high performance. In

the time domain, the model achieved high SSIM values (S1 splitting:

93.4%, PVC: 93.5%, MR: 91.2%, TR: 92.6%) and low RMSE values

(0.0726 , 0.0548 , 0.096 , and 0.082 , respectively). This demonstrates

excellent waveform fidelity. In the frequency domain, the average

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.1

0

0.1

A
m

p

In-ear audio

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-1

0

1

A
m

p

ruthGround T
nPredictio

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

200

400

F
re

q
 (

H
z)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (s)

200

400

F
re

q
 (

H
z)

(a) S1 splitting.

PVC

S1

(b) PVC.

0 0.1 0.2 0.3 0.4 0.5 0.6
-1

0

1

A
m

p
In-ear audio

0 0.1 0.2 0.3 0.4 0.5 0.6
-1

0

1

A
m

p

Ground Truth
Prediction

0 0.1 0.2 0.3 0.4 0.5 0.6

200

400

F
re

q 
(H

z)

0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

200

400

F
re

q 
(H

z)

(c) Mitral regurgitation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-1

0

1

A
m

p

ear audioIn-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-1

0

1

A
m

p

ound TruthGr
edictionPr

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

200

400

F
re

q 
(H

z)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (s)

200

400

F
re

q 
(H

z)

(d) Mitral and tricuspid regurgitation.

Figure 13: Comparison between the ground truth and recon-
structed waveforms and their corresponding spectrograms
for abnormal PCG, including (a) S1 splitting, (b) PVC, (c) MR,
and (d) MR and TR. From top to bottom in each sub-figure
are in-ear audio, time-domain waveforms including recon-
structed and ground truth PCG, spectra of reconstructed PCG,
and ground truth PCG.
log-spectral distance [32] and spectral convergence [52] across the

four conditions were 2.36 dB and 0.084. These low values signify

that the auditory difference is negligible, preserving the diagnostic

information for clinicians.

5.3 Ablation Studies
Next, we carry out ablation studies to investigate the contributions

of physics-inspired modules, including PINNs and physics-guided

attention, to performance gain.

5.3.1 Performance With and Without PINNs To quantify the con-

tribution of our physics-informed design, we conduct an ablation

study. We compare our full model against a baseline network with

an identical architecture but trained without the PINN-based con-

straints and loss function. The results confirm that incorporating

physics provides critical advantages in both training efficiency and

generalization.

The benefits are apparent as demonstrated by results shown in

Figure 15. The PINN-informed model demonstrates significantly
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faster convergence, achieving a much lower loss after the first

epoch (2.76 vs. 19.4) and reaching its final loss value approximately

200 epochs earlier than the baseline. Furthermore, the PINN-based

model shows superior generalization, achieving a final validation

loss of 0.0795, a 26.5% improvement over the baseline’s 0.1083.

The smaller gap between its training and validation losses (0.023

vs. 0.0418) also indicates reduced overfitting, a common benefit of

physics-based regularization [59].

Crucially, these training advantages translate directly to im-

proved reconstruction performance on unseen data. As shown in

Figure 17, incorporating PINNs improved all evaluation metrics

for a representative unseen subject. For instance, RMSE improved

by 1.2% and SSIM by 0.9%. In summary, the ablation study con-

firms that PINNs not only accelerate model convergence but, more

importantly, enhance their generalization ability, leading to more

accurate and reliable PCG reconstruction.

5.3.2 Performance With and Without the Compensation Network
We next conduct an ablation study to evaluate the impact of the

compensation network, following the same methodology as the

experiments in Section 5.3.1. The results, depicted in Figure 16,

demonstrate several key benefits. First, the compensation network

significantly accelerates the convergence of the boundary loss and

enables the model to reach a lower final loss value (from an average

Figure 17: The error distribution of evaluationmetrics w. and
w.o. PINNs.
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of 2.26 to 0.0047). Furthermore, it also reduces the PDE residual

loss (from an average of 0.0048 to 0.0009), effectively balancing

its magnitude with that of the boundary loss. Results successfully

demonstrate the effectiveness design of the compensation network.

5.3.3 Performance With and Without the Fourier Feature Layer
Following the above experiments, we further explore the impact

of FFL on the network performance. As shown in Figure 18, the

model incorporating a FFL successfully captures the rapid, tran-

sient features of both the S1 and S2 components of PCG. In contrast,

the baseline model without FFL suffers from significant waveform

blunting. This is particularly evident in the S1 region, where its out-

put waveform is considerably wider than the ground-truth signal

from the apex, and it fails to reconstruct the S2 component entirely.

Overall, the baseline model exhibits a characteristic over-smoothing

of the signal. This comparison demonstrates that FFL effectively

enhances the network’s capacity to represent high-frequency infor-

mation, thereby improving the inversion fidelity for the transient

characteristics of PCG.

5.3.4 Performance With and Without Physical-guided Attention
We finally evaluate the impact of our proposed physical-guided

attention loss, which is designed to force the model to focus on di-

agnostically critical regions of PCG. The results, shown in Figure 19,

reveal the baseline’s limitations. Without the attention mechanism,

the model struggles to accurately reconstruct key pathological fea-

tures, leading to significant amplitude attenuation in PVC events

and timing errors in the S1 heart sound. In contrast, the physical-

guided attention loss yields substantial improvements. By directing

the model’s focus, it reduces the local RMSE in the PVC region from

0.098 to 0.025 and decreases the S1 peak timing error from 2.0ms

to just 0.75ms. This confirms that the physical-guided attention is

crucial for enhancing model’s ability to identify and precisely align

key diagnostic features, thereby improving reconstruction fidelity.

5.4 Usability Study
To validate the usability of EarPCG in clinical practice, we design a

subjective evaluation experiment. Experienced clinicians are asked

to score the quality of reconstructed PCG based on ground truth
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to assess their utility in medical diagnosis. To mitigate subjective

bias, the audio samples are presented anonymously and in random

order. After listening, clinicians rate the reconstructed PCG based

on the following dimensions: 1) Audio Similarity – the overall

perceptual resemblance between the reconstructed and ground

truth; 2) Preservation of Diagnostic Features – whether key

medical characteristics such as S1/S2 sounds, murmurs, and rhythm

abnormalities are clearly identifiable and preserved; and 3)Clinical
Interpretability – whether the reconstructed sound possess value

for preliminary assessment during clinical auscultation. The score

ranges from 0 to 5.

A total of 160 reconstructed PCG audio clips, each lasting for

20 s, are played on a Thinkpad X1 Carbon laptop. The employed

doctors wear a BOSE SoundTrue Ultra earphone to listen to the

PCG for evaluation. Based on expert evaluation, the average scores

on the three dimensions of “Audio Similarity," “Preservation of

Diagnostic Features," and “Clinical Interpretability" are 4.9 ± 0.25,

4.82 ± 0.14, and 4.89 ± 0.30, respectively. The high overall scores

and small variance indicate that expert generally considers the

reconstructed PCG to be highly consistent with those obtained by

traditional stethoscopes. Results successfully demonstrate good

clinical application prospects of EarPCG.

6 Related Work and Discussions
Earable sensing has recently emerged as a compelling platform

for cardiac monitoring, attractive for its non-invasive nature and

ubiquity compared to conventional systems [7, 27, 68]. Current ap-

proaches are generally categorized into active and passive sensing.

Active sensing methods primarily rely on emitting signals into

the ear canal and analyzing the reflected signals modulated by phys-

iological activities. For instance, the system proposed in APG [18]

utilizes ultrasound emitted into the ear canal to detect volumetric

changes modulated by vascular deformation, akin to PPG sensing,

thereby indirectly estimating heart rate (HR) and HRV. This ap-

proach achieves estimation errors of 3.21 % and 2.70 % for HR and

HRV, respectively, even during subject motion. Similar methods

have also been proposed in Earmonitor [57].

Passive sensing, on the other hand, involves the earphone’s

built-in microphone listening for passive in-ear audio related to

human physiological activities [6, 9, 23, 24, 34]. These systems

are built on the premise that the occlusion effect [35] of a sealed

ear canal has adequate passive gain to sense faint bone-conducted

body sounds. Based on this principle, the authors of EarAce [9]

posit that bone-conducted PCG can be detectable within an ear

canal. They hence customize a versatile acoustic sensing platform

based on commodity ANC earphones that is capable of extracting

cardiac activity-related indicators (such as systole and diastole)

under various wearing conditions and motion interference. They

report median errors of 4.77% and 2.95% in systolic and diastolic

period monitoring, respectively. This principle is also applied by the

authors from HearBP [71] and hEARt [6] to estimate blood pressure

and heart rate. hEARt achieves a resting heart rate monitoring

accuracy of 3.02±2.97 Beats Per Minute (BPM). And HearBP reports

standard deviation errors of 3.13mmHg and 3.56mmHg for diastolic

and systolic blood pressure measurements.

The work in [14] also claims to be able to extract PCG from

in-ear canal. As bone-conducted PCG is subtle, due to frequency

and energy distortions, they hence design customized hardware,

including active amplifiers and impedance matching circuits, to

improve sensitivity. In addition, a deep neural network is employed

to compensate for those distortions. However, this body of passive

sensingwork rests on a questionable physical foundation. Thismore

fundamental issue, which we identify in our own measurements, is

a significant temporal latency (100ms) between the in-ear signal

and the true PCG. This latency is incompatible with the speed of

sound through bone and challenges the core premise of all prior

passive sensing work.

In contrast to prior work, EarPCG resolves this discrepancy by

re-interpreting the in-ear signal not as a degraded PCG, but as a

local measurement of the arterial pulse wave (an acoustic PPG).

We note that although initial studies [20, 62] suggest that in-ear

audio originates from vascular movement, they lack a comprehen-

sive model of the underlying mechanism. In contrast, we develop

a physics-informed model that accurately describes the signal’s

propagation and transduction, and we employ PINNs to solve the

inverse problem of reconstructing true PCG. While our results

demonstrate strong potential for continuous cardiac monitoring,

we acknowledge limitations: our system has been validated only

under static, moderate noise conditions. Future work will focus on

improving robustness in dynamic environments, likely by incorpo-

rating multi-modal sensing with inertial measurement units and

external microphones, to address motion artifacts and strong rever-

berations. Meanwhile, the current investigation is conducted with a

limited number of participants, and thus, the generalizability of our

findings may be constrained. To ascertain the clinical significance

of our approach, extensive validation on a more diverse and larger

patient population is required.

7 Conclusion
This paper presented EarPCG, a novel system for continuous car-

diac monitoring using in-ear audio. We established a new physical

model that interprets the in-ear signal as an acoustic PPG, resolv-

ing inconsistencies in prior work. By leveraging physics-informed

neural network to invert this model, we successfully reconstructed

high-fidelity PCG waveforms from commodity earphones. Our

evaluation demonstrated that EarPCG achieves high reconstruction

accuracy (RMSE: 2.935%, SSIM: 97.148%) across diverse subjects and

accurately captures key clinical features, including the timing of

cardiac events and signatures of pathology. These findings validate

the potential of earable devices as a viable and powerful platform

for clinical cardiac monitoring.
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