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ABSTRACT
Optical camera communication (OCC) enabled by LED and embed-
ded cameras has attracted extensive attention, thanks to its rich
spectrum availability and ready deployability. However, the close
interactions between OCC and the indoor spaces have created two
major challenges. On one hand, the stripe pattern incurred by OCC
may greatly damage the accuracy of image-based object recogni-
tion. On the other hand, the patterns inherent to indoor spaces can
significantly degrade the decoding performance of reflected OCC.
To this end, we propose CORE-Lens as a pipeline to make the mu-
tual interference transparent to existing OR and OCC algorithms.
Essentially, CORE-Lens treats the two challenges as two sides of a
signal mixture issue: the signals transmitted by OCC get mixed with
background images so well that their features become entangled.
Consequently, CORE-Lens exploits the idea of disentangled repre-
sentation learning to separate the mixed signals in the feature space:
while the GAN-reconstructed clean background images are used
to perform object recognition, OCC decoding is conducted on the
residual of the original image after subtracting the reconstructed
background. Our extensive experiments on evaluating the real-life
performance of CORE-Lens evidently demonstrate its superiority
over conventional approaches.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Computing methodologies →
Computer vision; • Networks→Wireless access networks.
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1 INTRODUCTION
As an important branch of visible light communication (VLC) uti-
lizing visible light to realize ubiquitous device connection [51,
55, 57, 61, 64, 65], optical camera communication (OCC) has been
extensively developed, piggybacking on LED lighting infrastruc-
tures as transmitters and embedded cameras (e.g., smartphone
cameras) as receivers [1, 11, 13, 31, 34, 37, 63, 65]. While a cam-
era can receive coded information transmitted directly from LED
lights [11, 18, 31, 33, 40], practical applications often prefer recep-
tions from reflected light transmissions [1, 13, 34, 37, 65]. However,
since OCC piggybacks on lighting infrastructures, the LEDs have to
perform both lighting and transmission, which in turn confines an
embedded camera to act only as a receiver for OCC transmissions,
since its basic functions in capturing images and performing tasks
entailed by computer vision (CV) can be largely undermined by infor-
mation coding. In fact, this observation has already been exploited
to protect human users against unauthorized photographing [68].

Figure 1 describes a typical scenario of using reflected OCC for
indoor VLC, where a smartphone camera also assumes the duty of
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Figure 1: OCC demands an LED luminaire to emit informa-
tion coded light. However, the mutual interference between
the resulted light stripes and background objects affects both
the object recognition (OR) accuracy and OCC decoding per-
formance.
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performing object recognition. This seemingly toy-like illustration
actually represents a wide spectrum of applications including the
following prominent examples. The first application is for museum
or shopping mall scenarios: when users point their smartphone
cameras to an art piece or a displayed item, CORE-Lens can help
realizing CV functions (e.g., augmented reality for putting a hat
onto user’s head) while reading descriptive information delivered
via OCC. Another application is efficient OCC for robots (commu-
nication and control) in public spaces (e.g., airport) or industrial
facilities where a lot of background interferences may present; in
the meantime, the vision of robots needs to operate properly with-
out being affected by OCC. Last but not least, CORE-Lens may help
improving the robustness of security functions leveraging CV (e.g.,
user identification or face recognition) under artificial interference
(e.g., OCC or similarly created patterns), especially for operations
carried out by mobile devices.

As these applications all demand the LED luminaire to both
light a room and transmit information, the emitted light contains
codes necessary to convey information. Although these codes are
designed to be indiscernible by human eyes (so called flicker-free
OCC), embedded cameras, with their inherent rolling-shutter ef-
fect [13], are inevitably interfered with by such information coding,
if they assume duties other thanOCC receivers. In particular, consid-
ering the duty of face recognition, the face in a captured image can
be severely “masked” by the light stripes caused by information cod-
ing. One can readily imagine that the accuracy of recognizing both
human subjects and non-human objects can be severely degraded.1
Actually, this interference is mutual, as objects (e.g., wall papers or
banded bags) with patterns may also raise the errors in OCC decod-
ing [7, 11, 21, 34, 65]. Therefore, the major challenge behind these
real-life applications is themutual interference between two aspects,
namely information coded light and background objects; it can dam-
age both the basic functions of embedded cameras (especially those
for CV) and the OCC decoding performance. Though separating CV
and OCC in a time-divided manner [62] while leveraging ad-hoc
filtering tricks [11, 21, 26, 32] to imperfectly handle OCC decod-
ing is feasible, this straightforward solution is both inefficient and
ineffective according our later evaluations.

Therefore, we aim to tackle both aspects of the challenge simulta-
neously in this paper, by focusing on the fundamental entanglement
between the two co-located and co-existing aspects. In fact, the
entanglement is the result of signal mixing caused by overlapping,
and it is mandatory to separate the mixed signals so as to avoid
their mutual interference. Inspired by the recent development of
disentangled representation learning (DRL) [20, 29], we believe that
the separation should be conducted in feature space. Compared
with ad hoc imaging processing techniques directly working on
image pixels, the benefit of separating signals in the feature space
is twofold: i) it should be more efficient and effective, because the
feature representation is much sparser yet contains critical seman-
tics not obvious in the pixel space, and ii) while the outcome of
separation is directly applicable to drive CV functions, the process
could be made transparent to both CV and OCC if the background
can be reconstructed based on the separation outcome. Essentially,
1To avoid potential ethical concerns, we only consider non-human object recognition
tasks in this paper, but the solution techniques and results can be readily extended to
human identification and face recognition.

we intend to build an end-to-end deep learning pipeline so that its
outcome can be simultaneously used to support both CV and OCC
functions, regardless of what specific types of CV (trained) model
and OCC (decoding) algorithms are adopted.

To this end, we propose CORE-Lens to realize such a pipeline
in resource constrained smartphones. As the first step towards an
integrated sensing and communication (ISAC) framework [12] for
VLC on smart devices, we confine the concerned CV functions to
only object recognition (OR). CORE-Lens involves a DRL network
trained via both variational inference [3] and adversarial learn-
ing [17], so as to separate the features for background sceneries
from those of the coded light. Consequently, the output of this DRL
network drives two functions: i) a trained OR classifier directly
makes use of the background sceneries reconstructed via condi-
tional GAN [24] for classification, and ii) the residual of the original
image subtracting the GAN-reconstructed background are fed to
a typical OCC decoder for information retrieval. In summary, we
make the following major contributions in this paper:

• We, for the first time, identify the need for reconciling the
conflicting aspects of visible light applications, namely sens-
ing and communication, from an ISAC perspective.

• We innovate in proposing a DRL method to handle this
reconciliation in feature space, in order to have an end-to-
end deep processing pipeline masking the underlying details
from conventional sensing and communication functions.

• We combine variational inference with adversarial learning
to separate the features for background sceneries from those
of the coded light, so that a trained OR classifier can directly
work on the outcome.

• We further filter the residuals of an original image subtract-
ing its GAN-reconstructed background and fed them to an
OCC decoder, so that any conventional decoders can be
reused with no need for ad hoc modifications.

• We conduct extensive evaluations on CORE-Lens; the results
evidently demonstrate its superiority over conventional ap-
proaches for both visible light sensing (i.e., CV) and commu-
nications.

• The datasets (to be shared) resulted from our experiments,
being the first of its kind, may substantially advance the
research on realizing ISAC-ready VLC.

The rest of the paper is organized as follows. Section 2 explains
more on the background and uses simple experiments to motivate
our later design. Sections 3 and 4 respectively present the design and
implementation of CORE-Lens. Extensive evaluations are reported
in Section 5, along with further discussions on the advantages
over existing solutions and technical limitations of our current
implementations. Finally, Section 6 concludes the whole paper.

2 BACKGROUND AND MOTIVATIONS
We set up the background and motivate CORE-Lens design in this
section. We first provide the technical background for simultaneous
OCC and OR. Then we briefly justify the adverse effects of the
mutual interference between OCC-coded light and background
objects to be recognized. Lastly, we explain the basic ideas of DRL
followed by a brief study on its feasibility to our solution.
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2.1 Primers for OCC and OR
OCC exploits the rolling shutter of CMOS cameras to capture in-
formation coded in light emitted from LED luminaires [13]. To be
specific, since the rolling shutter exposes the frame in a column-
wise manner, a CMOS camera records temporally modulated in-
formation as bright-dark stripes in the received frames [11, 18, 31].
Whereas earlier OCC systems leverage direct LED-camera link for
communications (i.e., direct OCC) [11, 18, 31], practical application
scenarios often demand an indirect LED-reflector-camera link for
OCC (i.e., reflected OCC), in order to improve throughput while
enhancing user experience [1, 34, 37, 65]. Moreover, adopting re-
flected OCC also enables us to perform both OCC and CV functions
simultaneously with the same camera. Nonetheless, such a conve-
nient implementation causes mutual interference between the two
functionalities: while OCC decoding is known to be confused by
ambient settings such as objects with patterns [7, 11, 21, 34, 65],
the stripes caused by OCC also affect the CV functions seriously.
Note that the seminal proposals on backscatter VLC [55, 57, 60]
may become relevant upon future adoption for indoor scenarios.

As one of the major CV functions often supported by mobile
apps, OR has become increasingly ubiquitous under the support of
mobile devices equipped with embedded (CMOS) cameras. Though
being heavily studied in CV for a few decades, OR is now taking
CNN (convolutional neural network) [19, 22, 25, 28, 49, 50, 59] as
the de-facto standard module, especially for mobile devices with
limited resources. Essentially, a CNN slides its convolutional kernels
across the images to capture information and generate summarized
feature maps. As it goes deeper, more high-level features can be
assembled by taking advantage of the hierarchical patterns in the
input data. However, the hierarchical architecture of CNN also
induces an error propagation from the input image to the classifi-
cation result: if the initial steps go wrong, e.g., the network fails to
locate the region of interest, or the lower-level features are strongly
interfered, the final classification performance may be significantly
degraded. Quite unfortunately, the OCC-coded stripes on a frame
can be a strong interference source, if the frame is taken to also
fulfill the function of OR. In fact, this observation has been ex-
ploited to thwart unauthorized photo shoots (and any subsequent
CV processing) [68].

2.2 Confused Object Recognition (OR)
As discussed in Section 2.1, OCC transmits data by encoding them
in the temporally modulated light emitted by LED luminaires, and
a rolling shutter camera captures this process as striped frame im-
ages. Consequently, images captured by a camera under OCC are a
mixture of background objects with foreground stripes, as shown
in Figure 2b. It can be conjectured that feeding such banded images
to an off-the-shelf OR algorithm (e.g., a CNN-based model) may
cause significant confusion. On one hand, dark stripes may break
up basic object features that would have been leveraged by OR
algorithms to make correct judgements. On the other hand, the
banded pattern can mislead an OR algorithm to identify an object
as something non-existent in the image but sharing similar patterns
(e.g., zebra or music staves) [56]. One may eliminate the foreground
by integrating multiple images over time, but this inefficient solu-
tion negates our ISAC-VLC setting where OCC and OR can take
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Figure 2: OCC interference degrades OR accuracy.

place simultaneously without significant delays. Re-training an
OR model can hardly be generalizable beyond the training dataset,
because the interfering patterns can be highly diversified. In short,
no existing proposal has effectively tackled this issue yet.

We perform a set of preliminary experiments to verify the damag-
ing effects of theOCC interference toOR.We employGoogLeNet [50]
to classify 10 classes of objects, among them are a bottle, a pot of
plant, a teapot, and other daily articles. Figures 2a and 2b show
these examples under normal lighting and OCC interference, re-
spectively. We first evaluate the influence of OCC on OR under
different data rates and a white background in Figure 2c, which
shows the recognition accuracy dropped by more than 50% un-
der certain data rates. In addition, the accuracy drops slightly less
under a higher rate, possibly because denser stripes create lower
interference. We further study the OCC interference to OR under
different backgrounds in Figure 2d, when fixing the data rate at
5kbps. It can be observed that the overall accuracy under patterned
backgrounds can be slightly (around 8%) less than that under a
white background. In general, the accuracy is degraded by OCC
interference for more than 45% regardless of the background. The
consistent accuracy drop indicates that OR cannot be improved
by tuning parameters or changing scenarios, hence calling for a
redesign of the OR algorithm in order to remain robust against
OCC interference.

2.3 Degraded OCC Performance
It is well recognized that a white and flat reflector achieves the max-
imum performance of reflected OCC [7, 11, 21, 34, 65]. However,
such an ideal condition barely exists in practice, and real-world
scenes are detrimental to OCC for many reasons. For example,
the existence of 3D objects between the camera and the reflector
creates additional reflection surfaces and casts shadows, causing
discontinuity and distortion in the captured frame. Moreover, back-
ground heterogeneity poses another challenge: both glossy and
dark materials can strongly affect reflection by drastically intensify-
ing it in some parts while heavily attenuating it in others. In short,
the twisted and altered reflection intensity caused by background
heterogeneity can severely interfere with the OCC decoding per-
formance. This damaging effect often cannot be avoided by turning
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(a) Examples of OCC under background object interference.
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Figure 3: Background objects and patterns increase OCC de-
coding errors significantly.

the camera towards a “clean” area given the typical application sce-
narios for reflected OCC: in a department store or museum where
a displayed item is lit by an OCC luminaire to convey information
about it, a camera aiming to retrieve the OCC-coded information is
forced to accommodate background objects. Existing

We perform another set of experiments to confirm how back-
ground objects affect OCC, with a few typical experiment setups
shown in Figure 3a. In Figure 3b, we study the BER (bit error rate)
degradation of Manchester decoding [13, 37, 65] caused by back-
ground interference under varying data rates. One may readily
observe that the BERs are increased by approximately 8% on aver-
age under all data rates given the interference from background
objects. We also study the effects of different background patterns
and colors when fixing the data rate at 5kbps. The resulting BERs
reported in Figure 3c show that, whereas pure color backgrounds
have relatively minor impact, backgrounds with graphic patterns
increase the BER by more than 10%, and the co-action of objects
at different depths pushes the BERs up to 12%, rendering OCC
barely operable. Therefore, making OCC more robust to various
background objects is imperative.

2.4 Can Mixture be Disentangled
Ideally, in order to achieve simultaneous OR and OCC, the cap-
tured frame images should be separated into background scenes
and OCC-coded patterns so that they could be processed individu-
ally. However, separating the respective components of a mixture
in pixel space is an ill-posed problem for several reasons. First, un-
known environmental factors (e.g., lighting conditions, background
reflectivity, and background depth) make the mixing function inde-
terminate. Second, the randomness of the OCC-coded light makes
the mixing of the two components time-varying and unpredictable.
Last but not least, the existence of noise and ambient light interfer-
ence complicates the separation process. Fortunately, disentangling
the features of individual components can be doable because of their
distinctness (e.g., textures, intensities, and shapes). Recent studies
on DRL (disentangled representation learning) also show that the
latent space of a deep learning network leads to sparser representa-
tion and more obvious semantics than the pixel space [2, 20, 29],

(a) Manipulation of background objects.

(b) Manipulation of OCC-coded patterns.

Figure 4: Background objects and OCC-coded stripes can be
roughly disentangled in the latent space.

so it might be feasible and potentially beneficial to perform disen-
tanglement in the feature space.

To verify the feasibility of feature-space disentanglement of OCC-
coded pattern and background objects, we adopt a well-known deep
learning tool, 𝛽-VAE [20], to manipulate the latent variables in the
feature space. 𝛽-VAE leverages a pair of encoder and decoder to map
the input image to a low-dimensional latent representation, and it
further achieves statistical independence and disentanglement of
the latent variables by imposing a limit on the capacity of the latent
information channel. In order to demonstrate that the disentangle-
ment can be achieved successfully, we reconstruct images from the
feature space of raw images with mixed background objects and
foreground OCC stripes; the results are visualized in Figure 4.

In Figure 4a, the strengths of latent variables controlling the
generation of a teapot are gradually decreased, forcing the teapot
to gradually fade out in the reconstructed image till leaving only
residuals and stripes eventually. Similarly in Figure 4b, the strengths
of latent variables controlling the generation of the OCC-coded
stripes are gradually increased, enabling the bright-dark stripes to
be increasingly introduced into the reconstructed image. The ability
to respectively control the proportions of the background objects
and OCC-coded pattern indicates that the two components can
be roughly disentangled. However, two challenges of this method
remain to be tackled. On one hand, as shown in Figure 4a, the
background scene cannot be completely removed from the OCC-
coded pattern, potentially causing OCC decoding errors. On the
other hand, the reconstructed background images significantly lack
of details, which in turn affects the performance of OR and general
CV functions beyond it (whose success only depends on features).
We will rise to these challenges in Section 3.

3 CORE-LENS DESIGN
In this section, we explain the design of CORE-Lens. Starting with
a brief overview of the CORE-Lens workflow, we then present how
DRL helps separate mixed components in latent space. We further
leverage GAN to enhance DRL for generating sharp background
images, on which OR and OCC can be performed in a virtually
transparent manner.
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3.1 Overview
Our goal is to performOR andOCC simultaneously on smartphones,
hence realizing a preliminary ISAC prototype for VLC on smart
devices. Although a trivial time-division solution could naturally
decouple these two functions, it would significantly reduce the
efficiency of both sensing (OR) and communication (OCC); hence
we stress the concurrency between OR and OCC in our design.
Of course, to realize this goal, we face the challenge of mutual
interference between the two functions demonstrated in Section 2.
Consequently, we propose CORE-Lens to tackle these challenges.
Built upon the idea of DRL, CORE-Lens disentangles OCC-coded
light and background objects in latent space. The intuition is that,
although the two components are mixed and inseparable in the
pixel space, their high-level features (e.g., texture and shape) can
be captured and disentangled by specially designed deep learning
networks. As a result, the separated features would in turn allow
us to reconstruct images from them to facilitate respective tasks.

Object
recognition

Reconstructed
background

OCC
decoding

Captured frames
with mixed
components

Subtracted
residualCORE-Lens network

Feature disentanglement

Feature masking

Image reconstruction

Figure 5: Diagram of CORE-Lens workflow.

Figure 5 illustrates the workflow of CORE-Lens. The frames (or
images) captured by a camera contain mixed OCC-coded patterns
and background objects. They are fed to CORE-Lens network to
perform feature disentanglement and separation, and the resulting
features are exploited to drive image reconstructions respectively
for OR and OCC. More specifically, CORE-Lens leverages an up-
graded VAE (variational autoencoder) [27] to generate a latent
space with disentangled features. It then employs the self-attention
mechanism [54] to focus on the OR-related features while masking
irrelevant ones. The network further leverages a modified GAN [17]
to reconstruct detailed background from relevant features. While a
GAN-reconstructed image can be directly used for OR, subtracting
it from the original image yields OCC-coded patterns in the residual
to further enable OCC decoding.

3.2 Learning Disentangled Representations
To obtain separable representations of background objects and
OCC-coded patterns, we hereby perform feature disentanglement
and masking.

3.2.1 Feature Disentanglement. We first explain the process of
disentangling the features of the background objects and OCC-
coded patterns. Let x ∈ 𝒫 denote the camera-captured images; they
contain the mixture (or overlapping) of background objects xOR
and OCC-coded patterns xOCC, together with ambient interference
and noise 𝜖 :

x = xOR + xOCC + 𝜖. (1)
For the three reasons explained in Section 2.4, x cannot be directly
decomposed into xOR and xOCC in its pixel space 𝒫. Therefore,
it is desirable to infer latent variables z ∈ ℒ that characterize

all variations in x. Since z is much sparser and contains far more
distinguishable semantics than x, disentangling the two mixed
components should be feasible within the latent space ℒ.

Mathematically, obtaining the latent variables z can be formu-
lated as inferring its posterior distribution 𝑝 (z|x) given an image x.
However, since 𝑝 (z|x) is intractable, a Bayesian optimization ap-
proach, often known as variational inference [3], is thus leveraged
to approach the problem. To be specific, a surrogate distribution
𝑞(z) is employed to approximate 𝑝 (z|x) by minimizing their KL
(Kullback–Leibler) divergence [53]. Though the KL divergence itself
still involves the intractable posterior 𝑝 (z|x), the problem can be
readily addressed by further decomposing the KL divergence into:

KL (𝑞(z)∥𝑝 (z|x)) = log 𝑝 (x) − E𝑞 (z)
[
log 𝑝 (x, z)

𝑞(z)

]
. (2)

Since the marginal log-likelihood log𝑝 (x) is independent of the
variational distribution 𝑞(z), the KL divergence can be minimized
by maximizing the variational lower bound E𝑞 (z)

[
log 𝑝 (x,z)

𝑞 (z)

]
. To

implement the idea of variational inference, we employ the well-
known VAE [27] to act as a generative model, whose encoder-
decoder structure is shown by the green boxes in Figure 6.

To further introduce the ability of feature disentanglement, we
stress that the distribution 𝑞 is conditioned on the observation x
and approximated by an encoder network 𝑞𝜙 (z|x) parameterized
by 𝜙 . Meanwhile, the likelihood 𝑝 (x) is approximated by a decoder
network 𝑝\ (x|z) parameterized by \ . Consequently, the variational
lower bound of VAE can be expressed as:

E𝑞𝜙 (z |x)

[
log 𝑝 (x, z)

𝑞𝜙 (z|x)

]
= E𝑞𝜙 (z |x) [log 𝑝\ (x|z)]

− KL
(
𝑞𝜙 (z|x)∥𝑝 (z)

)
. (3)

where the first term E𝑞𝜙 (z |x) [log 𝑝\ (x|z)] can be implemented as
MSE (mean-square error) reconstruction loss, and the second term
KL

(
𝑞𝜙 (z|x)∥𝑝 (z)

)
is often realized by the KL divergence between

the encoder-generated distribution (parameterized by mean ` and
standard deviation Σ) and a standard isotropic Gaussian prior. Sup-
pose the output of the decoder 𝑝\ (x|z) is x′, then the VAE loss can
be practically implemented as:

LVAE =
x − x′

 − KL (N (
𝝁, 𝚺2

)
,N(0, I)

)
. (4)

The covariance of the isotropic Gaussian prior being equal to
an identity matrix I implies that all the dimensions of z are inde-
pendent and thus disentangled. Therefore, if we emphasize the KL
divergence by adding a weight 𝛽 (𝛽 > 1), feature disentanglement
can be achieved [20]:

LVAE =
x − x′

 − 𝛽KL
(
N

(
𝝁, 𝚺2

)
,N(0, I)

)
. (5)

The disentanglement of the latent space suggests that the latent
representation z can be potentially represented as two statistically
independent groups of latent variables, i.e.,

z = (zOR ⊕ zOCC) , (6)
in which zOR and zOCC characterize background objects xOR and
OCC-coded patterns xOCC in the pixel space, respectively. Though
this method appears to be plausible so far, it must rely on manually
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Figure 6: CORE-Lens network: a combination of variational inference and conditional adversarial learning. Since the (pre-
trained) object classifier is not part of the CORE-Lens pipeline, its parameters are not tuned during training.

tuning individual variables in z to achieve intended separation.
Therefore, we need a more effective way to automatically retrieve
either zOR or zOCC according to application requirements.

3.2.2 Feature Masking. Although zOR and zOCC are disentangled
in the latent space ℒ via our upgraded VAE, their exact correspon-
dences with their counterparts in the pixel space 𝒫 are unknown;
in other words, we have no idea about which latent variables are
responsible for respectively generating background objects xOR and
OCC patterns xOCC. To this end, we employ the attention mecha-
nism [54] for automatically selecting relevant features for image
reconstruction while masking irrelevant ones. The idea behind the
attention mechanism is a selective adoption of the most relevant
parts of latent representation z in a flexible manner, by learning a
weighted combination of all variables in z so that the most relevant
variables are given the highest weights.

Essentially, the attention function can be described as transform-
ing the latent representation z to a query t and a set of key-value
pair k and v, and then mapping them to an output. The query, keys,
and values are all linearly transformed versions of the input z:

t = W𝑡 z + b𝑡 , k = W𝑘z + b𝑘 , v = W𝑣z + b𝑣, (7)

where W𝑡 , W𝑘 , W𝑣 and b𝑡 , b𝑘 , b𝑣 are trainable matrices and vectors
that help transforming the input to its corresponding query t, key
k, and value v, whose dimensions are denoted by 𝑑𝑞 , 𝑑𝑘 , 𝑑𝑣 , respec-
tively. The output context z′ is obtained as aweighted sum of the val-
ues in v, where the weight of each value is a normalized product of
the query t and its corresponding key k: z′ = softmax

(
1√
𝑑𝑘

tk𝑇
)

v.

The working principle of attention is briefly illustrated by the “Fea-
ture Masking” module in Figure 6. After being properly trained, the
attention mechanism acts as a “mask” to help focusing on either
zOR or zOCC, thus facilitating recovering xOR or xOCC, respectively.

3.3 Image Reconstruction
With the preparation of the last two steps, we have obtained a
disentangled and masked latent representation z′. Now the task be-
comes how to reconstruct the background and OCC patterns from
z′. Although the VAE decoder discussed in Section 3.2.1 does yield
images containing a disentangled component, such images can be

very blurry as demonstrated in Figure 4. If we perform OR or OCC
on these recovered images, the results shown in Figure 7 indicate
the average OR accuracy and OCC BER as 60% and 6%, respectively;
both are barely usable. In fact, it is theoretically explainable why
common VAEs often fail to render sharp images: the element-wise
MSE loss in Eqn. (5), though simple to implement, cannot model
high-level (abstract) features.2 In order to generate sharper im-
ages, we require a new approach that measures the reconstruction
performance based on more abstract features.
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Figure 7: Images reconstructed by VAE decoder offer limited
OR and OCC performance.

Rather than handcrafting high-level features to measure the re-
construction performance, we employ a specially designed cGAN
(conditional generative adversarial network) to automatically learn
them. Our CORE-Lens cGAN consists of a generator 𝑔\ and a Mar-
kovian discriminator [24]𝑑𝜓 parameterized by \ and𝜓 , respectively.
The generator 𝑔\ takes in both the captured image x and the disen-
tangled representation z′ to reconstruct the background objects and
OCC patterns, and the Markovian discriminator 𝑑𝜓 distinguishes
images produced by the generator from the true data distribution,
but only penalizes structure at the scale of patches.3 The cGAN
objective is i) to find 𝑑𝜓 that gives the best possible discrimination
between true and reconstructed images, and ii) to encourage 𝑔\ to

2High-level features are those composed of many low-level features (e.g., edge, shape,
and texture); they often represent abstract ideas, such as the existence of certain objects
or if an image is fake or not.
3𝑑𝜓 models the image as a Markovian random field [24], assuming independence
between pixels separated by more than the diameter of a patch.
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Figure 8: VAE+cGAN reconstructed background images lead
to an adequate OR accuracy, but similarly reconstructed OCC
patterns cannot yield a low BER.

fit the true data distribution offered by the prior x. Therefore, the
loss function of cGAN can be represented as a binary cross entropy:

LcGAN = log
(
𝑑𝜓 (xOR, x)

)
+ log

(
1 − 𝑑𝜓 (𝑔\ (z′), x)

)
. (8)

In fact, we can merge the VAE decoder 𝑝\ and the cGAN gen-
erator 𝑔\ into one by sharing their parameters. Moreover, we can
train the VAE and cGAN jointly by combining their loss functions.
Now CORE-Lens has the best of both VAE and cGAN, thus it should
recover a much sharper image than the original VAE network. We
employ CORE-Lens to reconstruct both background objects and
OCC-coded patterns, and show their corresponding OR accuracy
and OCC BER in Figure 8. One may readily observe that the OR
accuracy is greatly improved over the images generated by VAE.
Nonetheless, the worst-case BER of OCC, at around 10%, is too high
to be usable for communication purposes.

We attribute this unsatisfactory OCC performance to the blurred
edges in the reconstructed OCC-coded patterns: although the pat-
terns generated by CORE-Lens are much sharper than those gener-
ated by VAE, they are still insufficient for decoding purposes. For-
tunately, we notice that the OCC patterns in the original mixture
are sharp, motivating an alternative to subtract the reconstructed
background x′OR from to the original mixture x to approximate
OCC-coded patterns xOCC. To guarantee that the residual OCC
patterns are accurate, we modify the VAE loss in Eqn. (5) as:

LVAE =
xOR − x′OR

 + x̂OCC − (x − x′OR)


− 𝛽KL
(
N

(
𝝁, 𝚺2

)
,N(0, I)

)
, (9)

where x̂OCC is OCC-coded patterns directly generated from OCC
bitstream. To summarize, the overall loss function of CORE-Lens
becomes:

LCORE−Lens = LVAE + LcGAN

=
xOR − x′OR

 + x̂OCC − (x − x′OR)


− 𝛽KL
(
N

(
𝝁, 𝚺2

)
,N(0, I)

)
+ log(𝑑𝜓 (xOR, x)) + log(1 − 𝑑𝜓 (𝑔\ (z′), x)). (10)

The overall CORE-Lens design guarantees that the reconstructed
background image x′OR is sharp and accurate for OR. Meanwhile,
the residuals x′OCC obtained by subtracting the backgrounds from
the captured images x preserve OCC information and are largely
free of interference.

3.4 OCC Decoding on Residual Frame
Though CORE-Lens has managed to largely separate the mixture
x into x′OR and x′OCC, the results cannot be as clear as they were
separately captured in time. It is true that x′OR can be directly taken
by an OR network (e.g., [19, 22, 50]) to perform classification, x′OCC
may still lead to non-negligible BER, albeit being further reduced
compared with that in Figure 8b. To cope with this situation, we
add another pre-processing component before an arbitrary OCC
decoder, though we adopt ReflexCode [65] as the example decoder
in the following descriptions thanks to its code availability. Also,
we stick to OOK (on-off keying), the most robust OCC modula-
tion, for our initial study on ISAC-OCC, as applying higher-order
modulations (albeit raising bit rate) can significantly increase BER.

The OCC data are encoded by the Manchester OOK, a robust
modulation scheme. In the case of low data rate communication,
the Manchester OOK demodulation needs to distinguish only two
gray levels: ON (or “1”) and OFF (or “0”). However, in cases of high
data rate, the combined effect of the rolling shutter and limited re-
sponsiveness of an image sensor results in the emergence of various
gray levels [13], and this situation can be exacerbated by CORE-
Lens reconstruction. Specifically, there could be at least four gray
levels corresponding to “00”, “01”, “10”, and “11” in ascending order.
Figure 9a shows a Manchester OOK example of various gray levels
under white background. As Manchester modulation mandates the
maximum sequence of similar symbols to have a length of two, we
leverage this to identify the error bits in the received data.

To retrieve the information contained in x′OCC, we first convert
the 2-D OCC-coded patterns into 1-D OCC-coded sequences. To
be specific, we obtain a sequence with maximal SNR (signal-noise-
ratio) by leveraging frame-averaging [35] on x′OCC. Nonetheless,
the sequence may still not be readily decodable due to the non-
uniformity of grayscale induced by residual interference from ambi-
ent light and background. To give an example, the grayscale shown
in Figure 9b does not have a monotonic trend; it is hence imprac-
tical to use straightforward thresholds for decoding the grayscale
sequence. To tackle this challenge, we leverage the fact that the

(a) Various gray levels across a frame.
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(b) Illustration of the demodulation procedure.

Figure 9: Demodulation of OCC bits coded by Manchester
OOK under high data rate scenarios.
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sequence is approximately coherent (i.e., can be deemed monotonic)
between two neighboring headers to obtain adaptive thresholds.
Specifically, we first locate the headers by their periodicity and local
maxima in a packet, as shown in the red rectangular box in Fig-
ure 9b. Once all headers are located, we use the header’s grayscale
to determine a piecewise linear function as the thresholds (red,
yellow, and purple lines in Figure 9b), whose levels are empirically
determined so as to minimize BER. Subsequently, the bits between
two adjacent headers can be demodulated/decoded by an arbitrary
OCC decoder, resulting in a complete decoding of a whole frame.

4 IMPLEMENTATIONS AND DATASET
In this section, we first introduce both hardware and software
implementations of CORE-Lens, then explain how our dataset is
collected and processed.

4.1 Prototype and Experiment Setup
To implement the CORE-Lens prototype, we employ a 12W LED
spotlight as the luminaire to emulate the reflected lighting in a mu-
seum display setting. The LED driver circuits consist of an AC-DC
converter, a microcontroller, and a few MOSFETs. To be specific,
the AC-DC converter powers the spotlight by taking 220 V AC
input and outputting 40V DC, the SI2310A MOSFET [52] ampli-
fies the modulated signal and directly drives the spotlight; it is in
turn controlled by an ARM Cortex-M4 GD32F330G8U6 microcon-
troller [16] to perform modulations. For the receiving camera, we
test ten different smartphones but report only the results of Huawei
Mate 30 Pro [23]: since CORE-Lens needs to be retrained for each
phone model, the performance of both OR and OCC can be made
largely insensitive to phone models as far as they are sufficiently
powerful. The CORE-Lens prototype (notable the app interface)
and experiment setup are shown in Figure 10.

The software implementation of CORE-Lens is based on Python 3.7,
with the deep learning network and OCC decoding module built
upon PyTorch 1.7.1 [45] and OpenCV [5], respectively. The encoder
𝑞𝜙 consists of repeated units of two convolutional layers of ker-
nel size 3, each followed by a ReLU (rectified linear unit) and a
max-pooling layer with stride 2 for downsampling; the number of

Figure 10: Illustration of CORE-Lens prototype (partial for
the LED lumimaire) and experiment setup.

feature channels is doubled at each downsampling step. The two-
layer convolutional units are repeated 4 times in the encoder. The
generator 𝑔\ consists of repeated units of two convolutional layers
of kernel size 3, each followed by a transposed convolution layer
of kernel size 2 and a ReLU layer. The transposed convolutional
layer upsamples the feature map and halves the number of feature
channels. Similar to the encoder, the two-layer convolutional units
are repeated 4 times in the decoder. The Markovian discriminator
𝑑𝜓 is implemented as a four-layer fully convolutional network with
a perceptive field of 30.

4.2 Dataset and Network Training
Since there is no publicly available dataset for evaluation of simul-
taneous OR and OCC, we collect and prepare our own. Specifically,
the dataset is collected under normal ambient lighting, by illumi-
nating OCC-coded light upon different backgrounds containing 10
classes of objects, namely book (BK), bottle (BL), box (BX), scissor
(SS), bag (BG), laptop (LT), toy (TY), teapot (TT), plant (PT), and cap
(CP), put in front of 6 different scenes (namely white wall, mosaic,
gray, blue, pink and poster). To produce diversified OCC-coded
patterns, we transmit random data in 5 packet formats with differ-
ent headers and packet lengths. Each collected frame is resized to
256 × 256 pixels to fit the CORE-Lens network. We collect 20,000
frames in total, including 16,000 frames for training CORE-Lens
and 4,000 for testing, which is made public at [14] and will be fur-
ther enriched; some example frames in our dataset are shown in
Figure 11. As the dataset includes frames with diversified domain
information (e.g., scene, distance, orientation, and ambient illumi-
nation), we also verify the cross-domain generalization capability

Figure 11: Examples of captured frames in our dataset.
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of CORE-Lens by separating the training and testing domains. For
the training process, all weights in the CORE-Lens network are
initialized by the Xavier uniform initializer [30], and the batch size
is set to 64, the loss in Eqn. (10) is adopted with the weight 𝛽 set to
3. The learning rate and momentum of the SGD optimizer [4] are
set to 0.01 and 0.9, respectively. The CORE-Lens network is trained
for 1000 epochs on an NVIDIA GeForce RTX 2070 SUPER GPU [42],
and the training process costs 5 hours in total. To perform inference
on mobile devices, we port the trained network to Android and iOS
platforms by Pytorch Mobile [46].

5 EVALUATION
In this section, we evaluate both OR and OCC performance of
CORE-Lens under various experiment setups, and we also discuss
features and limitations common to both OR and OCC functions.

5.1 OR Performance
We start with evaluating the OR performance. We first explain the
reason for the improved OR performance by visualizing the saliency
maps obtained by CORE-Lens. We further study how the increas-
ing class cardinality, varying data rates, and different backgrounds
impact the OR performance, adopting CORE-Lens network without
the discriminator 𝑑𝜓 as the baseline classifier for comparison pur-
poses, as otherwise commonly used baselines (e.g., GoogLeNet [50])
perform much worse (see Section 2.2). Due to page limit, we di-
rectly adopt optimized hyperparameters, e.g., 𝛽 and learning rate,
but omit their empirical evaluations.

5.1.1 Saliency Map Visualization. A saliency map is an image in
which the grayscale values of the pixels are marked according to
their contribution to the object recognition task [48]. By creating
a saliency map for CORE-Lens, we can gain intuition on where
the network is paying the most attention to in an input image.
Figure 12a shows a captured image of a pot of plant interfered with
OCC-coded patterns. We employ a Python library FlashTorch [43]
to visualize its saliency maps and show the results of the baseline
and CORE-Lens network in Figures 12b and 12c, respectively. One
may readily observe that the saliency map of the baseline classifier
is diffusive, i.e., the attention is shifted towards abnormal OCC-
coded patterns instead of being stressed on the real object. As a
comparison, the saliency map of CORE-Lens focuses mostly on
the object barely affected by the OCC-coded patterns. The distinct
difference evidently demonstrates the disentanglement capability of
CORE-Lens, which in turn leads to then enhanced OR performance.

5.1.2 Overall Performance. We first discuss the overall OR perfor-
mance of CORE-Lens shown in Figure 13. Basically, we consider

(a) Raw. (b) Baseline. (c) CORE-Lens.

Figure 12: Saliency maps of a pot of plant.

three OCC data rates (4, 5, and 6kbps), and for each data rate, we
first look at how OR accuracy relates with the number of object
classes, then we conduct a detailed inspection on the confusion
matrices that especially reflect the OR accuracy given all 10 object
classes. It can be observed, from top panels, that the OR accuracy is
96% on average when the received frames are clean and free from
OCC interference. Although this accuracy slightly drops to 92%
when there exists OCC interference, it is already a huge improve-
ment over the baseline, whose OR accuracy for OCC interfered
frames may drop below 70% eventually. Moreover, the OR accuracy
(for both clean and OCC interfered frames) is shown to be largely
insensitive to varying data rates given the full CORE-Lens network,
demonstrating one aspect of the robustness of CORE-Lens.

We then inspect OR performance under different numbers of
classes. The top panel of Figure 13 shows that the OR accuracy of
CORE-Lens is fairly stable from 5 to 10 classes, and the overall vari-
ation of OR accuracy does not exceed 4%. This stability is in stark
contrast to the baseline, whose accuracy drops by 12%, 15%, and 18%
when the number of classes increases from 5 to 10 and the data rate
is at 4kbps, 5kbps, and 6kbps, respectively. The results suggest that
a VAE alone in the baseline network, though outperforming normal
CNN classifiers such as GoogLeNet [50], is still insufficient for dis-
entangling background objects and OCC-coded patterns, whereas
the Markovian discriminator 𝑑𝜓 can help CORE-Lens enhancing its
disentanglement capability and generating clearer pictures as well,
thus remaining robust in the face of an increasing class cardinality.

We further explore the detailed OR performance of CORE-Lens
under all 10 object classes and three data rates using confusion
matrices. From the bottom panel of Figure 13, we can observe that
the OR accuracy of almost all classes stays beyond 90% (some even
get close or reach 100%), except the “BG” (bag), “TY” (toy), and
“CP” (cap). By inspecting our dataset (as illustrated by Figure 11),
we conjecture that the possible reason is that these classes are
larger in shapes and span across more non-uniform OCC-coded
patterns, thus receiving more interference. Additionally, we find
that misclassified objects are most likely to fall into “SS” (scissors),
with an average misclassification rate (over all classes) of 1.06%,
2.01%, and 1.49% under data rates of 4 kbps, 5 kbps, and 6 kbps,
respectively. This may be explained by the fact that scissors are
inconspicuous by occupying a small portion of a frame, thus leading
to relatively weak activations in CORE-Lens network and tending
to be mistakenly imitated by objects from other classes.

5.1.3 Impact of Varying Backgrounds. We further evaluate the OR
performance of CORE-Lens under different wall backgrounds (e.g.,
white, mosaic, and colored walls, as well as colorful posters) with
a fixed 5 kbps data rate. The OR performance of CORE-Lens is
compared with the baseline and reported in Figure 14. Figure 14a
shows that the OR accuracy of CORE-Lens on clean frames has
a narrow improvement of around 4% over the baseline classifier,
whereas Figure 14b demonstrates that CORE-Lens is far superior
to the baseline with more than 20% increase in OR accuracy when
captured frames having varying backgrounds. This conspicuous
improvement in accuracy from the baseline to CORE-Lens confirms
that CORE-Lens is largely immune to excessive interference caused
by varying backgrounds, thanks to its capability in disentangling
the mixed signal features in captured OCC frames.
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Figure 13: The OR performance under an increasing class cardinality and varying data rate, as well as the confusion matrices
for all 10 object classes of objects, both given a white wall as the background.
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Figure 14: OR performance of CORE-Lens and baseline clas-
sifier under varying backgrounds.

To further inspect CORE-Lens’ OR performance under various
backgrounds, we use boxplots of OR accuracy to reflect its distribu-
tion over 10 object classes. The results on clean and OCC-interfered
frames are shown in Figures 15a and 15b, respectively. One may
observe that the OR accuracy on OCC-interfered frames has a more
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Figure 15: OR performance of CORE-Lens under varying
backgrounds.

spread distribution than that on clean frames, potentially attrib-
uted to the unpredictable interference left by OCC-coded patterns
on the disentangled background. Furthermore, we notice that the
mosaic and poster backgrounds lead to large discrepancies across
object classes in OR performance, probably due to their distinct
interactions with certain object classes.

5.2 OCC Performance
We then evaluate the OCC performance of CORE-Lens. To be spe-
cific, we first visualize the reconstructed residual frame x′OCC to
understand why CORE-Lens improves OCC performance, then
study how varying data rates and backgrounds impact OCC perfor-
mance. We adopt vanilla OCC decoding on raw received frames as
the comparison baseline.

5.2.1 Residual Frame. We showcase a captured frame x and its
residual frame x′OCC in Figure 16. By subtracting the reconstructed
background x′OR, the object (bottle) and wall patterns in x have
been largely eliminated in x′OCC. Although there are still minor
mismatches and background shades left in x′OCC, they generally do
not degrade the OCC performance of CORE-Lens, as demonstrated
in the following experiments, because they are readily handled by
the frame-averaging method mentioned in Section 3.4.

5.2.2 Impact of Varying Data Rates. We compare the BER of CORE-
Lens with the baseline method under three data rates in Figure 17a.
Apparently, CORE-Lens substantially outperforms the baseline with
its median BERs at 0.1%, 0.2%, and 1.3% respectively under data
rates of 4kbps, 5kbps, and 6kbps, as the corresponding median
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(a) Captured frame x. (b) Residual frame x′OCC.

Figure 16: From a captured frame (a) to a decodable residual
frame (b).

BERs of the baseline is one order higher at 1.6%, 2%, and 4.7%,
respectively. This comparison evidently confirms that the baseline
method can be severely affected by the background interference, so
that communication quality is seriously compromised. As shown in
Figure 17b, the OCC performance of CORE-Lens is nearly the same
as that evaluated given a white wall background, concretely proving
the efficacy of our feature disentangling method in maintaining
a reliable OCC channel. We notice that the BER of CORE-Lens
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Figure 17: OCC performance under varying data rates.

experiences a substantial increase to 1.2%when the data rate reaches
6kbps. This phenomenon can be partially explained by the fact that
a high data rate significantly complicates OCC demodulation by
shrinking the width of OCC-coded stripes. Fortunately, a data rate
of 5kbps is often sufficient for most OCC applications [47], so we
leave a high-rate ISAC-OCC to future work.

5.2.3 Impact of Varying Backgrounds. We then fix the data rate at
5kbps and evaluate the communication performance of CORE-Lens
under varying background scenes, and the results are shown in Fig-
ure 18. As expected, the baseline is greatly affected by interference
from varying scenes: it has BERs varying from 1.5% to 4% given
pure-colored scenes, otherwise it BERs can go up to 12% given
more complicated scenes composed of mosaic and colorful posters.
As a comparison, CORE-Lens effectively handles the interference
and achieves BERs below 1% under all scenes except for the poster,
where a slightly higher median BER of 1.3% is reached. As shown
in Figure 18b, the BERs achieved by CORE-Lens on varying scenes
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Figure 18: OCC performance under varying scenes.

are close to the ideal case where reflected OCC is performed on
white wall scene, again providing the efficacy of CORE-Lens.

5.3 Cross-Domain Performance of CORE-Lens
Our experiments so far have focused only on the two key met-
rics, namely OR accuracy and OCC quality, leaving the domain
information (scene, distance, orientation, and ambient illumination)
blended in the training and testing phases. Therefore, we hereby
evaluate the cross-domain performance of CORE-Lens. As it is a
convention to normalize frames with respect to both orientation
and ambient illumination, we only consider two domain aspects:
namely scene and distance.

5.3.1 Cross-Scene. As we have five different scenes (other than
the trivial white wall) involved in our dataset, we use three of them
to train CORE-Lens and then test the resulted model on the re-
maining two. Due to the space limit, we only present the results
for the best and worst case combinations in Figure 19: the best
case uses “difficult” scenes to train (Figures 19a and 19c), while the
worst case perform test on them (Figures 19b and 19d). Apparently,
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Figure 19: Cross-scene generalizability of CORE-Lens.

training CORE-Lens with the difficult scenes results in very good
performance on unseen scenes (which may almost match those
reported earlier with mixed-scene training), but testing on these
difficult scenes, as expected, leads to relatively worse performance.
Since the performance degradation under cross-scene testing most
appears to OR, we believe that it can mostly be attributed to the
trained OR classifier (not part of our CORE-Lens): OR under daz-
zling background scenes is known to be a hard problem [39, 58].

5.3.2 Cross-Distance. Whereas the our CORE-Lensmodel is trained
at a fixed distance of 1.6m, we hereby demonstrate that the model
can be generalize to other distances varying from 1.4m to 1.8m.
The reason for this relatively narrow range in distance is twofold: i)
subject to the nature of reflected OCC (also confined by the adopted
LED luminaire), decoding error can increase significantly after the
wall-camera distance grows beyond 1.8m, and ii) once the object-
camera distance is reduced below 1.4m, some scene settings may
fall outside the field of view of the camera and cannot be fully
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Figure 20: Cross-distance generalizability of CORE-Lens.

captured, thus unfairly affecting the OR accuracy. As shown in
Figure 20, the general trend of OR accuracy is slightly decreasing in
distance and that of OCC BER is slightly increasing, which is very
much expectable given the information theoretical principle that a
higher SNR (at a lower distance) should lead to better performance
in both OR and OCC. Of course, the generalizability issue of CORE-
Lens (in terms of OR) does manifest itself at shorter distances (at
longer distances too but not very discernible): it appears that the
higher SNR is somehow offset by the amplified image compared
those taken at the trained distance. Fortunately, this issue does not
appear to be very serious, and it can be handled by normalizing the
frame size for all distances.

5.4 Discussions on Limitations
As we explained in Section 1, separating CV and OCC in a time-
divided manner is feasible but not efficient. During our experiments,
we are able to collect the nominal runtime complexities (i.e., latency
in computation) of individual components (as shown in Table 1);
they allow us to verify our earlier statement. Taking the Android
phone as an example and assuming a tight time-divided schedule
to separate OR and OCC, the OR time would be 42.477ms (with
GoogLeNet) while that of OCC alone (with ad hoc filtering) would
become 57.511ms. However, there would be an additional switching
time (< 1ms) for changing the camera exposure parameters (as a
sufficiently long exposure could get rid of OCC patterns) and the
actual exposure time (1/30s or 33.333ms to achieve its purpose). As
a result, the whole cycle (one OR and one OCC) takes more than
130ms. On the contrary, CORE-Lens would only require slightly
more than 20.436 + 42.477 = 62.913ms, as the processing of OR and
OCC can be largely conducted in parallel. Therefore, using CORE-
Lens should improve the time efficiency by more than 100%. In
addition, adopting the time-divided approach demands a frequent
switching between distinct exposure parameters, which should not
do any good to the lifetime of the embedded cameras.

Table 1: Latency and memory usage of CORE-Lens and other
standalone modules.

Latency on
PC (ms)

Latency on
Android (ms)

Latency on
iOS (ms)

Memory
(MB)

CORE-Lens 3.040 20.436 13.248 68.312
OR 3.835 42.477 35.107 138.489
OCC 1.045 8.072 2.896 14.574
Exposure — 33.333 33.333 —
OCC w/ filter 4.028 57.511 52.136 18.880

Another concern may come from the real-time OCC perfor-
mance, which we could also clarify using the data in Table 1. Ac-
cording to Table 1 and taking the Android phone as an example, we
should have a frame rate of 15fps even if OR is performed for every
frame, as one cycle of CORE-Lens is about 63ms based on our earlier
calculation. Since each frame consists of four 30-bit packets, the up-
per bound of the achievable data rate is 30×4×15 = 1.8kpbs, largely
satisfying the requirements of normal OCC applications. In fact,
OR does not have to be performed for each frame in practice, so the
data rate can be further improved by allocating more time on OCC.
Suppose we perform OR once per second (still a very aggressive
setting), there are 1000− 63 = 937ms left for OCC decoding, readily
supporting a frame rate of 937 ÷ 29 = 32fps. Since CORE-Lens is
the first prototype built for realizing ISAC-OCC, there should be
plenty of room for further optimizing the runtime complexity in
future developments for specific applications.

One limitation of CORE-Lens in terms of CV functions is that it
can only support “macro” tasks such as OR but not “micro” ones
such as human activity recognition [36, 38], position/orientation
tracking [41], and remote vital signs monitoring [8, 44, 66], as the
reconstructed frames may not retain all the necessary details. Al-
though researchers can leverage other sensing media (e.g., [6, 9,
10, 15, 67]) to perform such tasks in an independent manner, it is
still our future goal to merge OCC with general CV under the ISAC
framework. The other limitation has to do with the modulation
adopted by CORE-Lens: the current implementation is based only
on OOK, the most basic modulation, for its robustness. Therefore, it
remains to be challenging to apply high-rate (higher-order) modula-
tions to CORE-Lens. Last but not least, though pioneering the ISAC
construction in the visible light regime, CORE-Lens is still confined
to camera-based OCC, so we are on the way towards exploring
ISAC under general VLC settings.

6 CONCLUSION
Simultaneous communication and sensing is a challenging yet im-
portant problem for visible light related applications, because it
unlocks the full potential of widely adopted LED lighting infrastruc-
tures and embedded cameras. To this end, we have implemented
CORE-Lens, a smartphone-based solution that performs both com-
munication (OCC) and sensing (OR in particular) currently. Em-
ploying carefully designed deep learning modules, CORE-Lens first
leverages disentangled representation learning to separate the back-
ground and OCC-coded patterns in the feature space, and then per-
forms robust OR and OCC on the GAN-recovered frames, respec-
tively. With extensive experiments under different data rates and
background objects, we have demonstrated the promising perfor-
mance of CORE-Lens in simultaneous OR and OCC. We are actively
seeking relevant application scenarios for deploying CORE-Lens,
in order to promote a wider acceptance of our ISAC-VLC concept.
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