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Abstract—Contact-free vital-signs monitoring enabled by radio
frequency (RF) sensing is gaining increasing attention, thanks
to its non-intrusiveness, noise-resistance, and low cost. Whereas
most of these systems only perform respiration monitoring
or retrieve heart rate, few can recover fine-grained heartbeat
waveform. The major reason is that, though both respiration
and heartbeat cause detectable micro-motions on human bodies,
the former is so strong that it overwhelms the latter. In this
paper, we aim to answer the question in the paper title, by
demystifying how heartbeat waveform can be extracted from RF-
sensing signal. Applying several mainstream methods to recover
heartbeat waveform from raw RF signal, our results reveal
that these methods may not achieve what they have claimed,
mainly because they assume linear signal mixing whereas the
composition between respiration and heartbeat can be highly
nonlinear. To overcome the difficulty of decomposing nonlinear
signal mixing, we leverage the power of a novel deep generative
model termed variational encoder-decoder (VED). Exploiting the
universal approximation ability of deep neural networks and the
generative potential of variational inference, VED demonstrates a
promising capability in recovering fine-grained heartbeat wave-
form from RF-sensing signal; this is firmly validated by our
experiments with 12 subjects and 48-hour data.

Index Terms—Vital signs monitoring, contact-free sensing, RF-
sensing, deep learning, variational encoder-decoder.

I. INTRODUCTION

In the past decade, the need for a ubiquitous solution to
continuous vital signs monitoring has driven both academic
and industry to invest in contact-free sensing. Leveraging re-
flected signals to capture body micro-motions, both respiration
and heartbeat can be acquired by exploiting typically visi-
ble light [1]–[3], acoustic wave [4]–[8], and radio-frequency
(RF) signal [9]–[14]. Among these methods, contact-free RF-
sensing appears to be the most promising, because it is well
supported by various commercial-grade devices [15]–[17] and
it offers sufficient resolution without being affected by light or
acoustic interference pertaining to an environment. Therefore,
we have witnessed a wide range of developments concerning
RF-enabled vital signs monitoring, where Wi-Fi [18]–[20],
impulse radio ultra-wideband (IR-UWB) [14], [21], [22], and
Frequency-Modulated Continuous Wave (FMCW) radars [10],
[23]–[25] are usually adopted.

Although contact-free RF-sensing has demonstrated impres-
sive performance in respiration monitoring and heart rate
estimation [9]–[14], [18]–[24], few systems are capable of ex-
tracting fine-grained heartbeat waveform. Normally, waveform
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Fig. 1: Raw RF (phase) signal w/o and w/ breath holding
(top two), heartbeat waveforms obtained by four 1-D signal
processing methods, and that recovered by VED (the last one).

is deemed as much more useful than rate, as it depicts whole
cardiac cycles [25]; yet recovering waveform is challenging
because heartbeat is often drowned out by respiration, which
is (almost) co-located but incurs a much higher body-motion
strength. As shown by the first two curves in Fig. 1, whereas
respiratory waveform can be readily identified from raw RF
signal, heartbeat waveform becomes discernible only after
the breath is held. Several methods have been developed to
mitigate respiration interference [12], [26]–[28]. For example,
bandpass and adaptive filters have been utilized in [12] to ex-
tract heartbeat waveform, while filters with a higher passband
are adopted by [27], [28] to retrieve phonocardiograph (PCG)
or seismocardiogram (SCG) waveform. Other proposals [14],
[26] apply more sophisticated methods such as Variational
Mode Decomposition (VMD) and Ensemble Empirical Mode
Decomposition (EEMD) to decompose raw RF signal and
obtain the heartbeat waveform component therein.

Consequently, one may naturally ask: can fine-grained
heartbeat waveform really be obtained via contact-free RF-
sensing? Aiming to answer this question, we use both mod-
eling and experiments to demystify how to recover heart-
beat waveform from raw RF signal. As a teaser, we briefly
summarize our experience with the state of art methods in



Fig. 1, where raw RF signals (with breathing) are respectively
processed by four methods: low bandpass filter (LBPass, 0.8-
3.6 Hz), high bandpass filter (HBPass, 16-35 Hz), VMD, and
EEMD. It can be observed that, under the breath interference,
none of these methods could effectively recover fine-grained
heartbeat waveform. In particular, LBPass roughly obtains
the fundamental frequency component of heartbeat waveform
(albeit highly distorted), while HBPass hardly achieves the
morphology similarity claimed in [27], [28]. VMD delivers a
smoother waveform compared to that of LBPass (yet losing
more details), and EEMD performs similarly to VMD.

Given the inadequacy of existing proposals, we first analyze
the reason behind the unsatisfactory results, and we figure out
that these methods all operate under the wrong assumption that
heartbeat and respiratory waveforms are linearly composed. To
handle the nonlinear decomposition problem, we innovatively
design a deep generative model termed variational encoder-
decoder (VED). In order to better leverage the signal repre-
sentation in complex in-phase/quadrature (I/Q) domain (rather
than only amplitude or phase adopted by earlier proposals), our
VED model takes both components of raw complex RF signals
as inputs. More importantly, VED leverages i) the universal
approximation ability of its encoder-decoder network, and ii)
the generative potential of the variational inference in its latent
space, in order to perform both nonlinear decomposition and
waveform recovery. To briefly demonstrate the effectiveness
of our method, a VED-recovered fine-grained heartbeat wave-
form is shown at the bottom of Fig. 1. In summary, we make
the following major contributions in this paper:

• We reveal the true challenges of recovering fine-grained
heartbeat waveform from contact-free RF-sensing data.

• By both modeling and experiments, we draw lessons from
existing proposals and derive guidelines for developing
contact-free cardiac monitoring system effectively.

• We propose VED as a novel deep generative model to
approximate a nonlinear decomposition, so as to recover
fine-grained heartbeat waveform from raw RF signal.

• We conduct extensive evaluations on Wi-Fi, IR-UWB,
and FMCW devices with a 48-hour dataset.

The rest of this paper is organized as follows. Section II aims
to demystify heartbeat waveform recovery by contact-free RF
sensing, via both modeling and experiments. We then propose
our RF-sensing solution to fine-grained heartbeat waveform
recovery in Sec. III. Sec. IV reports the evaluation results of
our method. Finally, Sec. V concludes our paper.

II. CONTACT-FREE CARDIAC MONITORING

In this section, we start with the rationale of contact-free
cardiac monitoring and of adopting RF as the sensing media.
Then we introduce the working principles of RF cardiac
monitoring and perform a comparative study among three
mainstream schemes (i.e., Wi-Fi, IR-UWB, and FMCW) to
verify their respective capabilities. We finally clarify the inef-
ficacy of existing proposals and uncover the true challenges,
using FMCW as the sensing technology.

(a) Heart structure. (b) Cardiac cycle.

(c) Relations between different sensing results [31].

Fig. 2: Heart structure, dynamics, and various sensing results.

A. Understanding Heartbeat

We first expose a cardiac cycle from both its intrinsic
operation details and the resulting extrinsic manifestation. As
shown in Fig. 2a, a heart is separated into left and right
parts; each part contains an atrium and a ventricle. The heart’s
electrical system generates rhythmical impulses to regulate
muscular contraction of the heart, hence producing heartbeat.
Each cardiac cycle (or beat), as shown in Fig. 2b, consists
of a sequence of cardiac events commonly separated into
two periods: relaxation (diastole) and contraction (systole).
The cycle starts with heart relaxing and filled with blood,
then ends with heart contracting and pumping blood through
lungs and peripheral circulation [29]. As each beat forces a
new surge of blood to fill the arteries, these vessels dilate
and recoil to maintain pressure while accommodating blood
volume changes. Such dilation and constriction lead to the
so-called blood volume pulse (BVP), creating an extrinsic
representation of heartbeat [25], [30].

Some of these physiological events can only be observed
via wearable sensing, such as electrocardiogram (ECG) that
records the rhythmical electrical impulses. However, our fol-
lowing discussions focus only on contact-free cardiac monitor-
ing. In terms of intrinsic operations, previous studies claim that
phonocardiogram (PCG, sounds generated by heartbeat) and
seismocardiogram (SCG, chest wall micro-vibrations induced
by heartbeat) can be captured by RF sensing [27], [28]. How-
ever, our experiments in Sec. II-C shall reveal their sensing
distance being too short to be practically usable for contact-
free monitoring. To reach a longer sensing distance, extrinsic
BVP has been leveraged in two ways. On one hand, remote
photoplethysmography (rPPG) adopts a camera to capture
the subtle color changes of a subject’s facial regions caused



by BVP under skin.1 On the other hand, acoustic [4] and
RF [12]–[14], [19]–[24], [26] signals are used to sense the
micro-vibrations induced by BVP, where the most conspicuous
vibrations are produced by the common carotid artery on
neck. As a vision-based method, rPPG is highly vulnerable
to illumination changes and other light interference; a similar
situation happens to acoustic sensing as sound interference
is inherent to our living environments. Therefore, RF sensing
appears to be the most reasonable solution for measuring BVP.
We illustrate ECG, SCG (similar to PCG), and BVP along with
corresponding events in Fig. 2c, but we refer readers to [31]
for detailed explanations on the marked events.

B. Capturing Heartbeat with RF signals

Existing proposals have employed various RF schemes
(Wi-Fi, IR-UWB, and FMCW) for capturing heartbeat. Al-
though they apply different signal frequencies and modulation
techniques, the received signal model can be unified [34],
[35] to facilitate exposition and further processing. Generally
speaking, they all explore the reflected signal y(t) off human
bodies:

y(t) =
∑P
p=1αp(t)e

−j2πfc
2dp(t)

c + n(t), (1)

where P is the number of reflectors, αp(t) is the baseband
signal after a real channel gain of the p-th reflected signal, fc
is the carrier frequency, c is the speed of light, dp(t) is the
distance from sensor to p-th reflector, and n(t) is Gaussian
noise. Here we omit the detailed representation of αp(t) for
brevity. After I/Q downconversion, the demodulated baseband
signal can be represented as a complex sequence r(t) = rI(t)+
jrQ(t), with the phase of r(t) representing that of the carrier
in Eqn. (1). Plotting the amplitude of r(t) in Fig. 3a, we can
observe that the subjects (human bodies in our case) indicated
by peaks mark the strongest reflectors within sensing range;
they can be clearly differentiated via distinct distances.2
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(b) Signal matrix |r(t)|.

Fig. 3: Reflections from two human subjects and their corre-
sponding heartbeats can be observed in a single frame and a
signal matrix stacking multiple frames, respectively.

However, a single frame r(t) only allows one to detect the
distance of a subject. To monitor heartbeat, one has to transmit

1Similarly, photoplethysmography (PPG) is a wearable sensing method
commonly adopted to obtain ground truth for experimentally validating
contact-free sensing [32], [33].

2The ability of differentiating reflectors at different distances relies on the
bandwidth of the baseband signal. Therefore, Wi-Fi, with a bandwidth of only
several tens of MHz (in other words, αp(t) remains almost constant with a
frame), is insufficient to achieve such a high distance resolution.

multiple frames at a regular interval to capture the micro-
motion of a subject. Stacking a sequence of such frames forms
a signal matrix r(t) = [r1(t), · · · rn(t), · · · rN (t)]T , where t
and n are respectively the fast-time and slow-time indices,
and N denotes the number of slow-time frames. As the fast-
time index t indicates distance, we also term it distance bin,
or simply bin. We illustrate a signal matrix of two subjects
holding their breath in Fig. 3b, in which one may readily
observe the heartbeats. Since this paper is meant to reveal how
heartbeat waveform can be recovered from a single subject,
we hereby focus only on a single column r(n), whose I/Q
components are respectively represented as:

rI(n) = α(n) cos

(
4πd0
λ

+
4πdh(n)

λ

)
+ oBI (n), (2)

rQ(n) = α(n) sin

(
4πd0
λ

+
4πdh(n)

λ

)
+ oBQ(n), (3)

where α(n) describes the magnitude of the reflected signal
off a human body, d0 is the mean distance from the radar
to the body, λ is the wavelength of the carrier, and dh(n) is
the micro-displacement caused by heartbeat. We use oB(n) =
oBI (n)+jo

B
Q(n) to describe the total effect of interference from

respiration and body background reflection.
Given these theoretical backgrounds, we are now ready to

investigate the ability of capturing heartbeat waveform by the
three major RF schemes. We use three RF devices (Wi-Fi [15],
IR-UWB [16], and FMCW [17]) to simultaneously record
reflected signals when a subject is either holding the breath
or breathing naturally, and some typical results are plotted in
Fig. 4, leading to the following observations:
• All three RF schemes are able to capture heartbeat

waveform to some extent with subject holding the breath;
otherwise, heartbeat is totally overwhelmed by breath and
further signal processing to separate them is necessary.

• Given the constellation of r(n) in a complex plane
illustrated in the first two rows, a trajectory caused by
(body) micro-displacements always forms an elliptic arc,
whose central angle is proportional to the magnitude of
micro-displacements, hence allowing the breath (if not
held) to drown out the heartbeat.

• Another key factor affecting the central angle of an
elliptic arc is the carrier frequency fc: Wi-Fi at 5.8 GHz,
IR-UWB at 7.29GHz, and FMCW at 77GHz. Essentially,
the higher the fc, the more sensitive the carrier phase,
hence that of r(t), is to the changes in reflected signals
induced by micro-displacements.

• The arc may not be circular and centered at the origin,
because oB(n) induces a varying offset to it. Compared
to Wi-Fi with 40 MHz bandwidth, IR-UWB and FMCW
(with much wider 1.5 GHz and 3 GHz bandwidths,
respectively), yield narrower bins with less interference
from oB(n), hence leading to much cleaner traces.

• When studying the 1-D representation of r(t) (i.e., its
amplitude and phase) in Fig 4, the same phenomenon that
respiration overwhelms heartbeat can again be observed.
The different distortions existing in amplitude and phase



representations are likely to be caused by the distinct
constructions of these devices: we consistently observe
that r(t) has a better projection on its amplitude for IR-
UWB, as opposed to phase for FMCW.

In conclusion, heartbeat waveform could be captured rather
accurately (by either IR-UWB and FMCW, but not certainly
not Wi-Fi), when there is no interference from respiration.
And 1-D representation of r(t) (amplitude or phase) is able
to describe the periodic changes of body micro-displacement
despite the device-dependent variations. However, if 1-D rep-
resentation is enough for signal separation is still a question
that we would like to find out in the following section.

C. What Went Wrong with Previous Methods

Given the aforementioned background, we hereby study
several state-of-the-art methods and analyze why they fail to
obtain fine-grained heartbeat waveform through experiments.
We use FMCW as the sensing technology considering its
high distance resolution and motion sensitivity. Moreover, as
existing methods mainly take 1-D signal as their input and
FMCW performs better in phase (see Fig. 4), we shall take
phase signal as the input in the following experiments.
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(b) IR-UWB.
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Fig. 4: Comparison of three RF schemes in terms of capturing
heartbeat waveform. We use the first two rows to depict r(n)
(in I/Q domain) with (red) or without (blue) holding the breath.
Then the last two rows respectively demonstrate what happens
if only the amplitude or phase of r(n) is considered, with (red)
or without (blue) holding the breath.
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Fig. 5: Low-range bandpass filtering suffers from losing de-
tails, as well as distortion caused by respiration harmonics.

1) Low-Range Bandpass Filtering: Applying a bandpass
filter may be the most intuitive way, because the heartbeat and
respiration have very different fundamental frequencies. For
healthy adults at rest, the normal respiratory rate often falls
between 12 and 16 rpm (respirations per minute), while the
heart rate ranges from 60 to 100 bpm (beats per minute) [36].
Therefore, applying a bandpass filter of (1-1.8) Hz to extract
heartbeat waveform appears to be a plausible solution [20]. In
practice, range of (0.8-4) Hz is usually adopted to include ab-
normal cases [10], [13], [21], and also to enrich the waveform
with more high frequency details.

Fig. 5 shows the raw and filtered phase of the RF signal,
as well as the BVP ground truth provided by a PPG wearable
sensor [33]. It is clear that the waveforms yielded by bandpass
filters largely fail to characterize cardiac cycles: while the
narrower range filter leads to only the fundamental frequency
without details, the wider range filter results in waveform
distorted by harmonic frequency components of respiration.
In fact, their peaks cannot be well aligned with those of the
ground truth, rendering wrong estimation even to heart rate.
The above results were obtained with a subject facing the radar
at a distance of 1 m. Bounded by the requirement on signal-
to-noise ratio (SNR), the maximum distance at which BVP
waveform could be detected is roughly 5 m.

2) High-Range Bandpass Filtering: According to Sec. II-A,
PCG and SCG represent intrinsic cardiac operations correlated
with ECG signals, as the mechanical vibrations are induced
by the electrical signals [30], [37]. Therefore, as opposed to
BVP extrinsically representing heartbeat, PCG/SCG occupy
much higher frequencies, making researchers believe that they
would evade the interference from respiration. Consequently,
bandpass filters at a higher frequency range are employed to
obtain such waveforms, e.g., (16-80) Hz filter for PCG [27],
and (18-35) Hz one for SCG [28].

The results of applying two high-range bandpass filters are
presented in Fig. 6, with ECG waveform collected by another
wearable sensor [38] as ground truth, and R wave peak and
T wave end labeled as important reference points [30], [37].
These results evidently demonstrate that it is incorrect to
believe that PCG/SCG are not prone to the interference from
respiration. On one hand, the correlation between the existence
of PCG/SCG and the respiration states is very strong. On the
other hand, even during the period when PCG/SCG waveforms
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Fig. 6: High-range bandpass filtering may avoid respiration
interference, yet it still fails to recover meaningful waveform.

are observable, these waveforms fail to represent heartbeat
patterns as they are not well aligned with the ECG events.
In addition, the above results were obtained at a distance of
20cm. Due to the high SNR requirement to preserve the details
in waveforms for indicating every cardiac event, PCG/SCG
are only obtainable at close proximity. As shown in Fig. 7, a
slight increase in distance makes it more difficult to observe
heartbeat pattern from PCG/SCG waveforms. Compared with
the meter-level sensing distance of BVP, the applicability of
PCG/SCG in real-life monitoring is highly questionable.
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Fig. 7: Heartbeat waveform obtained by high-range bandpass
filter at different distances: a minor distance increase can
totally ruin heartbeat patterns already barely observable.

3) Decomposition Approaches: Compared with the afore-
mentioned classical filtering methods focusing on spectral
analysis, mode decomposition methods [39], [40] targeting
time-domain analysis are supposed to have better adaptability
in signal separation. Among them, EEMD [26] and VMD [14]
are recently adopted for heartbeat waveform extraction. These
methods decompose signals into components called intrinsic
membership functions (IMFs). For heartbeat waveform extrac-
tion, these methods normally break down raw radar signals
into the BVP signal, respiration signal, body movements, as
well as noises. We apply both VMD and EEMD to decompose
raw phase signals measured at 1m; the extracted heartbeat
waveforms and the PPG ground truth are illustrated in Fig. 8.
Although decomposition methods recover the fundamental
frequency components of heartbeat better than the low-range
bandpass filtering, they again fail to obtain fine-grained heart-
beat waveform, because the resulting waveforms are totally
void of necessary details.

4) Summary: According to our experiment analysis, all
existing methods fail to distill fine-grained hearbeat waveform
from respiration interference. The reason for this failure is
twofold: i) these methods all involve linear operations, capable
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Fig. 8: Mode decomposition methods again yield fundamental
frequency components but fail to recover necessary details.

of handling only linearly composed signal mixing, and ii)
they all rely on only 1D (phase or amplitude) data input. As
indicated in Fig. 4, I/Q data provide a much more compre-
hensive characterization of body motions, so it appears to be
imperative to design a nonlinear decomposition method taking
I/Q data as its input.

III. AN INTEGRATED DEEP LEARNING APPROACH

Given the inefficacy of linear approaches, we intend to work
directly on I/Q data and propose a deep learning module to
disentangle the nonlinear mixing. We firstly briefly motivate
our approach and introduce the design rationale of our VED
model. We then give an overview of the VED architecture,
followed by further elaborations on the working principles of
individual VED components, as well as how VED gets trained.

A. Design Rationale

Though nonlinear filtering methods exist, they may not
help recovering heartbeat waveform for two reasons. On one
hand, recursive approximation methods (e.g., those similar
to EEMD [39]) cannot achieve satisfying performance, as
discussed in Sec. II-C3. On the other hand, designing task-
specific nonlinear filters (e.g., median filter [41] and linear-in-
the-parameters nonlinear filter [42]) requires extensive profes-
sional experience and domain knowledge, yet they can hardly
be generalized. To overcome these challenges to deterministic
filtering, it may help to view the problem from the probabilistic
estimation perspective. Essentially, extracting heartbeat wave-
form x from the raw RF signal r can be viewed as modelling
the underlying distribution p(x|r) of x conditioned on r.
Driven by raw RF signals and ground truth waveforms, these
approaches can potentially discover the nonlinear relationship
between the input and output automatically; a recent avatar of
such an approach is learning via deep neural networks [43].

Whereas basic deep neural networks may not adapt well to
model the specific distribution p(x|r) in our case, the deep
learning community has been employing Encoder-Decoder
(ED) models for handling signal separation [44], [45]. In an
ED model, an encoder learns from raw input r and encodes
it into a compact representation h in a latent space. Then a
decoder uses this latent representation as input to reconstruct
the desired output x. This “bottleneck” structure is especially
efficient for separating signal mixing, as the structure forces
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Fig. 9: The VED Architecture. I/Q encoders take raw I/Q data and encode them to respective latent probability distributions.
Latent vectors are then sampled from the distributions and fed to the decoder for recovering the heartbeat waveform.

h to “forget” irrelevant signals while keeping compressed
knowledge of the desired one.

Unfortunately, a regular ED model is often prone to over-
fitting, as it may simply memorize the computation leading
to a discontinuous encoding in the latent space. To improve
the generalizability of the model, we regularize the latent
space by encoding latent vector h to probability distributions
instead of discrete values. As such, the encoder qφ(h|r) with
parameters φ can produce more meaningful representations
better generalizable to unseen data, and the decoder pθ(x|h)
with parameters θ can fully leverage these regularized repre-
sentations to reconstruct heartbeat waveforms without overfit-
ting to training samples. Because the model uses variational
inference [46] to model the latent distributions, we name
our model Variational Encoder-Decoder (VED). Nevertheless,
different from Variational AutoEncoder (VAE) models [47]
generating new samples similar to training data from random
vectors, VED is designated to decompose the input data and
reconstruct specific component. To provide an overview before
diving into details, we present the overall VED architecture
along with example inputs and outputs in Fig. 9.

B. Encoder

The encoder qφ(h|r) takes in the I/Q signal r and encodes
it to a latent representation h. Since r consists of complex
values as explained in Sec. II-B, we choose to design two
parallel encoders of the same structure to respectively handle
the in-phase component rI and quadrature component rQ of r
(see Fig. 9). Although existing proposals have explored deep
complex networks [48] to handle complex inputs, they are
usually difficult to train (with extremely slow convergence)
as they require redefining calculus operations (e.g., differen-
tiation) crucial to backpropagation. Therefore, applying two
encoders is certainly a more efficient solution in our case.

The encoder network consists of multiple stacks, with each
stack containing a one-dimensional convolutional layer [49], a
batch normalization layer [50], and a leaky ReLU layer [51] in
sequential order. As shown in Fig. 9, each convolutional layer

Conv1D(m,n) takes m input channels and adopts a kernel of
size n. In the meantime, the feature map length is reduced
as each convolutional layer downsamples its input by a factor
of 4 (i.e., stride 4), funneling input data into the latent space.
Essentially, the encoder applies i) 1D-CNN to extract temporal
features related to heartbeat, ii) the batch normalization layer
to make the training process more efficient and stabilized, and
iii) the Leaky ReLU layer as activation function for adding
nonlinearity to the network. Finally, the encoded features are
mapped into the latent distributions by fully connected layers.

C. Latent Space

The outputs of the encoders are two Gaussian distributions
hI ∼ N (µI,Σ

2
I ) and hQ ∼ N (µQ,Σ

2
Q) parameterized by

respective means and variances. During training, hI and hQ

should be sampled from respective distributions. However,
since we cannot obtain derivatives of random variables, back-
propagation does not work if hI and hQ are directly sampled.
To this end, we apply the reparameterization trick to restruc-
ture how we take derivatives of the latent representations. We
randomly sample ε from a unit Gaussian distribution N (0, I),
then shift the sample by respective means and scaled by
respective covariances to obtain hI and hQ:

hI = µI + ΣI � ε, (4)
hQ = µQ + ΣQ � ε, (5)

with � denoting an element-wise product. Consequently,
the parameters of the distributions can be leveraged to ob-
tain derivatives during backpropagation while maintaining the
stochastic nature of the latent representations. After each I/Q
encoded distribution is sampled as hI and hQ, we concatenate
them to form ĥ = [hI, hQ]; this ĥ becomes the input to the
first fully connected layer of the decoder for further heartbeat
waveform reconstruction.

D. Decoder

The decoder pθ(x|ĥ) serves as an expansion model to
reconstruct heartbeat waveform. As shown in Fig. 9, the



decoder network is virtually a reverse of the encoder. We
use stacks of 1-D transposed convolutional layers [52], batch
normalization layers and leaky ReLU layers. Specifically, each
transposed convolutional layer TranConv1D(m,n) takes in m
input channels and adopts a kernel size of n. In the meantime,
the feature map length is increased as each transposed convolu-
tional layer upsamples input by a factor of 4 (i.e., stride 4), and
expands the latent representation to a longer sequence. Finally,
the decoded features are transformed by a 1-D convolutional
layer to match the output dimension, and sigmoid is used as
the activation function to finally produce x.

E. Training Strategy
Theoretically, the best performance of heartbeat recovery

can be reached by maximizing the likelihood pθ(x), which
can be derived as follows:

log pθ(x) = Eqφ(h|r) [log pθ(x)]
= Eqφ(h|r) [log pθ(x|h)]−DKL (qφ(h|r)‖pθ(h))
+ DKL (qφ(h|r)‖pθ(h|r)) , (6)

where DKL(·) denotes the Kullback-Leibler (KL) diver-
gence [53]. Although only the first two terms are tractable,
together they form the so called variational lower bound
(VLB), which can be maximized instead.

VLBVED(x;φ, θ) = Eqφ(h|r) [log pθ(x|h)]
− DKL (qφ(h|r)‖pθ(h))
= log pθ(x)−DKL (qφ(h|r)‖pθ(h|r))
≤ log pθ(x), (7)

Intuitively, Eqφ(h|r) [log pθ(x|h)] describes the reconstruction
of heartbeat waveform, and DKL (qφ(h|r)‖pθ(h)) measures
KL divergence between approximate posterior distribution to
the true prior p(h). These two terms can be practically imple-
mented by the reconstruction loss and two I/Q regularization
losses:

a) Reconstruction Loss: As a practical measure of
Eqφ(h|r) [log pθ(x|h)], the reconstruction loss LRC is defined
in L2 that measures the sum of point-wise differences between
the recovered waveform x and the ground truth xgt.

LRC = ‖xgt − x‖2 , (8)

b) I/Q Regularization Loss: Corresponding to the term
DKL (qφ(h|r)‖pθ(h)) in Eqn. (7), we have two losses for
regularizing the in-phase and quadrature distributions. Since
we assume both true prior distributions as unit Gaussian, the
I/Q regularizing losses LIR and LQR are defined as:

LIR = DKL(N
(
µI,Σ

2
I

)
,N (0, I)), (9)

LQR = DKL(N
(
µQ,Σ

2
Q

)
,N (0, I)), (10)

Combining these loss functions, the overall loss function for
training VED becomes:

LVED = LRC + γ(LIR + LQR), (11)

where γ is the weight for regularizing losses. LIR and LQR

share the same weight γ, because the I/Q data are of equal
importance and I/Q encoders are symmetric.

IV. EVALUATION AND DISCUSSION

In this section, we evaluate VED’s capabilities of recov-
ering fine-grained heartbeat waveform, given several real-life
scenarios and under various parameter settings.

A. Evaluation Setup

We recruit 12 healthy subjects (6 females and 6 males),
aged from 18 to 60 and weighted from 50 to 80 kg, and we
conduct experiments with them under the IRB approval of
our institute. During data collection, the subjects are asked
to sit (quasi-)statically in real-life environments (e.g., offices
and classrooms), and we collect RF-sensing data under their
natural states (except very few breath-holding cases). To
demonstrate the effectiveness of VED in recovering heartbeat
waveform, we use both IR-UWB [16] and FMCW [17] radars
to capture 100 frames per second during data collection,
considering their competent performance briefly demonstrated
in Sec. II-B. To better understand the performance of VED
under various conditions, we conduct measurements when
subjects sit at different distances and orientations from radar,
and we even consider cases where subjects exhibit minor body
movements. In total, 48 hours of IR-UWB and FMCW radar
data (equivalent to approximately 180,000 heartbeat cycles)
are collected along with the ground truth recordings. We divide
the data into 20-second segments, leading to a total of 8,640
data samples. We use 30% of the samples (only 2 female and
2 male subjects) to train the VED, then we test it upon the
remaining 70% samples.

We choose EEMD [26] as the baseline method for compari-
son, as it is a state-of-art method for signal decomposition, and
it appears to have arguably the best performance among other
existing methods. For data collected by IR-UWB and FMCW
radars, we respectively use the amplitude and phase of the
signal as input to EEMD. Apart from the waveform shape,
we consider another two features to describe the performance
of heartbeat waveform recovery: interbeat interval (IBI) and
heart rate (HR). To quantitatively evaluate the recovered
waveform quality, we adopt the following metrics:
• Cosine Similarity. Defined as the cosine between two

vectors, cosine similarity is employed to measure the
morphology similarity between the recovered heartbeat
waveform x(n) and ground truth waveform xgt(n). A
higher cosine similarity between the two waveforms
indicates a better recovery performance.

• Relative Error. Defined as the ratio between the absolute
error and the ground truth value, relative error is applied
to measure how much (in percentage) an estimated quan-
tity deviates from its ground truth value. A lower relative
error indicates a better recovery performance.

B. Overall Performance Results

We first present two examples of heartbeat waveform re-
covery by IR-UWB and FMCW radars in Fig. 10a and 10b,
respectively, where the raw RF signal, VED recovered wave-
form, ground truth waveform, and baseline recovered wave-
form are illustrated from top to bottom. It is evident that
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Fig. 10: Examples of heartbeat waveform recovery from two different devices.

VED captures not only the accurate HR and IBI, but also
the exact shape of the heartbeat waveform, whereas the
baseline generally fails to provide meaningful waveform with
correct details. Moreover, the performance of VED waveform
recovery appears to be rather independent of the underlying
hardware, indicating VED’s cross-technology ability.

We further report the qualitative evaluation results obtained
by applying the metrics defined earlier. In Fig. 11a and
Fig. 11c, it can be seen that VED achieves a median cosine
similarity higher than 0.9 and 0.92 respectively for IR-UWB
and FMCW radars, while the same quantity of the baseline
method is always below 0.85. For heart rate estimations, VED
achieves median errors less than 2.4% for both IR-UWB and
FMCW radars, while the baseline method has median errors
around 5% and maximum errors reaching up to 20%. For IBI
estimations, VED achieves median errors less than 3.6%, as
opposed to those of the baseline method getting beyond 6.9%
(even worse for FMCW radar). Although the performance of
the baseline method can be acceptable for certain applications,
VED consistently outperforms the baseline in all metrics and
is hence suitable for more advanced and broad application
scenarios demanding high-accuracy heartbeat waveform. In
summary, all these results have evidently demonstrated the su-
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Fig. 11: Comparing the performance of IR-UWB (a), (b) and
FMCW (c), (d) with the baseline.

perior performance of VED in recovering heartbeat waveform
from the interference of respiration.

C. Impact of Practical Factors

In the following, we study the impact of different practical
factors. Because all features can be inferred from waveform,
we most focus on evaluating the cosine similarity that mea-
sures the overall performance of waveform recovery.

1) Human Subject: The performance of VED for all 12
subjects (with the first 4 involved in training) are presented
in Fig. 12, showing a median higher than 0.9 for 10 subjects,
and that for the rest still higher than 0.88. These results have
confirmed that the performance of VED is virtually insensitive
to the discrepancies among the human subjects, and is effective
across all subjects who are not involved in training.
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Fig. 12: Impact of different subjects.

2) Latent Space Dimension: As the latent space is a key to
VED’s generalization ability, its dimension directly affects the
performance of VED. A small number of the dimension can
degrade the performance due to the limited capacity of a latent
representation, but a large number can render VED harder to
converge in training. Consequently, this dimension should be
set to strike a balance between capacity and training efficiency.
We train the VED with different latent dimensions and report
the results in Fig. 13. According to the results, the performance
improves with the dimension increasing from 16 to 64 and then
starts to decrease gradually thereafter. Therefore, we choose
64 as the latent dimension in our implementation.

3) Weight γ of the Loss Function: The weight γ for the
regularization loss in Eqn. (11) is a crucial parameter to be
tuned for VED: increasing γ stresses on the latent space
regularization, thus improving robustness; but doing so also
sacrifices the accuracy of reconstruction. To determine the op-
timal weight to balancing the reconstruction and regularization
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Fig. 13: Impact of the latent
space dimension.
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Fig. 14: Impact of the weight
γ in the loss function.

losses, we evaluate the impact of different weight values. As
shown in Fig. 14, increasing γ from 0.01 to 0.2 has positive
effect on the cosine similarity, but the effect becomes negative
afterward. Therefore we choose γ = 0.2, which works best in
practice, for our implementation.

4) Impact of Distance: In real-life scenarios, the distance
between a radar and subject often affects the sensing perfor-
mance. To evaluate the distance impact, we let our subjects
vary their distance from 1 m to 3 m and collect measurements
accordingly. The results shown in Fig. 15 clearly indicate that
distance has a negative effect on performance, because the
reflected signal becomes weaker when the distance increases.
However, even at the farthest distance of 3 m, VED achieves
a median cosine similarity of 0.82, high enough for most
applications, thus firmly proving the effectiveness of VED.
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5) Impact of Subject Orientation: Apart from distance, the
subject orientation could also critically impact the sensing
ability. Therefore, we change the position of the radar so that
its normal and that of the subject (sitting at 1m distance) from
three different angles: 0◦, 30◦, 60◦. Given the results reported
in Fig. 16, one may readily observe that the medians of
cosine similarity at all three angles are above 0.91, indicating
a successful heartbeat waveform recovery at all orientations.
However, it might be a bit counter-intuitive that the recov-
ery performance becomes better as the angle increases. We
conjecture that this phenomenon can be attributed to the
decreasing signal strength (chest motion) caused by respiration
and relatively intact signal strength (neck artery micro-motion)
incited by heartbeat: basically, heartbeat is less interfered with
by breath when sensing at a larger angle.

6) Impact of Minor Body Movements: By far, we have
conducted our evaluations under the condition that subjects all
sit statically. However, minor body movements may be present
in real-life settings, for example, subjects may shake their
legs under natural states. Existing proposals simply suspend
heartbeat monitoring (e.g., [10]), or rely on the same methods
discussed in Sec. II-C to remove the interference caused

by body movements, which inevitably fail to recover fine-
grained heartbeat waveform. Since VED can remove non-
linear interference by design, we believe that VED can also
be robust to minor body movements.

In order to verify this point, we try to recover heartbeat
waveforms when subjects’ bodies exhibit minor movements,
such as swaying limb slowly (SW), playing phone (PP), and
shaking leg (SL). We report the results obtained at 1m distance
in Fig. 17; these results indicate that SW has the least impact
on heartbeat waveform recovery, yielding a median cosine
similarity, IBI error, and HR error respectively of 0.89, 2.4%,
and 1.3%, while PP and SL degrade the recovery performance
slightly more due to their larger strength and randomness.
Overall, all median cosine similarities are above 0.85, and all
relative errors are under 15%, proving the robustness of VED
to minor body movements.
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Fig. 17: Impact of minor body movements.

V. CONCLUSION

In this paper, we have demystified and firmly addressed the
question stated in the title: whether contact-free RF sensing
can capture fine-grained heartbeat waveform sensing? We
have first studied the principle of heartbeat sensing and an-
alyzed the inadequacy of existing proposals. We have then
revealed the true challenge as the heartbeat signal being mixed
nonlinearly with respiration and thus overwhelmed by the
latter. To solve this problem, we have proposed a deep learning
model VED; it leverages both an encoder-decoder network
and variational inference to perform nonlinear decomposition
and robust waveform recovery. Our extensive evaluations have
clearly demonstrated the promising potential of employing
VED in fine-grained heartbeat monitoring under practical
scenarios. Meanwhile, there are still a few extensions that we
plan to implement in the future. On one hand, we would like
to cooperate with medical institutions to further evaluate the
performance of VED with real clinical datasets. On the other
hand, we are on the way to develop multi-subject heartbeat
monitoring leveraging the spatial diversity of multi-antenna
and even multi-radar systems.
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