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Abstract—Recent years, point-of-sale (POS) terminals are no
longer limited to wired connections, with many relying on Wi-Fi
for data transmission. Although Wi-Fi offers the convenience of
wireless connectivity, it introduces significant security vulnerabili-
ties. This work presents a non-intrusive method for eavesdropping
POS passwords via Wi-Fi sensing, named BeamThief. Instead
of conventional Wi-Fi Channel State Information (CSI) readings,
our approach employs Wi-Fi Beamforming Feedback Information
(BFI) for an eavesdropping attack. Compared to CSI, which can
only be extracted through intruding into the Access Point (AP)
or from a limited selection of commercial Wi-Fi cards (e.g., Intel-
5300), BFI readings can be more readily obtained from a broad
array of commercial Wi-Fi devices. A key technological contribu-
tion of BeamThief is the development of an analysis model for
predicting finger motion trajectories. This model is based on the
physical relationship between BFI readings and finger motion, thus
eliminating the need for extensive labeled training data. Further-
more, we employ Maximum Ratio Combining (MRC) to enhance
the BFI series, ensuring performance across various scenarios. We
implement BeamThief using everyday commercial Wi-Fi devices
and conduct a series of experiments to assess the impact of this at-
tack. Experimental results demonstrate that BeamThief achieves
an accuracy rate 79% in inferring 6-digit POS passwords within
the top-100 attempts.
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I. INTRODUCTION

OS terminals are digital devices employed to process card

payments in banks, retail stores, museums, metro stations,
pharmacies and restaurants. According to the Nilson Report [1]
released in October 2022, the global supply of POS terminals
reached 136 million units in 2021. Due to their popularity,
various eavesdropping attacks aim to steal users’ bank card
passwords through POS machines. Traditional attack methods
rely on pre-installed malicious software that can access the
readings of motion sensors to obtain password information [2],
[31, [4]. However, these types of attacks are difficult to carry out
and can be easily defended against by anti-malware software.

Current research aims to develop non-invasive side-channel
eavesdropping attacks that are more covert. Previous studies
have focused on side-channel attacks using acoustics [5], [6],
[71, [81, [9], [10], [11], [12], video recordings [13], and radio
frequency (RF) [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23]. However, most of the above methods rely on impractical
assumptions, which limit their deployment in real-world scenar-
ios. For instance, acoustics-based eavesdropping is limited by
the physical properties of sound signal, and can only be exe-
cuted in environments with weak interference and within close
proximity (no more than 90 cm) to the target for launching an
attack. Vision-based attacks requires unobstructed line-of-sight
(LOS), making it challenging to deploy flexibly. Additionally,
the ambient brightness significantly impacts the success rate of
vision-based attacks. Attacks based on electromagnetic radiation
(EMR) are only effective against touchscreen smartphones and
are difficult to migrate to POS terminals with physical buttons.
Methods based on Wi-Fi Channel State Information (CSI) con-
tain fine-grained information about keystrokes. However, one
critical issue hindering the wide application of CSI-based attacks
is that CSI can only be extracted from few commodity Wi-Fi
cards through driver hacking.

In this paper, we propose utilizing Beamforming Feedback
Information (BFI), which is compliant with the latest IEEE
802.11ac protocol [24], as a side-channel for eavesdropping
and decrypting passwords entered via the keyboard of a POS
terminal. As illustrated in Fig. 1, to enable Multi-User Multiple
Input Multiple Output (MU-MIMO), the transmitting antenna
must adjust the phase and amplitude of the signal to focus it at
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Transmit data: xU*

Precoding: sPL = xPLyPL

Transmit signal: IS

POS Terminal

Fig. 1. Scenario of BeamThief: Keystroke actions can have an impact on the
downlink channel, and POS terminal transmits channel information back to the
AP through BFI. The transmission of clear-text BFI provides an opportunity for
eavesdropping.

the receiver’s end, thereby enhancing the signal’s transmission
performance. Consequently, the Access Point (AP) requires
knowledge of the downlink (AP to POS terminal) channel state
information, which is encapsulated and compressed into BFI
by the POS terminal and transmitted back to the AP via the
uplink (POS terminal to AP). During this process, the typing
activity of a victim can alter the channel state, thereby enabling
eavesdropping through BFI, akin to CSI. There are two obvious
advantages of leveraging BFI for eavesdropping attack.

e BFlis transmitted unencrypted, facilitating easier intercep-
tion.

e BFI adheres to the IEEE 802.11 ac standard [24], allowing
for extraction from all new-generation Wi-Fi devices that
support MU-MIMO, without the need for intrusion or
specialized hardware. This enables the easy execution of
eavesdropping attacks using readily available commercial
devices.

Though promising, translating this idea into a practical system
entails multiple challenges. First of all, subcarrier diversity
is attributed to frequency-selective fading, a well-known phe-
nomenon in wireless communications. Due to variations in path
loss, fading, and interference, different subcarriers experience
distinct channel conditions, leading some subcarriers to pri-
marily capture keystroke actions while others predominantly
capture noise. How to judiciously select and optimize the sub-
carriers to achieve optimal perception of keystroke actions in
the BFI series becomes a challenge. To address this challenge,
we employ Maximum Ratio Combining (MRC) to maximize
the Signal-to-Noise Ratio (SNR) of the BFI series. Collec-
tively, to effectively combine these subcarriers, MRC applies
complex-weighted averaging based on fading coefficients for
each received subcarrier, assigning higher weights to subcar-
riers with favorable channel conditions and lower weights to
those with poorer channel conditions. This emphasis on stronger
components and suppression of weaker components contributes
to SNR maximization. By leveraging MRC, we optimize the BFI
series, ensuring it captures crucial information while minimizing
the impact of noise and fading effects.

The second challenge lies in establishing the correlation be-
tween the captured BFI series and keystrokes. A straightfor-
ward approach involves training a model to correlate different
keys with their respective BFI series waveforms. Sufficient data

collection for model training allows for inputting a BFI series
to determine the most likely key. Indeed, this method has been
utilized in most existing inference attacks based on acoustics and
radio signals [16], [17], [25]. However, acquiring a sufficiently
large dataset is challenging due to variations in typing behavior
among individuals. In real-world scenarios, obtaining an ade-
quate number of training samples from a target victim to mitigate
overfitting is difficult. To circumvent the impact of insufficient
data on attack deployment, our aim is to develop a model that
describes the physical relationship between BFI and keystrokes.
Although existing method [26] have been able to establish the
connection between CSI readings and their respective actions,
BFI, as compressed information of CSI, cannot directly apply
to existing CSI-based sensing models and algorithms. For ease
of analysis, we divide the continuous BFI series of entering
an entire 6-digit PINs into several segments, each associated
with a key. By studying the transmission principles of BFI, we
first derive a closed expression between the BFI series values
and the distance of finger swipes. To refine this expression
to directly reflect specific keystrokes, we further estimate the
speed and direction of finger movement required when typing a
pair of keys. Combining these parameters, we establish a model
for the trajectory of finger movements during password entry,
demonstrating the distance of finger movement in horizontal
and vertical directions on the screen for entering a pair of
keys. After such projection and transformation, we establish a
clear relationship between the BFI series and finger movements.
Meanwhile, we note that different key pairs may share identical
finger motion trajectories. To alleviate inference ambiguity, we
propose exploring the interdependencies between consecutive
key pairs to narrow down the possible number of keystrokes.
We model the entire PIN entry process as a Hidden Markov
Model (HMM), treating the recovered finger motion trajectories
as observations and the precise key pairs as hidden states. Finally,
the HMM outputs a list of PINs, ranked based on their likelihood
of being the target PIN.

The main contributions of this paper are highlighted as

follows.

e BeamThief’s analysis of BFI reveals its potential as a pow-
erful side-channel attack for eavesdropping on passwords
input through POS machine keypads (next we will refer to
it as POS machine passwords), outperforming alternative
techniques.

e BeamThief intelligently selects and optimizes subcarriers
using MRC to enhance the perceptual performance of
BFI, thereby increasing the success rate of eavesdropping
attacks.

® By quantitatively analyzing the channel variations caused
by finger keystroke movements, a functional relationship
between BFI series and finger movements is established.
This relationship enables the execution of keystroke infer-
ence tasks effectively without the need for training.

® We develop a prototype and demonstrated the severity of
the threat. It surpasses the state-of-the-art inference attacks
in terms of setup practicality, with far fewer deployment
constraints. In extensive evaluations, the average top-100
keystroke inference accuracy of BeamThief is 79% .
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II. RELATED WORK
A. Vision-Based Method

Attackers can employ computer vision techniques to record
and retrieve keystrokes secretly. Early vision-based keystroke
inference attacks relied on directly observing the contents dis-
played on the screen [27]. To enhance practicality, subsequent
research has explored side-channel visual cues involving the
analysis of physical appearance changes in the device, such
as shadows [28] and backside motions of tablets [29]. Recent
studies have further shown that even video capturing of eye
movements [13] or during video calls can leak keystrokes [30].
While these methods excel in achieving high accuracy in pass-
word theft, visual-based approaches pose considerable demands
in attack scenarios. Firstly, they necessitate specific devices
for gathering video information or unauthorized access to the
victim’s phone for data collection. Secondly, the attack can
only be initiated under Line of Sight (LOS) conditions. Lastly,
variations in lighting conditions can substantially impede the
effectiveness of such methods.

B. Sensor-Based Method

Most sensor-based methods involve supervised training to
establish the correlation between each keystroke and the corre-
sponding sensing signal. For instance, smartphones’ accelerom-
eters can capture keyboard vibrations for both physical [31] and
on-screen [32] keyboards, enabling keystroke inference. Addi-
tionally, smartwatches’ accelerometers or gyroscopes can track
hand movements during typing [33]. Some approaches, like col-
lecting acoustic emanations of keystrokes through Voice-over-1P
(VoIP) calls [34], require tricking the victim into installing
malware on the smartwatch. Others [35], [36] leverage Time
Difference of Arrival (TDoA) values for keystroke localization
but have drawbacks, necessitating multiple synchronized mi-
crophones, proximity to the target keyboard, and pre-infecting
the victim’s phone with malware for intercepted acoustic signal
transmission.

C. Acoustic-Based Method

The KeyListener [5] technique achieves keystroke inference
by leveraging sound signal attenuation for keystroke localiza-
tion. On the other hand, PatternListener [6] measures the relative
motion of fingertips using acoustic signals reflected from them to
infer pattern lines. Acoustic side-channel attacks are well-suited
for password theft. However, current methods utilizing acoustic
side-channels struggle to eliminate environmental influences,
greatly impacting their performance. Additionally, due to acous-
tic properties, attack devices need to be in close proximity to the
target, posing deployment challenges for attackers.

D. RF-Based Method

Recent research proves the effectiveness of RF signals for
keystroke inference. RF-based techniques offer three key ad-
vantages over other side-channel attacks: they are ubiquitous

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 2, FEBRUARY 2025

and invisible, non-intrusive, and do not require close proxim-
ity to the victim [14], [16], [17], [19], [25], [37], [38], [39],
[40], [41]. A recent study [17], [42] estimated finger move-
ment trajectories by analyzing electromagnetic leakage from
touchscreen interactions to infer passwords, but it may not be
easily applicable to POS machines. Additionally, Wi-Fi-based
keystroke inference has gained popularity in recent years. [14],
[16], [19], [43] capture environment changes caused by key
presses on keyboards through Channel State Information (CSI)
and use analysis to achieve keystroke inference. However, CSI
is hampered by its difficulty in collection and its applicability,
posing challenges to the deployment of attacks. Therefore, BFI,
which complies with the latest protocols and propagates in plain-
text, holds greater potential in password theft scenarios, enabling
more flexible handling of various situations. Additionally, many
current password theft techniques rely on neural networks, but
acquiring sufficient training data from real-world scenarios is
challenging, making it difficult to mitigate overfitting. Starting
from the principle of how human body movements affect BFI
transformations, BeamThief avoids the use of neural networks,
eliminating the need for a large number of training samples.

III. ATTACK SCENARIO AND PRELIMINARY

This section begins with an overview of the attack scenario
involving eavesdropping password. We then delve into the fun-
damental principles underlying BFI technology. Subsequently,
we conduct a comprehensive analysis of the feasibility of BFI as
a tool for executing eavesdropping attacks. Finally, we present
concrete evidence demonstrating how BFI can offer clear advan-
tages over traditional CSI methods when utilized in the context
of implementing various types of attacks.

A. Attack Scenario

In this section, we present a hack-free scenario for eavesdrop-
ping on POS machine passwords. The attacker can accomplish
this eavesdropping attack without any pre-deployed devices
or intrusion into any systems. Specifically, the existing POS
Terminals include several types, as shown in Fig. 1, including
integrated POS machines, network-enabled POS machines, POS
machines connected to computers, and POS machines connected
to mobile phones. Usually, all four types of POS Terminals have
Wi-Fi capability. Our scenario is applicable to these four types
of POS Terminals: POS Terminals are connected to nearby AP
via Wi-Fi. Typically, the distance between the Wi-Fi antennas
of POS terminal and POS machine’s keypad is no greater than
30 cm. Additionally, there exists some background network
programs (e.g. Square POS and Clover POS [44], [45]) to
facilitate the required traffic transmission for the experiment.
Notably, this assumption is not uncommon in practice, as 42 out
of 50 surveyed stores met this particular scenario. To execute
the attack, the perpetrator only requires a device with a NIC
and knowledge of the AP’s transmission channel. No special
positioning or additional equipment deployment is necessary.
When the victim enters their password while making a payment
through the POS machine, the attacker can successfully launch
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the attack by capturing the BFI transmitted from the POS termi-
nal to the AP. Two distinct scenarios enable the initiation of the
attack:

Visual Observation: In the first scenario, the attacker begins
the attack by visually observing the POS machine. Once the
victim starts entering key information on the POS machine,
the attacker captures the BFI transmitted by the nearby device,
facilitating the inference of the key entries.

Wi-Fi Data Packet Analysis: The second scenario involves
the attacker leveraging a Wi-Fi data packet analyzer [46].
Upon detecting wireless signals transmitted during typing ac-
tivities on the POS machine, the attacker utilizes the inter-
cepted BFI to initiate the attack. We only consider the keyboard
layout that POS machines with a compact numerical keypad
layout, featuring palm-sized keys with the numbers ‘1°, ‘2’,
and ‘3’ situated at the top. For the purpose of our analysis,
we assume that the victim’s key entry actions solely involve
pressing the keys without any additional body or limb move-
ments. We will introduce this method in more detail in the
Section V-D.

Additionally, we account for two key entry modes adopted by
the victims:

Flat Surface Typing: Victims perform key entry using a single
hand while the POS machine remains stationary on a flat surface.

Handheld Typing: Victims hold the POS machine with one
hand while using the other hand for key entry.

B. The Principle of BFI

Beamforming Feedback Information (BFI) enables MU-
MIMO (Multi-User Multiple-Input Multiple-Output) commu-
nication in the 802.11ac/ax standard. With the BFI feedback,
the AP has the capability to adjust the complex weight of the
transmitted signal at each antenna, augmenting the reception
of signals at the nodes. As stipulated in [47], the AP initiates
the process by dispatching Null Data Packets (NDP) to all
POS terminals participating in the transmission. As part of
the standard receiver operations, each POS terminal calculates
the channel estimate using the long training symbols in the
High Throughput Long Training Fields (HT-LTFs). HT-LTFs are
modulated - as the data fields - through orthogonal frequency-
division multiplexing (OFDM) by dividing the signal bandwidth
into T partially overlapping and orthogonal sub-channels spaced
by 1/T. The input bits are grouped into OFDM symbols, x =
[_f )2, .., Tk 2-1], Where each element xg is one OFDM
sample. These K OFDM samples are digitally modulated and
transmitted through the K OFDM sub-channels in a parallel
fashion. For each K-th sub-channel, POS terminal receives a
CSI matrix Hj, € CM*N where M is the number of receiving
antennas at the POS terminal and N is the number of trans-
mitting antennas at the AP. Upon receiving Hj, POS terminal
compresses it instead of directly feeding it back to AP. POS
terminal first performs a Singular Value Decomposition (SVD)
on H;, as follows:

H; = U,S, Vi, (1)

byl
by el

CSI'matrix (H): N XM U matrix: N X N byyeltn
S matrix: N X M

v matrix: M x M
First Ny columns

Diagonal matrix &
eidus Phase subtraction,

BFI matrix (71): M x N,
e/ by @i-du)
o byyeUPa-twn)

<t

Viy, = X

Byzel @it

Fig. 2. The process of compressing CSI into BFI at the STA.

where U, € CM*M and V;, € CV*N are unitary matrices,
Si € CM*N s a diagonal matrix of singular, and V1 is the
Hermitian (complex conjugate transpose) of V.

Subsequently, as shown in Fig. 2, the POS terminal will com-
press the V, matrix, specifically, it will perform the following
operations:

e Step 1: POS terminal will extract the first N, singular
vectors from the V, to get a new matrix Vy, v , where
Ny is the number of spatial streams which is no more than
min(N, M).

e Step 2: The matrix Vj, n, necessitates pre-processing
to ensure that all elements are transformed into non-
negative real numbers, thereby satisfying the requirements
of Givens rotation [48].

e Step 3: Deriving a diagonal matrix

Dj, = diag(l;_1, /%, ... elPa-0i 1) )

from V. n, to obtain V.

e Step 4: Since the last element in Dy, is 1, this results in no
alteration to the last column of V. compared to Vi, v,
after the step 3. Hence, performing phase subtraction op-
eration: subtracting the ¢, ; from ¢; ;, where the ¢; ; is
the j-th row and i-th column in V/_ N> and the ¢y ; is the
phase of the last element in j-th row.

e Step 5: The resultant matrix V. (BFI) obtained after phase
subtraction can be viewed as a compression of the matrix
V. And there is a relationship between V7 and Vi, as

V;c,NS — diag(ejd)Ml,ej(sz. L eJPMNs )Vk (3)

e Step 6: POS terminal utilizes Givens rotations operation
to reducing the number of bits required for beamforming
feedback and thereby enhancing transmission efficiency.

The resulting BFI can be expressed as:

v, = A0 en-as0), @)
o

where o is the scaling factor for the amplitude of BFI relative to
CSI, and A¢ represents the phase shift between BFI and CSI.
Thus, the BFI after Givens rotation is transmitted back to the
AP via the uplink. Since the BFI also contains channel state, it
can be utilized for sensing similar to CSI. However, due to the
absence of phase subtraction details, the AP can only reconstruct
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the V x matrix but not the CSI, traditional sensing models and
algorithms based on CSI cannot be directly applied to BFIL
The good news is that in communications, BFI merely needs
to provide the antenna weights for beamforming. This means
that to reduce high transmission overhead, BFI is transmitted
unencrypted [24], making it susceptible to eavesdropping by any
third party in the environment. In contrast, existing CSI-based
sensing methods require intrusion or specialized hardware, mak-
ing BFI-based approaches undoubtedly more flexible in attack
scenarios.

C. The Feasibility of BFI Attacks

To investigate the feasibility of eavesdropping attacks using
BFI, we conduct a series of experiments. The same subject
performed the following keystrokes: “123”, “134”, and “121”
twice, and the results are shown in Fig. 3. Firstly, we observe
that the BFI corresponding to the two occurrences of “121”
exhibited similar waveforms. However, due to differences in
keystroke speeds, there are distinct transitions between “1-2”
and “2-1”. Additionally, we notice that the first ‘1’ and the second
‘1’ in “121” also display waveform similarities. However, due to
differences in keystroke habits, the direct typing of ‘1’ and typing
2’ followed by ‘1’ causes variations. Similar examples are
observed with the ‘3’ in “123” and “134”, where the two ‘3’ keys
show similar BFI series waveforms, but slight differences arose
due to the variations in keystroke habits during the transitions.
The similarities observed in Fig. 3 support the feasibility of
keystroke inference using BFI.

IV. DESIGN

A. Overview

Shown as Fig. 6, BeamThief is designed for conduct-
ing eavesdropping attacks on individuals using POS pay-
ments by implementing keystroke inference. To achieve this,
BeamThief leverages MRC for dynamic subcarrier recognition
and selects an optimal subset for efficient combination, thereby
enhancing the BFI series. Then, the BFI series representing
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Fig. 4. The BFI time series: (a) The BFI series on different subcarriers.
(b) BFI series on subcarriers and after MRC.

the complete PIN code is segmented into five key pairs using
threshold segmentation. BeamThief analyzes BFI and finger
tapping trajectories to obtain parameters of movement direction
and speed, estimating possible key pairs. Finally, by modeling
the key pair sequence using HMM, the highest probability PIN
code is obtained.

B. Signal Preprocessing

1) BFI Series Enhancement: In our hypothetical attack sce-
nario, where there is a distance of approximately one meter
between the device and the POS machine, the perceptibility of
keystroke actions by BFI may be slightly diminished. This issue
is further exacerbated when there are additional interferences
present. To enhance the perceptual performance of BFI under
these circumstances, we propose the BFI series enhancement
utilizing subcarrier diversity.

Subcarrier diversity is a well-known technique employed
in wireless communication systems to mitigate the effects of
frequency-selective fading. In this technique, the data intended
for transmission is subdivided into multiple subcarriers, each
experiencing unique fading conditions due to their distinct fre-
quencies. By combining the received signals from these diverse
subcarriers at the receiver, the overall signal quality and reli-
ability can be significantly improved. Fig. 4(a) illustrates an
example of keystrokes, where certain subcarriers capture the
primary keystroke actions while others predominantly observe
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noise. Furthermore, due to the complex nature of multipath
propagation, the selection of the most sensitive subcarriers may
vary randomly over time. Consequently, it becomes crucial
to dynamically identify the optimal subset of subcarriers and
effectively combine them to maximize the SNR.

Given that contemporary wireless devices and access points
commonly employ multi-antenna systems, we utilize MRC to
perform a weighted summation of the multiple subcarriers.
Since the noise terms on different subcarriers are statistically
independent, we can maximize the SNR by MRC as: ¢(7) =
> per w(f)Y(f, ), where w(f) denotes the normalized weight
for combining subcarrier f (3 _ s p w(f) = 1), and F is the set of
all subcarriers. Here we use the maximum combining principle
and set the weight coefficients as the conjugate of the channel
estimation values at each receiving antenna. Specifically, for
each receiving antenna f, the weight coefficient w(f) can be
calculated as:

w(f) = conj(f)] Y conj(hi). ©)

el

It should be noted that certain commonly used intuitive criteria,
such as average or variance of amplitude, cannot be considered
as optimal weights for MRC. This is because subcarriers with
higher average or amplitude deviation may not necessarily pro-
vide better capture of the sensing signal. As shown in Fig. 4(b),
this method optimizes the received signal-to-noise ratio (SNR),
allowing the BFI to better perceive keystroke actions.

2) Key Pair Segmentation: In this section, we employ a
thresholding method to extract the peaks of the BFI series
to achieve key pair segmentation. Specifically, we discretize
the entire BFI series values to construct a histogram, where
the number of bins equals the square root of the number of
BFI points. Subsequently, we utilize the Otsu [49] method to
calculate the between-class variance for all possible thresholds
and select the threshold that maximizes this variance to divide
the histogram into two parts (peaks and non-peaks). Finally, this
threshold is used to segment the peaks within the BFI series. It
is important to note that since our goal is to segment out key
pairs, each segmentation must span two peaks.

C. Keystroke Inference

1) Trajectory Analysis: In an M x N transceiver system,
wireless channel propagation is described as ¥ = H x X +
notse, where X represents the transmitted signal, Y the received
signal, and H the Channel State Information (CSI) matrix. And
the signal between a pair of transmitter and receiver antennas
in the communication system is divided into static components
hs(f) and dynamic components hq4( f,t) along its propagation
path. As shown in Fig. 5, the CSI is composed of these two
components combined:

h(f,t) = hs(f) + ha(f,t) = hs(f) + Age 214D/ (6)

where A, denotes the signal amplitude attenuation, and d(t)
represents the length of the dynamic path. Alternatively the CSI
in an ideal environment can be represented through amplitude

() o

Static object

Fig. 5. CSI can be decomposed into static and dynamic components.

a(f,t) and phase ¥(f,t): h(f,t) = a(f,t)e?* V. In a real-
world scenario, due to phase offset Ay ( f, t) affecting a pair of
transmitting and receiving antennas, the channel state needs to
be adjusted to

W(f, 1) = a(f,t)ed UDTAGTD), -

As two antennas at the AP share the same phase offset, the
(mq,m2) element in H'H can be written as:

N
{fﬂﬂ} =3 g Ay & ez Ynim) - (8)
n=1

mi,mo

where (my,ma) =1,2,...,M and (my,ms) are the antenna
index at the AP while n is the antenna index at the POS
terminal. On the other hand, from Section III-B through SVD,
we understand that

H'H = vsiufusvf = vsfsvt. 9)

Consequently, the (mq,m2) element in H'H can be written as:

N
{HTH} mi,ma - ZUib"n,nbmz,7L€J(¢m2'n7¢m1’n)v (10)

n=1

where by, ,, and ¢,, , are the amplitude and phase of (m,n)
element in V, o, is the (n, n) element in the diagonal matrix S.
Upon solving (8) and (10) simultaneously, we obtain

('ébn,mg *"/’n,ml ) .
(1)

Subsequently, our analysis will focus on the same receiving
antenna, denoted as m = m; = ma. (11) can then be expressed

ej((bm,g,n*(ﬁ'ml ,n)

2 _ J
O'nbml,nbmg,n = Qn,m;n,mo€

as: o.b%, = a2 .. Then we can derive the amplitude in V:
Qn,m
bm,n = . (12)
On

As V is a unitary matrix, we have

M
> bk, =1.
m—1

By combining (13) with (12), we can further deduce the (n, n)
element of S:

13)

(14)

M
2 _ 2
o, = E Ay -

m=1
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Fig. 6. Overview of BeamThief.

When we focus on the different receiving antennas, the phase in
V can be derived as:

¢7n1,n - ¢m2,n = 7/}71,,m,2 - "/)n,ml .

In Section I1I, it’s mentioned that in order to reduce communi-
cation overhead, the POS terminal needs to efficiently compress
the V to minimize feedback volume. Therefore, by employing
phase adjustment, we obtain V.In summary, the (m, n) element
in V can be expressed as

5)

~ . a .
{V} _ bm’ne]((ﬁrn,n_(bM,n) — 2 i (Yn M —Pn,m) (16)
m,n On

Next, we can characterize the finger keystroke displacement d(t)
using the amplitude of the BFI:

- 2 Amn
ol =53

where the A, ,, can be derived as:

Am,n = |hsn,m,|2 + AZ

a7

n,m

2w fd(t)

|
’ ’ Cc

+ A1l)n,m> . (18)

Similarly, the equation of d(t) and phase of the BFI can be shown
as follow:

2[9] = tuns = ¥nm = Pusr = Pam,  (19)

i

where

Ag

Prm = Ll — — sin(= Enm),

An,m

(20)

While the closed-form relationship between finger movement
displacement and BFI has been established, the minute ampli-
tudes are highly susceptible to noise interference, compounded
by uncertain phase offsets. Consequently, relying solely on
either amplitude or phase for reconstructing keystroke tra-
jectories presents significant challenges. Therefore, we pro-
pose self-dividing the BFI to mitigate the aforementioned

Fig. 7. Trajectory analysis.
interferences:
Y Anmy o J (Yn,M—Yn,m,)
Vn,ml __ _On € ] !
\ T Animy 5 (Yn, M —Pn,my)
Vom, e 2
2mfd() YL A
I T o
- 2mfd(t) )
thm2_%fL%nmeJt—if—)+Anﬂw

Henceforth, we can utilize BFI to characterize finger keystroke
movement displacement as:

(22)

After obtaining keystroke displacement d(¢) from BFI, it
needs to be decomposed into three-dimensional coordinates for
subsequent estimation. We will introduce the decomposition
steps in conjunction with Fig. 7. Taking the 1-5 key pair as
an example, assuming the finger keystroke trajectory equation
is z = f(x,y), where

x(t) = vt cos(0),
y(t) = vtsin(6),

(23)
(24)

with v representing the finger movement speed and 0 the di-
rection of movement, these parameters will be obtained in
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Fig. 8.  Estimation of 6.

Section IV-C2. Then, z(t) can be approximated by a high-
dimensional polynomial:

n
z(t) = Z a;t’,
=0

where the coefficients c; can be determined by solving a system
of linear equations. For the trajectory equation z = f(z,y), d(t)
is the trajectory length of the curve:

o= [y(5) (%) (5) o

Simply by solving (23), (24), (25), and (26) simultaneously, we
can obtain the coordinates of the finger endpoint (,v) when
z=0.

2) Parameter Estimation: In Section IV-C1, we establish the
relationship between trajectory of typing a key pair and BFI,
setting the initial key pair position at the origin and obtaining
the endpoint key position (, v). Next, we need to address two
remaining unknown parameters. Among them, the directional
angle 6, as shown in Fig. 8, can be derived from the obtained
endpoint key position as follows:

(25)

|(z,y) — (X, v)|
Zé‘e(—) |(x,y) - (X’U)|’

where ¢ € [0,1] represents the confidence level, and © =
{01, ...,0;} represents the set of possible directions of finger
movement for entering a key pair. By solving § = arg maxycg ¢,
we can determine the directional angle. For estimating typing
speed, we can simply refer to existing work [50], using a constant
speed to represent the typing speed for all individuals. However,
this approach sacrifices a certain degree of accuracy. Another
idea is to determine it based on some prior knowledge. From
our observations, many POS machine password entries require
confirmation twice, which undoubtedly provides us with an op-
portunity to estimate typing speed. For two identical passwords,
we only need to apply the approximate speed of the first entry
to predict the second entry.

3) Key Pair Estimation: After obtaining the two parameters
of directional angle and typing speed, it becomes relatively
easy to determine the relative positional relationship between
key pairs. However, this relative position can have multiple
possibilities, as illustrated in Fig. 8, such as ‘1-5°, ‘5-1°, ‘4-8’,
‘8-4’, and so on. Although the asymmetry of the POS machine
keyboard can reduce some interference (such as the difference
between ‘1-6’ and ‘1-8), the positional ambiguity between key

(=1-

27)

pairs remains significant. Therefore, we suggest modeling the
transition between key pairs as a Hidden Markov Model (HMM).

4) Hidden Markov Model: After conducting the aforemen-
tioned analysis, we can anticipate potential key pairs by analyz-
ing the displacement distances in both the x and y directions re-
sulting from finger taps. Despite the inherent layout imbalances
of the keys on the POS terminal, which aid in eliminating certain
key pair possibilities, there remains a multitude of potential
combinations that meet the established criteria, consequently
resulting in keystroke inference errors. To mitigate such in-
accuracies, we propose a method for modeling the interplay
between consecutive key pairs. By establishing the relationship
where the end key of the previous pair matches the start key
of the next pair, we can significantly narrow down the potential
combinations. Specifically, if a key pair has a displacement of 2
units in the x-direction and 1 unit in the y-direction, and the next
key pair also has a displacement of 2 units in the x-direction and
1 unit in the y-direction, then the possible combinations for this
key pair sequence are reduced to only three: ‘1-6-1°, ‘1-6-7°,
and ‘4-9-4°, significantly reducing the number of candidates
and thereby lowering the error rate. Expanding this approach
to encompass a sequence of five key pairs for a 6-digit PIN code
yields even more accurate predictions. Hence, we advocate for
the utilization of Hidden Markov Models to effectively capture
and model the sequential dependencies inherent in key pair
sequences.

After the above analysis, BeamThief can predict the possible
key pairs that satisfy by obtaining the displacement distances in
the x and y directions when fingers tap. Although the keys on
the POS terminal exhibit imbalance in terms of layout, which
helps eliminate certain key pairs, there are still multiple possible
key pairs that meet the criteria, leading to errors in keystroke
inference. To reduce such errors, we consider modeling the
interdependence of consecutive key pairs. Specifically, if a key
pair has a displacement of 2 units in the x-direction and 1 unit in
the y-direction, and the next key pair also has a displacement of
2 units in the x-direction and 1 unit in the y-direction, then the
possible combinations for this key pair sequence are reduced to
only three: ‘1-6-17, ‘1-6-7°, and ‘4-9-4’, significantly reducing
the number of candidates and thereby lowering the error rate.
Extending this approach to a sequence of five key pairs for a
6-digit PIN code can lead to even better predictions. Therefore,
we propose using Hidden Markov Model to model the sequences
of interdependent key pairs.

BeamThief models the keystroke process as a HMM with
features represented by v = (N, M, p, S, O), where N = 100
is the number of hidden states, representing the number of
key pairs. M = 3 x 4 (the number of x-direction displacement
values x the number of y-direction displacement values) is
the number of observation values. g is the initial state prob-
ability vector, representing the probability distribution of the
system starting in each possible hidden state. Due to the equal
probability of each key position, BeamThief adopts a uniform
probability distribution here. S € CV*¥ is the state transition
probability matrix, representing the probability of the system
transitioning from one hidden state to another, which can be
generated based on the relationships between key pairs. For
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(a) Hardware implementation.

(b) An experimental scenario in
empty room.

Fig. 9. Implementation of BeamThief.

example, the transition probability from key pair ‘1-6’ to ‘6-
X" is 0.1. O € CV*M g the observation probability matrix,
representing the probability distribution of generating obser-
vation values in each hidden state, which can be obtained
by evaluating the probability of generating certain observation
values given a specific key pair. The goal of BeamThief is to
find the optimal hidden sequence Y = {y1, y2, y3, Y4, Y5} given
the sequence of key pairs X = {x1, x2, 23,24, 25} to achieve
max(P(Y|X,~)). This optimization problem can be solved
using the Forward-Backward Algorithm [51].

V. IMPLEMENTATION AND EVALUATION
A. Implementation

We develop the BeamThief system on a MacBook Pro com-
puter. By leveraging the built-in sniffer of MacBook in monitor
mode, we can capture the Action No ACK frames on specific
Wi-Fi channels (in our experiment the channel is set to 6,
which is 2437MHz). To extract the BFI, we utilize Wiresharkb
software [52] to analyze the captured packets. Specifically, we
focus on the “Compressed_Beamforming_Report” field within
these frames, which contains the essential BFI data. The experi-
mental hardware involves a ASUS Mars 15 laptop and a MPOS
machine [53] as the POS terminal, using iPerf [54] to generate
consistent traffic. The access point is the Asus RT-AX82U router.
Please refer to Fig. 9(a) for the visual representation of all the
hardware. In the MRC algorithm, we set the window size to 9
and the polynomial order to 8.

B. Methodology

1) Experiment Setup: The experimental setup for this study
involves recruiting 10 subjects, including 6 males and 4 females,
aged between 20 and 30 years. The volunteers are asked to
enter passwords on a POS machine’s numeric keypad. Each
subject is required to enter 100 passwords, which are selected
from a pool of 10,000 randomly generated 6-digit passwords. In
addition, subjects also need to individually input each numerical
key (0-9) 100 times according to their habits to provide data
for single keystroke identification evaluation. We consider two
typing patterns that conform to the majority of the subject’s
password entry behavior. Pattern 1 is placing the POS machine
on a table for single-handed typing, while Pattern 2 involves
holding the POS machine with one hand and using the other
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Fig. 10. Benchmark study of MRC.

hand for typing. Subjects are required to complete the above two
types of collection in both patterns. The subjects are instructed
to complete their typing within 4 to 10 seconds. Each BFI
segment is extracted for a duration of 10 seconds. We conduct
the experiments in empty rooms (ER), shopping malls (SM), and
grocery stores (GS). In addition to collecting BFI series, we also
simultaneously obtain CSI from USRP X310 devices and AP
as the comparative baselines for WINK [16] and WiPOS [19].
The distance between the Wi-Fi antenna of POS terminal and
the subject ranges from 0 to 2 meters, and between the AP
and the Wi-Fi antenna of POS terminal ranges from 1 to 10
meters. Fig. 9(b) shows an experimental scenario. During the
data collection process, all volunteers were informed about the
purpose and application of the experimental data. To ensure
confidentiality and anonymity, we recorded only volunteer iden-
tification numbers. The data collection process strictly adhered
to the standard procedures required by our Institutional Review
Board (IRB).

2) Metrics: To evaluate the performance of BeamThief, we
define several metrics as follows.

F1-Score. The F1-Score is a metric that combines precision
and recall to evaluate the performance of single keystroke identi-
fication. The F1-scoreis defined as F'1 — score,, = 2 X };’;ig: s
where P, = m} /(m] + m) represents the precision of identi-
fyingkey kand Rj, = m{ /ny, represents the recall of identifying
key k. m;{ is the number of keystrokes correctly identified as key
k, m¥ is the number of keystrokes mistakenly identified as key
k but are actually other keys, and n, represents the total number
of keystrokes for key k.

Top-n Word Accuracy. Given n inferred word candidates, the
top-n word accuracy is defined as a metric to evaluate the overall
performance of keystroke inference. Assuming that there are
k texts during input, the top-n word accuracy is calculated as
A™ = i/k , where i represents the number of inferences where
the top-n word candidates contain the ground truth.

C. Overall Performance

1) Series Enhancement.: Our study applies MRC techniques
to enhance the BFI series, aiming to evaluate its effectiveness
using SNR as the evaluation metric. Fig. 10(a) visually presents
the optimal parameters we carefully selected while adjusting
the window size. our experimental setup, where we examine
the enhanced capability of MRC across three distinct scenarios.
Moreover, Fig. 10 illustrates the selection of the polynomial
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Fig. 11.  Evaluation of series enhancement.
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Fig. 13. Confusion matrix for single keystroke identification accuracy of

BeamThief and WiPOS.

order parameter after determining a window size of 9. Next,
we present the performance of MRC in Fig. 11. Across three
different scenarios, MRC demonstrates an average improvement
of 4.8 dB in SNR. Furthermore, regarding single keystroke
identification accuracy, MRC achieves a notable enhancement
of 8.1%. Fig. 9(b) shows an experimental scenario.

2) Performance of Single Keystroke Identification: We eval-
uate the correctness of the relationship between the BFI series
and finger movements by comparing the Root Mean Squared
Error (RMSE) between theoretical and actual values. As shown
in Fig. 12, we plot the relationship between the sliding distance
d(t) and the RMSE. It can be observed that the theoretical and
actual values consistently maintain a high correlation, thereby
demonstrating the correctness of the model representing the
relationship between the BFI series and finger movements.
Furthermore, we validate this correctness by evaluating the
performance of single-key recognition and comparing it with the
WiPOS system (since WINK is a sequence recognizer and does
not provide individual key recognition capability). Fig. 13 gives

BeamThief BElWiPOS|

2 3 45 6 7 8 9
Numerical key

Fig. 14.  Comparison for F1-Score of single keystroke identification.
~80 BsamThief:WlNK CIWiPOS|
12345678 910205080100
Number of candidate passwords
Fig. 15.  Comparison for top-N word accuracy.
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(b) Distance between Wi-Fi an-
tenna of POS terminal and AP.

(a) Distance between Wi-Fi an-
tenna of POS terminal and victim.

Fig. 16.  Impact of distance.

the confusion matrices for BeamThief and WiPOS. Regarding
classification accuracy, BeamThief exhibits a rate of 82.7%.
Comparatively, WiPOS 80.6%. Then we provide the Fl-score
comparison with WiPOS in Fig. 14, with BeamThief maintain-
ing at 82.6% while WiPOS maintains around 80.7%. For this
phenomenon, we offer an explanation based on our experimen-
tal setup, suggesting that deploying the USRP X310 antenna
for capturing CSI is farther compared to deploying the Wi-Fi
antenna of POS terminal. Consequently, BeamThief exhibits
better perceptual performance, which aligns with a realistic
scenario assumption.

3) Performance of Keystroke Inference: We proceed to eval-
uate the overall performance of BeamThief. For each keystroke
inference, BeamThief selects the top-n candidates based on all
potential passwords. As shown in Fig. 15, BeamThief’s accu-
racy falls below 65% in the top-10 candidates, whereas WINK
and WiPOS achieve only 46% and 32% accuracy under the
same conditions, respectively. Furthermore, when considering
the top-100 attempts, BeamThief achieves an accuracy of 79%,
surpassing the accuracies of WINK (69%) and WiPOS (53% ).

4) Impact of Distance: Due to the nature of BFI information
propagation, the distance between the Wi-Fi antenna of POS
terminal and the victim, as well as the distance between the
Wi-Fi antenna of POS terminal and the AP, can both have an
impact on the performance of BeamThief. Fig. 16 illustrates the
top-1 to top-10 accuracy of BeamThief at different distances.
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Based on Fig. 16(a), it can be observed that the performance of
BeamThief decreases as the distance between the victim and the
device increases. Particularly, when the distance reaches 1.5m,
the top-10 accuracy drops from 62% to 33% , indicating that
BFTI’s ability to perceive keystrokes diminishes as the distance
increases, with a sharp decline occurring at the 150 cm mark.
However, at a distance of 100 cm, BeamThief maintains a
top-100 accuracy of 79%, demonstrating its competence in
most password theft scenarios. Additionally, Fig. 16(b) depicts
the influence of the distance between the device and the AP
on BeamThief’s performance, showing that as the distance
increases, the top-10 accuracy of BeamThief decreases by
approximately 15% . This is because a greater distance between
the device and the AP results in weaker Wi-Fi signals and
increased interference. Finally, we will investigate the impact
of attack distance on performance. BeamThief initiates attacks
by sniffing Wi-Fi packets in the environment, so the theoretical
effective attack range is between 20 and 50 meters. Therefore,
we conduct experiments in an open outdoor area (SNR = 24),
with a fixed AP and POS terminal, at attack distances ranging
from 10 to 50 meters in 5-meter increments. As shown in Fig. 21,
BeamThief’s effective attack range is approximately 20 meters.

5) Impact of Environments: In order to investigate the ro-
bustness of BeamThief in different environmental settings,
we conducted further tests in three distinct scenarios. Empty
rooms can be considered as an ideal environment with minimal
interference. On the other hand, shopping malls and grocery
stores are more representative of real-life settings, character-
ized by the presence of moving objects in the surroundings.
The average SNRs at these three locations are 27 dB, 24 dB,
and 20 dB, respectively. Fig. 17 illustrates the performance
of BeamThief across three scenarios, showcasing its optimal
performance in an empty room, while experiencing varying
degrees of degradation in a shopping mall and grocery store. This
demonstrates how environmental factors affect BeamThief’s
keystroke inference performance by influencing the channel. In
contrast, WINK and WiPOS exhibit more pronounced instability
in shopping mall and grocery store scenarios, with average accu-
racies decreasing by 21% and 32% , respectively. The reason for
this phenomenon can be attributed to the information provided in
Section V-C4, which explains that the distance between moving
objects and Wi-Fi antennas of POS terminals is typically greater
than 150 cm. BeamThief’s performance benefits from distance,
as it is less affected by such interferences compared to the other
two methods.

6) Impact of Input Manner: In our experiment, subjects are
instructed to enter passwords according to the methods provided
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in the experimental setup. Therefore, we evaluate the impact of
input manner on BeamThief from three dimensions based on
the experimental setup. These dimensions include the impact
of different subjects, typing speed, typing patterns, and typing
fingers. Fig. 18 presents the impact of different volunteers on
performance, where we provide the top-100 accuracy for ten
volunteers under three methods. It can be observed that all three
methods exhibit robustness across different subjects. WINK and
WiPOS benefit from their neural network’s generalization capa-
bility, while BeamThief maintains robustness across different
subjects due to its well-described finger movement modeling
and parameter estimation. Fig. 19 explains the effect of different
typing speeds, we provide the comparison accuracy of top-100.
We categorize cases where a six-digit password is typed within 5
seconds as fast speed, within 5-7 seconds as middle speed, and
above 7 seconds as slow speed. Clearly, due to the predicted
keystroke speed parameters in advance, BeamThief demon-
strates well stability. In contrast, WINK and WiPOS expe-
rience decreased accuracy by 19% and 27% respectively, as
they struggle to cope with faster keystroke speeds. Finally,
Fig. 20 illustrates the top-n performance of BeamThief under
two typing modes. BeamThief performs better under Pattern
1 (POS machine placed on the desktop) compared to Pattern 2
(POS machine held in one hand), as placing the POS machine
on the desktop provides more stable keystroke actions for the
victims. Finally, we investigate the impact of using different
fingers for keystrokes on performance. As shown in Fig. 22,
there is little difference in performance between using the middle
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finger and the index finger for keystrokes, so switching to the
middle finger does not have a significant effect. However, since
the keystroke motion of the thumb differs noticeably from that
of the index finger, it results in different changes in channel
state. Consequently, this leads to an approximate 8% decrease
in accuracy.

D. Determine the Time to Attack

In addition to visual observation by attackers, the attack can
also be executed through the identification of specific packets.
During the experiments, a particular store initiates transactions
by directing the device to connect to a designated IP address
server for interaction with the payment service provider or
bank, typically lasting for a certain period (usually around one
week). As illustrated in Fig. 23(a), the appearance of the IP
address “10, 68, xx, xx” indicates imminent payment initiation,
allowing us to prepare for the attack. Moreover, in real-world
scenarios, the victims may engage in additional actions such as
card swiping and button confirmation. To address this situation,
BeamThief merely needs to identify a consecutive sequence
of six waveforms within a specific time interval to infer the
corresponding password keystrokes shown as Fig. 23(b).

VI. DISCUSSION
A. Limitation

The results in Section V-C4 indicate that when the attack
distance exceeds 150 centimeters, the PIN recovery rate of the
top-10 candidates drops to 33%. If successful remote execution
of the attack could be achieved, the threat could become even
more severe. The primary reason for the limited distance here
is the attenuation of Wi-Fi signal strength. As part of our future
work, we plan to construct a more robust prototype equipped
with dedicated components capable of extracting useful signals
from noise and weak BFI measurements, thus extending the
attack distance. Additionally, while BeamThief does not require
a large amount of training data, estimating keystroke finger
sliding speed, as mentioned in Section II, requires the victim
to input the password at least twice, posing a challenge to the
attack. We suggest conducting some prior data collection before
the attack to refine the speed estimation. Finally, it only applies
when the victim keeps the mobile device relatively stable. To
partially address this issue, conducting prior analysis on the
victim or employing relevant motion models for targeted attacks
may be helpful.

B. Defending Strategies

The most direct defense strategy is to consciously disrupt typ-
ing habits. As described in Section V-C6, altering keystroke pos-
ture, changing finger gliding time, or introducing slight pauses
between keystrokes can effectively interfere with BeamThief’s
estimation of finger gliding speed, thereby thwarting its attack.

Furthermore, users can undermine BeamThief’s directional
estimation by moving their fingers to other positions after each
keystroke before sliding to the next key. In this scenario, attack-
ers would find it challenging to accurately obtain individual key
pairs, leading to significant errors when attempting to guess the
entire password.

Another approach involves using randomized POS terminal
keyboards. If different POS terminals have unique, randomized
keyboard layouts, attackers would struggle to map observed
finger movements to specific keys without prior knowledge of
the layout.

While these methods can effectively prevent password infer-
ence, they all reduce user convenience to some extent. Whether
requiring users to change typing habits or search for keys on a
disorganized keyboard, these approaches may lead to frequent
input errors. Preventing such third-party attacks at the protocol
level could offer a balanced solution between user convenience
and privacy protection. The method outlined in [55] blocks Wi-Fi
eavesdropping attacks by encrypting source-defined channels. In
our future work, we plan to inject fake BFI into the channel to
confuse attackers and defeat eavesdropping attempts. This ap-
proach aims to enhance system security without compromising
the normal user experience.

C. Potential Risks

The ability to obtain passwords input through POS machine
keypads can have significant and concerning implications. One
of the primary risks is the potential for illegal transactions.
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Attackers who gain access to these passwords can use them to
perform unauthorized purchases, leading to financial losses for
both individuals and businesses. Moreover, this stolen informa-
tion can be sold on the dark web, further perpetuating criminal
activities.

Another critical risk is identity theft. By capturing passwords
and other sensitive information entered into POS systems, at-
tackers can potentially gain access to additional personal data
linked to the user’s financial accounts. This can lead to a range
of fraudulent activities, from opening new credit accounts in the
victim’s name to draining existing accounts. The consequences
of such breaches extend beyond immediate financial loss, often
causing long-term damage to the victims’ credit scores and
financial stability.

Additionally, the compromise of POS machine passwords can
undermine consumer trust in the security of electronic transact-
ions. If customers believe that their financial information is
at risk when using POS machines, they may be reluctant to
use these systems, affecting businesses that rely on electronic
payments.

D. The Advantages and Disadvantages of Training-Based
Versus Non-Training-Based Methods

In the conference version of this paper, we employ a training-
based approach to accomplish keystroke inference tasks. How-
ever, in this version, we have switched to a non-training-based
approach. Experimental results indicate that the training-based
method exhibits superior robustness and accuracy across dif-
ferent environments, subjects, and typing patterns. Conversely,
the non-training-based method sacrifices some robustness and
accuracy in exchange for a more relaxed attack scenario, where
the arduous task of data collection is avoided, allowing for
attacks to be conducted without a large dataset of targets.

VII. CONCLUSION

In this paper, we present a novel BFI-based side-channel
attack design and evaluation that leverages Wi-Fi signals to
infer passwords entered by victims on POS machines. Analysis
and experimentation demonstrate that BFI possesses superior
potential as a eavesdropping side-channel compared to CSI.
Consequently, BeamThief requires lower device requirements,
allowing attacks to be conducted using conventional laptop com-
puters without the need for intrusion or pre-deployment of addi-
tional equipment. We theoretically analyze how BeamThief’s
observation of password entry actions affects channel states
and map them to BFI, establishing a mathematical model. By
applying this model, BeamThief can infer keystrokes without
requiring training, thus avoiding the extensive prior data col-
lection needed by previous training-based methods. Extensive
real-world experiments with a prototype of BeamThief have
substantiated its effectiveness in password theft.
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