Rising from Pieces: Effective Inference at the
Edge via Robust Split ML

Yuxuan Weng, Tianyue Zheng™, Member, IEEE, Zhe Chen, Member, IEEE, Menglan Hu, Member, IEEE,
Jun Luo, Fellow, IEEE

Abstract—The increasing processing demands of today’s mobile deep learning applications impose stringent requirements on edge
devices. Offloading these tasks to the cloud, while being a potential solution, often results in significant data transfer overhead, as well
as privacy and connectivity concerns. To address these challenges, split machine learning (split ML) has emerged as an innovative
paradigm, enabling task distribution among edge devices themselves. However, split ML systems inherently exhibit instability due to
the hardware and communication limitations of mobile devices, which frequently result in failures and malfunctions of client nodes. In
light of these challenges, we present Axolotl, a fault-tolerant edge split ML inference system for addressing node failure with minimal
performance impact. Specifically, we first design a novel curriculum dropout mechanism to enhance the model’s resilience by gradually
exposing it to potential server node failures. We then design inverse-proximal weight consolidation to mitigate catastrophic forgetting
caused by curriculum dropout. To further tackle potential node failures, we innovate in a resource-aware substitution module that
offload the functions of a failed node to neighboring ones, ensuring efficient information flow. Extensive experiments demonstrate the
effectiveness and robustness of Axolotl in various deep learning networks and tasks in edge environments.

Index Terms—Split ML, mobile edge computing, robust inference.

1 INTRODUCTION

The explosive growth of mobile machine learning (ML)
applications [1], [2], [3], including speech recognition [4],
[5], [6], face identification [7], [8], question answering [9],
[10], and content generation [11], [12], has created a fun-
damental tension between computational demands and the
inherent limitations of edge devices. Traditional approaches
to address this challenge have fallen short. While hardware
manufacturers strive to enhance computational power, this
strategy faces diminishing returns as Moore’s law reaches
its physical limits [13], resulting in prohibitive costs and
practical constraints. Alternatively, deploying compressed
ML models on resource-constrained devices often involves
performance degradation, potentially leading to subopti-
mal user experiences [14], [15], [16], [17]. Cloud comput-
ing [18], [19] has emerged as a prominent solution, with
industry leaders like Apple’s CloudKit [20] and Google’s
Firebase [21] offering computational offloading services.
However, this approach introduces its challenges: signifi-
cant communication overhead, privacy vulnerabilities, and
dependence on stable network connectivity. These limita-
tions raise an intriguing possibility: rather than relying on
distant cloud servers, could we leverage the computational
resources of nearby personal edge devices to distribute and

o Y. Weng and T. Zheng are with the Department of Computer Science and
Engineering, Southern University of Science and Technology, China.
E-mail: {wengyx, zhengty}@sustech.edu.cn

o 7. Chen is with the School of Computer Science, Fudan University, China.
E-mail: zhechen@fudan.edu.cn

e M. Hu is with the School of Electronic Information and Communica-
tions, Huazhong University of Science and Technology, China. E-mail:
humenglan@hust.edu.cn

e] Luo is with the College of Computing and Data Science, Nanyang
Technological University, Singapore. E-mail: junluo@ntu.edu.sg

o = Corresponding author: Tianyue Zheng.

process these complex ML tasks more efficiently?

To address this challenge, the field of collaborative learn-
ing [22], [23], [24], [25] provides paradigms for distributing
large-scale models across multiple devices. Among these,
split ML [26], [27], [28], particularly its multi-split vari-
ant [29], [30], has emerged as a promising approach for
distributed inference. Specifically, this collaborative learning
approach enables the strategic partitioning of large-scale
models across multiple devices, effectively harnessing their
collective computational resources. Specifically, connected
nodes create an execution chain where each node processes
its assigned layers and forwards the intermediate data to the
next node, enabling real-time utilization of complex models
without being constrained by the computational limitations
of any single device. While related to other collaborative
paradigms like federated learning (FL), the distinction is
crucial. FL typically involves a parallel architecture where
clients train on local data and aggregate model updates to
address the distributed training problem. In contrast, split
ML employs a sequential, model-partitioning architecture
to tackle the distinct challenge of distributed inference. This
innovative architecture has already demonstrated its versa-
tility across numerous real-world applications, from virtual
assistants [27] and autonomous driving systems [31], [32]
to object detection algorithms [33], [34], [35] and immersive
augmented reality [36], [37].

Nevertheless, the chain-like nature of split ML infer-
ence means that a single node failure can halt the entire
process, posing a unique and critical reliability challenge
compared to FL. To mitigate the inherent drawbacks of split
ML, several strategies have been proposed. For example,
reducing the number of nodes can simplify the topology
of the execution chain, thereby decreasing the likelihood of
node malfunctions. Alternatively, preparing parallel backup

Edge devices

Split DNN

~
Pt Y

Fig. 1: The basic idea of Axolotl.

nodes can safeguard against potential node failures. How-
ever, the aforementioned solutions impose implicit require-
ments on the execution process. The former increases the
computational burden on each node, necessitating substan-
tial computational capabilities in edge devices, while the
latter complicates the network topology of the system and
escalates the overall system’s hardware requirements, re-
ducing the benefits of split ML.

To enable collaborative inference across mobile edge
devices, we aim to develop a universal split ML system
that overcomes these limitations without imposing addi-
tional hardware requirements or complicating the network
topology. To achieve this objective, we must address several
key challenges. First, we need to design a system where
remaining nodes can dynamically assume the functions of
missing nodes, adapting seamlessly to their absence. This
capability is not inherent in traditional machine learning
models. Second, we must mitigate the risk of catastrophic
forgetting during the adaptation process, which can occur
due to the loss of parameters in certain sections, potentially
resulting in excessively large gradients during parameter
updates and destabilizing the learning process. Finally, we
need to resolve data flow mismatches that can occur when
node malfunctions block the forward propagation of the
execution chain, which prevents the model from producing
effective outputs.

In this work, we introduce Axolotl, a robust split ML
inference system specifically designed for edge comput-
ing, aimed at overcoming challenges posed by node mal-
functions, compromised performance, and reliability issues,
as briefly illustrated in Figure 1. Axolotl is designed to
adapt to node malfunctions during model training and
provide remedial measures during inference in the presence
of such malfunctions. Specifically, Axolotl incorporates a
curriculum dropout mechanism that exposes the model to a
range of malfunctions from mild to severe during training,
gradually building resilience and fault tolerance. We also
integrate an inverse-proximal weight consolidation (IPWC)
regularization to prevent catastrophic forgetting induced by
dropout, with lighter regularization near dropout regions to
encourage functionality sharing among neighboring nodes.
Following a node malfunction, Axolotl’s resource-aware
substitution module evaluates the computational capabil-
ities of successor nodes and decides whether to allocate
a minimal substantial model or a data reshaping layer to
replace the failed node. The primary contributions of this
paper are as follows:

e To the best of our knowledge, Axolotl is the first
system to enable robust collaborative inference using
a split ML (model-partitioning) architecture, directly
addressing the critical challenge of node failures in such

collaborative settings.

o We propose a novel curriculum dropout mechanism
that allows the collaborative inference pipeline to adapt
dynamically to the absence of nodes, ensuring end-to-
end resilience and fault tolerance for the entire collabo-
rative system.

o We develop IPWC to mitigate catastrophic forgetting
induced by dropout and to encourage the sharing of
functionalities among neighbor nodes.

o We have developed a resource-aware substitute model
that safeguards data size and information flow by
adapting to the resources of successor nodes during
forward propagation, even amidst node malfunctions.

o We demonstrate the effectiveness and robustness of our
approach by evaluating the Axolotl pipeline perfor-
mance on various deep learning networks and tasks in
edge environments.

The remainder of this paper is structured as follows.
§ 2 discusses the motivation behind Axolotl’s design. § 3
delves into the system design of Axolotl, elaborating on
the curriculum dropout mechanism, IPWC regularization,
and resource-aware substitution module. § 4 introduces the
datasets, system implementation, and experimental setup,
followed by a presentation of the evaluation results in
§ 5, showcasing the effectiveness of Axolotl. Finally, § 7
concludes the paper by encapsulating the key insights,
implications, and potential future directions for research.

2 BACKGROUND AND MOTIVATIONS

In this section, we explore the challenges of deployed split
ML system during inference to motivate Axolotl’s design.

2.1 Recent Works in Collaborative Learning

A large body of work on collaborative edge inference
focuses on optimizing performance metrics such as la-
tency, energy consumption, and communication overhead.
For example, [22] addresses memory limitations and load
balancing on IoT devices through model-parallelism tech-
niques and heuristic-based static pipeline generation. [23]
provides a comprehensive survey of end-edge-cloud col-
laboration, covering techniques such as model partition-
ing, compression, and privacy preservation. [24] presents
a system for adaptive workload partitioning that reduces
energy consumption under latency constraints by adjusting
task distribution based on real-time device and network
conditions. [25] applies multi-stage design space exploration
with a genetic algorithm to find static CNN partitions that
balance energy, memory, and throughput. However, these
frameworks generally assume reliable nodes and stable net-
work conditions. This assumption is a major limitation for
split ML, whose sequential pipeline structure is inherently
fragile, the failure of a single node can halt the entire
inference process. While initial efforts like SPINN [18] and
AgileNN [38] have addressed certain system disruptions,
a robust and generalizable solution for handling frequent
node malfunctions remains a critical obstacle to the practical
deployment of split ML in dynamic edge environments.

Q I S40
3\ I -Malfunctlon block(s) 0 5‘
250 2
5 Malfunction block(s) : 2| 5
51 3}
51
0 01 3456789 QO ogs® W g0 o
Categories sea® Y‘eq Qo™ Y&“ B

(a) Accuracy degradation. (b) Different dropout methods.

Fig. 2: Impact of node malfunction.

2.2 Node Malfunction in Edge Computing

In edge computing scenarios where large-scale models need
to be distributed across multiple resource-constrained edge
devices (e.g., smartphones, smartwatches, and edge servers)
for split ML, the stability of edge nodes is critical to the
reliability of edge applications. However, these nodes are
inherently unstable due to factors such as network reli-
ability and hardware limitations. Notably, up to 45% of
edge devices connected to wireless networks suffer from
connection stability issues [39], a problem exacerbated by
the high mobility of these devices. Moreover, hardware and
software limitations contribute significantly to the instability
of edge nodes. For instance, a substantial percentage of these
devices deplete their batteries in less than 80 hours [40], after
which they will go offline; devices such as smartphones and
smartwatches experience forced shutdowns when temper-
atures exceed safe thresholds [41], [42]. Additionally, the
geographical distribution of these devices [43], their lack
of safety mechanisms [44], and the complexities involved
in managing them [45] further exacerbate the instability of
edge nodes.

To illustrate the impact of node malfunction on edge in-
ference, we conduct preliminary experiments on the CIFAR-
10 dataset. We train a ResNet comprising five blocks and
evaluate its accuracy across 10 classes under normal condi-
tions. Subsequently, we set two nodes to a malfunctioning
state and evaluate the model’s accuracy under these con-
ditions. It is important to note that to ensure the model’s
operability post-node malfunction, we standardize (i.e., ad-
justing the output of each node to the same size) the input
and output shapes of all blocks. As Figure 2a illustrates,
following node malfunction, the model’s accuracy in each
category drops from around 81% to around 23%, degrading
to a weak classifier just slightly better than random guess-
ing.

Exposing the model to node malfunctions during train-
ing, such as the dropout technique [46], [47], might offer a
viable solution. However, the methodology of node dropout
significantly affects the model’s performance. We conduct
preliminary experiments with various dropout approaches,
including sequential, reverse, random walk, and random
selection, alongside a non-dropout baseline for comparison.
As illustrated in Figure 2b, while all dropout methods
outperform the non-dropout baseline, the specific dropout
strategy (characterized by node selection order and ran-
domness) exhibits substantial performance variations. These
findings calls for a more robust design rather than a random
dropout.

[y . 50 Experiment 1
' Sk P

g 0.10 .96' & . Bllorékl @ Experiment 2 |
] 0.05 /7 e Block2| <40 Experiment 3
=} . L] > .
oY P /Vb. e Block 3 9 ——Baseline
£ 0.00 2 Blockd| 5 30
© Z e Block5| o
< _ - > o¢
o 7005 ,-.!5”7— E—— ey P
& g

—0.10

-0.1 0.0 0.1 0 10 20 30
PCA component 1 Epoch
(a) Model weight transitions. (b) Training instability.

Fig. 3: Catastrophic forgetting under block dropout.

2.3 Catastrophic Forgetting

In § 2.2, we discuss how exposing the model to various
node malfunction configurations during training can effec-
tively enhance its adaptability to the instability of edge
nodes. However, each node malfunction configuration leads
to significant structural changes in the model, essentially
representing a new task. Therefore, training the model to
adapt to different node malfunction configurations may
result in catastrophic forgetting [48], a well-known phe-
nomenon in deep learning where learning new tasks signif-
icantly degrades performance on previously learned tasks.
Consequently, after each update, the model may lose the
knowledge learned from previous node malfunction config-
urations. To intuitively illustrate the impact of catastrophic
forgetting, we conduct preliminary experiments using a
ResNet with 5 blocks on the CIFAR-10 dataset. Specifically,
we strategically introduce a malfunction in one block per
round, systematically recording the index of the malfunc-
tioning block alongside the corresponding model weights.
This process is repeated over 10 training rounds, during
which each of the 5 blocks is dropped once per round.
Consequently, we accumulate 50 recorded indices of mal-
functioning blocks, along with their model weights.

We show in Figure 3a the distribution of model weights.
The dimensionality of the model weight is reduced using
PCA. One may readily observe that even at different times
during training, models with the same configuration exhibit
similar weights. Occasionally, different models under the
same configuration converge to nearly identical weights,
indicating that the model barely maintains any knowledge
of former node malfunction scenarios. Figure 3b further
demonstrates the effects of catastrophic forgetting: we re-
peat the aforementioned training process 3 times, testing the
model’s accuracy under random node malfunctions at each
epoch, and include a normally trained baseline for compar-
ison. The results indicate that although the final accuracy
exceeds that of the baseline, catastrophic forgetting causes
the model to converge slowly and experience significant
instability.

Block2 Block3 Block 4

E] Eu

Block 1 Block S

Block 2

M L,
{4l
B X T v

Block 1 Block 3 Block4 Block 5

nel 2 Channel 3

Channel 1 Channel 2 Channel 3

=
e
-
-
-

r

i

(a) Image classification. (b) RF-based HAR.

Fig. 4: Representation mismatch.

B [T A S

Configuration 1

Cat

Real-time Robust inference

[Mzt]

Configuration 2 oo

Dropout intensity
) ,,C,Onﬁﬁfl,ra,ﬁ,o“ 3

level
Dropout consistency
level

Curriculum dropout mechanism

: Dropout block
I:I Normal block |

IPWC regularization

0p
o Searc 1ngﬁ 2299
b i
& Original ED Substcllttllte
block mode
. A Channel

Resource-aware substitute model

Fig. 5: Overall design of Axolotl.

2.4 Representation Mismatch

In addition to the challenges outlined in § 2.2 and § 2.3,
node malfunctions in neural networks present additional
issues related to the size and feature mismatches of rep-
resentations. Specifically, both feature maps and channel
numbers can vary at different stages within the network.
While techniques like up-sampling and down-sampling can
align these sizes, they often lead to the loss of essential
information or the introduction of unwanted artifacts. Be-
yond size mismatch, feature mismatch presents another
critical challenge. In deep learning processes, the earlier
layers focus on processing low-level features, while the later
layers deal with higher-level and more abstract features.
This distinct division makes it difficult to simply bypass
a malfunctioning node or directly transfer features to the
following nodes during inference.

To demonstrate the phenomenon of representation mis-
match, we present a comparative analysis of feature maps
generated by different blocks in two distinct tasks: image
classification and RF-based HAR. Figure 4a and Figure 4b
illustrate these outputs, respectively. For clarity, we have
selected the three most significant channels from each
block’s output. As we examine the progression from block 1
to block 5 in both tasks, there is a clear and consistent
dimensionality reduction in the feature maps. Moreover,
one may readily observe an evolution of the features: the
initial blocks capture low-level details, while the later blocks
exhibit more abstract features. This evolution is significant,
with noticeable differences even between adjacent blocks,
forbidding direct bypassing of malfunctioned blocks. This
observation underscores the urgent need for a carefully
designed module that can addresses the representation mis-
match issue and effectively replace malfunctioned nodes.

3 SYSTEM DESIGN

To effectively manage node malfunctions, we propose Ax-
olotl consisting of 3 components: i) a curriculum dropout
mechanism that adapts the model to various degrees of
node malfunctions, ii) an IPWC regularization to mitigate
catastrophic forgetting and promote functional redundancy
among adjacent nodes, and iii) a resource-aware substitu-
tion module that replaces functionalities of malfunctioned
nodes. Figure 5 illustrates the overall design of Axolotl.

3.1 Curriculum Dropout Mechanism

As explained in § 2.2, introducing node malfunctions during
training improves the model’s robustness. However, ran-
domly determining the severity of malfunctions may lead
to excessively large gradient updates, potentially causing
training divergence. Curriculum learning [49], [50] is an
effective paradigm in machine learning that can address
this challenge: it involves starting with simpler tasks and
incrementally increasing the complexity, ensuring a stable
training process. One key question of curriculum learning
is how to define the task difficulty. In the context of split
ML node malfunction, a task is considered less difficult if it
incorporates a smaller number of dropout blocks and a more
similar dropout configuration to the previous scenario, and
vice versa.

As such, we design a hierarchical curriculum dropout
strategy consisting of two levels: intensity and consistency,
as shown in Figure 6. In the implementation, the intensity
level functions as the outer loop of iteration, whereas the
consistency level operates as the inner loop. In the dropout
intensity level, we control the number of dropout blocks,
denoted as b, beginning with 1 and incrementing by 1 with
each iteration until the value reaches half the length of
the model. In the dropout consistency level, we gradually
increase the difference between the current dropout config-
uration and the previous one. Specifically, for outer loop b,
we initially sample a dropout region R = {r1,72,...,7}
uniformly from the set of all blocks 3, where r; is the block
index. In the c-th inner round, each element in R has a
probability of 1 — e~ 7 to be replaced with a randomly sam-
pled block, where 7 determines the rate this replacement
probability increases as the rounds progress. Block r; in R

Consistency level
%
£%% 8% i€P

Block +1

Dropout % £
blocks Intensity level

P |

Fig. 6: Hierarchical curriculum dropout strategy.

Each block
Kept
Replaced

1 2 3 Coe T

can be updated as:
r, = (1 — Ii)ri —|— IZ"I":», (1)

where r; ~ Uniform(B), I; is a replacement indicator
defined by I; ~ Bernoulli(1 — e~"¢). Note that ¢ starts
from 0, so in the first round, the initial R is used without
modification.

After establishing the dropout region using the afore-
mentioned strategy, the forward propagation process for an
input x through the model can be expressed as follows:

h; = f;(hi—1;0;)q; + fi(hi—1;0;)(1 — ¢;),)

where h; denotes the intermediate representation after the
i-th block, 6; and 0, represent the parameters of the original
i-th block and its substitute model, respectively (detailed
in Section 3.3). Additionally, ¢; is a binary indicator where 0
and 1 signify that the block is outside and inside the dropout
region, respectively. Following the computation of the loss
L, the model updates the parameters outside the dropout
region with gradient descent, while parameters within it
remain unchanged:

oL

9i<—91‘—77'£'%

®)

where 7 denotes the learning rate.

3.2
tion

Inverse-Proximal Weight Consolidation Regulariza-

When the model employs dropout strategies to adapt to
various node malfunctions, it experiences catastrophic for-
getting, as detailed in § 2.3. This occurs due to the partial
unavailability of the model, which forces the neighboring
blocks to assume the functions of the dropped-out block.
This functional offloading to neighboring blocks results
in significant gradient updates, thereby overwriting previ-
ously learned knowledge. However, in each dropout sce-
nario, a parameter solution space exists where the weights
remain within an acceptable range. Our goal is to identify
the intersection of all such solution spaces, enabling the
model to handle all instances of model unavailability. There-
fore, the parameter optimization in new dropout configura-
tions should ideally remain within or close to the previous
solution spaces.

To achieve this objective, it is necessary to ensure the sta-
bility of updates for important parameters in new dropout
configurations. The importance of parameters is determined
by the curvature surrounding the associated optima, which
indicates the model’s sensitivity to the optimal solutions
derived from previous dropout configurations. The greater
the curvature in a given direction, the more it indicates
the importance of a parameter and necessitates restrictions
during training on new configurations, as slight changes
are likely to significantly increase the loss. Although the
curvature around local minima on the loss surface can
be determined by the Hessian matrix, directly computing
it is computationally prohibitive in neural networks with
a large number of parameters. Therefore, as an effective
approximation of the Hessian, the Fisher information matrix

5

(FIM) F offers a feasible alternative for assessing parameter
significance:

F=E |VeLr(0)VeLlr(0)T

}) 4)
Op

where L1 denotes the loss function associated with the task,
and Op represents the parameters learned from the previous
dropout scenario.

Given F, we can constrain updates to critical param-
eters when the model encounters new dropout scenarios.
Therefore, the modified loss function £, incorporating a
regularization term, can be expressed as follows:

£(0) = Le(0) - 30— 00 FO - 0r). ()
where parameter A controls the amount of knowledge
retained from previous dropout instances. We know that
catastrophic forgetting occurs due to structural malfunction
in the model, forcing adjacent blocks to assume the func-
tionalities of missing blocks, leading to excessive gradient
updates. Given that we now effectively restrict the update
magnitudes of crucial parameters, this approach facilitates
the allocation of the dropped block’s functionalities among
adjacent blocks, thereby promoting functional redundancy
within the model. This redundancy can mitigate perfor-
mance degradation resulting from partial model damage
and should diminish as the distance from the affected
dropout block (i.e., the absolute difference in block indices)
increases. Consequently, A for each block is defined as
follows:

A(b) = Aolog(1 4 b), 6)

where b represents the distance from the current block to
the dropout block, and)¢ is a hyperparameter. If multiple
blocks are dropped, A is calculated by averaging the values
for each of the dropped blocks.

We conduct preliminary experiments to assess the ef-
ficacy of IPWC in preserving knowledge from previous
dropout scenarios. Our setup involve a simple model com-
prising 3 blocks, where each block is sequentially subjected
to dropout during training. We employ 3 distinct training
strategies: no regularization, EWC [51], and IPWC. During
the inference phase, we input a single image to get the
output of different activation layers under different dropout
scenarios. From Figure 7a, it is evident that the model with-
out IPWC demonstrates significantly different feature maps
after experiencing different dropout scenarios. In contrast,
the model with IPWC retains the core features learned from
previous scenarios. Figure 7b illustrates the feature maps
generated by both EWC and IPWC in the absence of block
2, after training with sequential dropout. Additionally, a
feature map generated by another model through a standard
process (i.e., without dropout and node malfunction) is also
shown as a baseline for comparison. The feature map from
the model trained with IPWC strategy is more similar to
the baseline, indicating that this model, by encouraging
functional redundancy across blocks, is better adapted to
handle block malfunctions. This is because, unlike conven-
tional regularization methods such as EWC [51], which
impose uniform constraints across all model parameters,

Drop block 1 —> Drop block 2 —> Drop block 3

TR S
zaw

(a) With and without IPWC.

Baseline

wIPWC w/o IPWC

(b) EWC vs. IPWC vs. baseline.

Fig. 7: Feature maps comparison.

IPWC adopts a spatially-aware, non-uniform regularization
strategy specifically designed for the distributed nature of
split ML.

The key innovation of IPWC lies in Equation (6), where
the regularization strength X is dynamically adjusted based
on each block’s distance from the failure point. This results
in relaxed constraints on adjacent blocks, explicitly encour-
aging them to absorb and replicate the functionalities of the
failed node. This mechanism not only mitigates catastrophic
forgetting but also promotes targeted functional redun-
dancy, which is typically absent in general-purpose regu-
larization techniques. Furthermore, because our curriculum
training varies the location of this failure point via dropout,
the process introduces a structured stochasticity. This, in
turn, allows different parts of the model to take larger, more
exploratory steps at different times, significantly enhancing
its ability to escape local optima compared to the rigid
constraints of uniform regularization methods.

3.3 Resource-Aware Substitute Model

As mentioned in Section 2.4, node malfunctions can lead
to dimensionality mismatch and feature mismatch during
the inference process. To mitigate these issues, we require a
dedicated module capable of correcting dimensionality mis-
matches and maximizing the preservation of feature infor-
mation. Furthermore, the limited remaining computational
capacity of neighboring nodes prevents simply offloading
the entire workload of the malfunctioned node. In response
to these challenges, we design a resource-aware substitute
model, as shown in Figure 8. Our proposed substitute model
offers a data interface with minimal computational over-
head. Furthermore, the model effectively leverages spare
capacity on neighboring nodes to improve its inference
performance. Instead of storing multiple models for varying
resource constraints, we utilize a single, full-sized, resource-
aware model trained with an elastic shrinking technique. This

-

'_, L]
‘ @ B} u 'Resource constralnt

Ealnls l' Inference
[
[
[

B |
@-:Q:O;
v66

RV A
1
Best performance y

RIY
T

Fig. 8: Design of resource-aware substitute model

- mm o =

6

technique allows us to prune less important parameters,
drastically reducing storage and complexity. Using CNN
as an example, we demonstrate how model size can be
adjusted dynamically by shrinking the kernel size and the
number of channels.

In the dimension of kernel size, directly trimming the
original kernel reduces the receptive field, which can still
lead to issues of representation mismatch. Consequently,
we design an adaptive dilated convolution that incorpo-
rates additional spaces within the kernel to maintain the
same receptive field as the original. In configuring the new
k' x k' dilated convolution kernel, the objective is to align
its functionality with that of the original k£ x k kernel. The
relationship between k' and k is givenby k = (k' —1)-r+1,
where r denotes the dilation rate, representing the insertion
of r — 1 holes between adjacent pixels in the dilated convo-
lution kernel. The receptive field of the dilated kernel Kp
is initially calculated and used as a mask on the maximal
kernel Ky to retain the parameters of the activated areas:

Kp(m,n) =Ku(m-=1)-r+1,(n—=1)-r+1), ()

where (m,n) denotes the pixel coordinates within the ker-
nels, and 7 is subject to being a positive integer. Since the
parameters for all kernel sizes are derived from the maximal
kernel and share identical receptive fields, we can prune
the kernel to fit the capacity of edge devices. In particular,
if the kernel size is set to 2 or 1, the parameters from the
four corners or the central element of the original kernel are
respectively utilized to compute the entire receptive field.

In the dimension of channel number, we propose a
group-based channel pruning method. On one hand, we
replace standard convolutions with group convolutions by
dividing Cj, input channels into g groups. Consequently,
both the kernel and the corresponding output channels
Cout are also divided into g groups, allowing for parallel
computation across all groups. This method signiﬁcantly
reduces the number of parameters from Ci, X Cour X k2
to g x o x S x k2 where k is the kernel size. On the
other hand, as illustrated in Figure 4, there is a certain
informational overlap among different channels within the
same intermediate layer. Consequently, we further sort the
channels within each group by their importance and discard
the last s channels to additionally reduce the parameter
count, where s is set based on the computational resources
available at the edge node. The significance of a channel is
determined by the L1 norm of its corresponding parameters
in the kernel; a higher L1 norm indicates greater importance,
and vice versa. Consequently, when input channels are
discarded, the corresponding layers in the kernel are also
removed. Note that the aforementioned operations do not
alter the number of output channels, thus allowing the direct
output to the subsequent block.

We train the substitute model at the location of the
dropout block described in Section 3.1 with only minimal
training overhead. Furthermore, we randomly adjust the
sizes of both dimensions during training to ensure consis-
tent performance across various scales of substitute models.
It is important to note that both the full-sized and the
pruned substitute models are significantly smaller than the
original model block (e.g., the smallest 1x1 convolution
kernel merely serves to change the feature size), thus not

impacting the necessity and significance of § 3.1 and § 3.2.
During the inference process, we calculate potential config-
urations for the substitute model based on the remaining
computational capacity of the successor node and select the
configuration that offers the best performance for imple-
mentation.

We only employ CNN architectures here as examples to
clearly introduce the design principles of a resource-aware
substitute model. However, these design concepts can be
extended to other model structures, such as RNNs and
transformers, provided that the design accounts for struc-
tural sparsification across various dimensions of the models.
Moreover, these design approaches require the capability to
dynamically adjust the size of the substitute model without
training multiple models. For RNNs, we can decompose
the original weight matrix into two smaller matrices us-
ing the Kronecker product [52], and reduce the number
of temporal connections by employing dilated recurrent
skip connections [53]. For transformers, by implementing a
sliding (dilated) window [54], the computational complexity
can be reduced. Additionally, multi-head pruning [55] can
be utilized to further decrease computational demands.

3.4 Deployment Management

During inference, each edge node follows a protocol to de-
tect and compensate for potential node malfunctions. First,
each node continuously broadcasts a UDP heartbeat signal,
confirming its operational status. Second, upon completing
its inference task, a node multi-casts its intermediate results
to all successor nodes. Critically, each node monitors the
heartbeat signals of both its predecessors and successors.
If a node detects a missing heartbeat from a predecessor
within a predefined interval, indicating a potential failure, it
dynamically configures and deploys the most appropriate
substitute model. This substitute model seamlessly inte-
grates into the inference pipeline, accepting the predeces-
sor’s intermediate data and continuing the computation.
Similarly, if a node does not receive a heartbeat signal from
any subsequent nodes, it proactively configures substitute
models for all downstream nodes in the inference path.
These substitute models serve as output interfaces, ensuring
the inference process completes even in the presence of
multiple failures.

4 |IMPLEMENTATIONS
4.1 Tasks and Datasets

Given that the application scenario of Axolotl is in edge
computing, we select several common tasks and corre-
sponding datasets. Firstly, CIFAR-100 [56] is employed for
the ubiquitous image classification task. This dataset con-
sists of 60,000 images of 100 categories. Secondly, for large-
scale image classification tasks, the ImageNet dataset [57]
is employed, which contains approximately 1.2 million
training images, 50,000 validation images, and 100,000 test
images across 1,000 categories. Thirdly, for the RF-based
human activity recognition (HAR) task, which is crucial
in smart home and healthcare tasks, we utilize the RF-
Net dataset [58]. This dataset utilizes the Wi-Fi modality
and comprises 12,000 samples across 6 activities. Lastly, for
anomaly detection tasks widely applied in smart cities, such

7

as traffic monitoring, the UCSD Peds1 subset of the UCSD
anomaly detection dataset [59] is employed. This dataset
includes 34 training video samples and 36 testing video
samples. In addition, to evaluate Axolotl across a broader
range of transformer-based and RNN-based architectures,
we introduce the following benchmarks. For transformer-
based LLMs, we use HellaSwag [60] for sentence comple-
tion, where the model selects the most plausible sentence
ending from four options; MMLU [61] for multitask ques-
tion answering, which spans 57 subjects from elementary
to expert level; and ARC-c [62] for science reasoning, which
requires answering challenging grade-school level questions
in a multiple-choice format. For RNN-based sequence mod-
els, we adopt LibriSpeech [63] for speech recognition, a
dataset derived from audiobooks that evaluates speech-to-
text accuracy, and IMDB [64] for sentiment analysis, a large
collection of movie reviews used for binary classification.

4.2 System Implementation

We employ two NVIDIA GeForce RTX 4090 GPUs for model
training. The software framework is based on Python 3.7,
PyTorch 2.1.0, and CUDA 12.1. At the inference stage, we
deploy the model on edge devices including Jetson Nano,
Android smartphones, iOS smartphones, and Raspberry Pi.
The available RAM percentages in Table 1 emulate realistic
device conditions, with smartphones having less available
memory due to concurrent apps. These values represent
the operational constraints for our system. To analyze the
memory footprint, we break it down into three components:
(1) the static memory for the assigned model block, (2) the
transient memory for intermediate feature data, and (3) the
negligible memory for system management logic. The dom-
inant component is the model block itself. Axolotl manages
this dominant component through a greedy allocation strat-
egy, ensuring the assigned block consumes no more than
2 of a device’s available RAM for a stable safety margin.
This guarantees a low local memory footprint. Globally,
this split design enables the execution of large models that
would otherwise be impossible to load. Furthermore, our
resource-aware substitute models significantly reduce this
memory footprint during node failures, a key advantage for
operating on memory-constrained devices. For each task,
we initially train a pre-trained model using conventional
methods, followed by enhancing the model’s robustness
in edge computing scenarios using the system proposed
in § 3. Notably, all training processes, including those for
the original and substitute models, occur on the server
side. Moreover, at the initial stage, the server configures the
appropriate substitute model based on the residual compu-
tational resources of the edge node, allowing for immediate
deployment upon the failure of a preceding node. Detailed
configuration is as follows:

TABLE 1: Edge devices deployed in experiments.

Edge device CPU/GPU processor RAM Available
Jetson Nano NVIDIA Maxwell GPU 4GB 30-55 %
Android smartphone Snapdragon 8 Gen2 CPU 8GB 15-35 %
iOS smartphone Apple A15 Bionic CPU 4GB 15-35 %

Raspberry Pi 3 Broadcom BCM2837 SoC CPU 1GB 20-50 %

e The memories of edge devices are capped to emulate
real-world scenarios, as shown in Table 1. The number
of nodes ranges from 6 to 10.

o We set the kernel size to 7, with a padding of 3 and
a stride of 1. For image and temporal data inputs, we
apply 2-d and 1-d convolutional kernels, respectively.

e We set 7 to 0.5 and Ao to 0.1. We also determine
the optimal substitute model configuration under the
computational constraints of the nodes.

o We set the initial learning rate at 0.01, and define the
convergence criterion as an accuracy improvement of
less than 1% over 5 consecutive iterations.

5 EVALUATION

In this section, we first elaborate on the experiment setup.
We then conduct an overall evaluation, followed by ablation
studies and a hyperparameter search for Axolotl.

5.1 Experiment Setup

To evaluate the effectiveness of Axolotl, we select three
different baselines for comparison. First, we assess the ro-
bustness of Axolotl against SPINN [18], a state-of-the-art
(SOTA) SL approach that also accounts for inference process
failures, such as communication disruptions. Furthermore,
we compare the performance of Axolotl with AgileNN [38],
another method that offloads at the feature level and pro-
vides outputs during connection interruptions. Note that
for fair comparison, AgileNN, originally designed for dual-
device deployment, has been tailored to yield AgileNN¥,
enabling computational offloading across multiple devices.
Finally, we compare the performance of Axolotl with a
voting strategy, where each submodel on a node operates
independently of failures in other nodes. It is important
to note that the selected baselines are chosen specifically
because they are the most relevant works that explicitly ad-
dress robustness or handle disruptions in collaborative/split
inference settings, making them appropriate benchmarks for
a fair and meaningful comparison.

o SPINN designs a robust early-exit scheme to ensure
reliable execution, even in scenarios of severe connec-
tivity disruption or cloud unavailability.

o AgileNN* employs explainable Al techniques to en-
force feature sparsity, offloading features and corre-
sponding computations to different devices. The sig-
nificance of the features gradually diminishes along the
path, resulting in a weighted output from each device.

« Voting strategy configures a submodel on each device
in the edge scenario, which is distilled from the original
model’s knowledge. The final output is determined by
a vote among all available nodes.

5.2 Overall Performance of Axolotl

For clarity, we only employ the CIFAR-100 dataset in the
image classification task discussed in this section. We first
explore the relationship between model performance and
model size in the presence of node failure risk. We employ
a 2-layer residual block as the basic block, with the size of
the model dependent on the number of concatenated basic
blocks. The proportion of node malfunction in the system

100 -Axolotl==+Conventional SL

80

60

]
1
]
i
I
]
\
\
\
}
!
/
.
Accuracy (%)

40 Image classification
HAR -
‘—Anomaly detection
20+, : p
2 3

Accuracy (%)

HAR
*Anomgly delecliop

2 3 4 5 6 4 5 6
Node number Node number
(@)p=0.2. (b) p=0.5.

Fig. 9: Axolotl accuracy under node malfunctions.

is denoted by p. In the experiments, once p is established,
the number of malfunctioning nodes is rounded to the
nearest integer. Figure 9 illustrates the trends in model
accuracy as the number of blocks increases, under both
the proposed Axolotl framework and a conventional SL
setup. Remarkably, irrespective of p = 0.2 or p = 0.5,
Axolotl consistently demonstrates improved performance
with increasing model size. In contrast, conventional SL
shows insufficient robustness: its performance can decline
when the number of blocks increases, with the decline
worsening as p increases. Our results validate that, given
resilience to node instability, larger models can indeed per-
form better (assuming no overfitting occurs) and Axolotl
is the first system capable of demonstrating this property.
Consequently, Axolotl opens up opportunities to implement
powerful models in edge computing scenarios, which are
previously restricted to cloud servers, thereby mitigating
communication overhead constraints.

We further evaluate how Axolotl’s performance vary
under different p. We configure a model consisting of 10
blocks distributes across 10 edge nodes and conduct exper-
iments within the range of p = 0.2 to p = 0.8, as shown in
Figure 10a. It is evident that when system remains relatively
stable at p = 0.2, Axolotl already demonstrates superior
performance compared to conventional SL. As p increases,
this performance gap widens, reaching a significant differ-
ence when p = 0.8. This observation indicates that conven-
tional SL is greatly affected by system instability, whereas
Axolotl exhibits considerable robustness to such impacts.
Subsequently, we evaluate the impact of malfunctions at
different node positions on model performance. Specifically,
we induce a malfunction in one node at a time and conduct
50 experiments per case, with the results depicted in box
plots. For clarity, we present only the model performance
on the image classification task, as shown in Figure 10b.
The results reveal that malfunctions in nodes at two sides of
the chain have the most significant impact on the model’s
performance. Despite varying malfunction scenarios, Ax-
olotl’s median accuracy remains consistent, demonstrating

ranbigng.

1 23 456 7 8 910
p Malfunctional node index

a) Different p. (lb) Different node index.
ig. 10: Impact of node malfunction factors.

100 -Axolotl= = Conventional SL————— 100

9

(=]

8

(=]

60 Image <:]z|ssiﬂcaﬂ0n~ ==

HAR S=sao

40 J*Anoma]y d;leclian =<I 60
0.2 0.4 0.6 0.8

70

Accuracy (%)
o0
(=]
T /
’ /
Accuracy (%)

100 100

§ 80 l%r %] i F 3 § 80
+ T

g 60 ‘g %i’ %T* : g 60 %1 %éT %] % =

5 T] 3 To I lTI T%i

£ 40 JSPINN Voting %E 2 40 JSPINN Voting %U
AgileNN'T—1Axolotl I AgileNNT—JAxolotl 1
02 04 06 08 02 04 06 08

p p

(a) Image classification (CIFAR100). (b) Image classification (ImageNet).

100 100 - —
s T %] . _ @L‘& %lr% T:% —
8 go| L %L %T % % g g0 |
> - = = >
13) 1 3}
o]
£ 60 &l £ 60 ' il
o ik 8
2 40 ISPINN Voting < 4o ISPINN Voting =
AgileNNT—IAxolotl AgileNN'T—JAxolotl
02 04 06 08 02 04 06 08
p p
(c) HAR. (d) Anomaly detection.

Fig. 11: Comparison with baseline methods.

5.3 Superiority of Axolotl
5.3.1 Classification Accuracy

We compare the performance of Axolotl with baselines
across four tasks mentioned in § 4.1 under varying p from
0.2 to 0.8. The results depicted in Figure 11 demonstrate that
Axolotl consistently outperforms the baselines. Specifically,
at p = 0.2, Axolotl achieves a median accuracies of 87.47%,
71.82%, 91.05%, and 95.90% for the four tasks, with standard
deviations of 5.95%, 5.68%, 5.36%, and 0.84%, respectively.
The median accuracy of Axolotl surpasses the baselines
by at least 8.65%, 4.86%, 2.41%, and 2.03%, respectively.
These advantages become more pronounced as p increases,
with Axolotl leading by 27.83%, 12.44%, 6.28%, and 6.15%
in accuracy at p = 0.8. Even under such severe system
instability, Axolotl maintains accuracies of 73.61%, 50.86%,
69.10%, and 88.95% for the four tasks.

The robustness of Axolotl, despite potential model depth
loss, is attributed to the implementation of a curriculum
dropout mechanism and IPWC, which allow adjacent nodes
to preserve some functions of the compromised model.
Moreover, the resource-aware substitute model ensures ef-
fective information transfer, thus minimizing the depth and
feature loss that substantially degrade model performance,
as observed with SPINN and AgileNN*. Regarding the vot-
ing strategy, although it demonstrates notable stability when
p ranges from 0.2 to 0.6, Axolotl’s performance advantage
is further amplified by its significantly larger parameter
base. The experiments evaluate methods for real-time col-
laborative inference, including SL, model offloading, and
knowledge distillation-based parallel schemes, which re-
main effective even with malfunctioned nodes. The findings
demonstrate that Axolotl not only surpasses SL baselines in
performance but also emerges as the most reliable method
for sustaining real-time collaborative inference.

5.3.2 Operational Overhead

We begin by comparing the latency and throughput of
Axolotl with SPINN and AgileNN* from an operational
perspective. To ensure a fair comparison, we configured
distinct hyperparameter values for each method, aiming to
achieve model accuracies within a margin of +£5% relative
to Axolotl (p = 0.2). As depicted in Figure 12, to achieve
this level of accuracy, the baseline incurs at least twice the
latency of Axolotl on each task. This is attributable to Ax-
olotl’s ability to substantially preserve model knowledge in
node failure scenarios. The substitute models, which replace
original blocks, consequently reduce the computational load
on the neural network, thus primarily contributing to lower
latency. On the other hand, as shown in Figure 13 (where

the unit inf/s denotes inferences per second), the faster
inference enables Axolotl to process more events per unit
time, outperforming the other baselines by at least 19, 14,
81, and 35 in CIFAR-100, ImageNet, HAR, and anomaly
detection, respectively.

We next compare the inference costs at the edge for Ax-
olotl and the baseline models, ensuring that all approaches
maintain an accuracy within a + 5% range relative to
Axolotl to guarantee fairness (p = 0.2). As illustrated in
Figure 14, Axolotl exhibits lower communication overhead
than SPINN and AgileNN* in four tasks, decreasing by
0.11, 4.48, 0.32, and 28.15 MB respectively. This reduction
is attributed to Axolotl’s retention of model information,
allowing it to perform equivalent tasks with smaller mod-
els. The voting strategy exhibits minimal communication
overhead due to its elimination of the need to transmit
intermediate layers. Figure 14 demonstrates that Axolotl’s
energy consumption is between 0.45 and 77.31 m] lower
than that of other baselines. This reduction is a direct result
of the previously mentioned advantages in communication
load and model size.

5.4 Scalability

Beyond the limited-device scenarios, we also evaluate Ax-
olotl’s scalability to a larger set of devices. Specifically, we
partition a ResNet composed of 12 blocks into several con-
figurations: 1x12, 2x6, 3 x4, 4x3, and 6 x 2, representing the
implementation of Axolotl across different distributions of
computational resources. In the experiments, p is set to 0.2,
0.4, 0.6, or 0.8 in separate tests. As illustrated in Figure 16,
although the highest accuracy in each of the four tasks de-
creases as p increases sharply, it still remains above 74.43%,
54.03%, 74.13%, and 88.41% when p < 0.4. In the 1 x 12
configuration, the model experiences the greatest instability,
resulting in relatively lower accuracy, yet the difference
from other configurations does not exceed 5.51%, 8.36%,
6.89%, and 3.11%. These results demonstrate that whether
the edge scenario comprises multiple devices with lower
computational power or fewer devices with higher power,
Axolotl effectively addresses node malfunctions caused by
device instability, underscoring its robust scalability.

5 Axolotl)
’c-éf 10 [| EESPINN s10
= AgileNN* =
Z‘ Voting é Axolotl.
=
ot) EEESPINN
S ™ 20 JeNN*
=10 210 AgileNN
= Voting
[_‘

Anomaly
detection

HAR

CIFAR-100 ImageNet

HAR Anomaly

detection

CIFAR-100 ImageNet

Fig. 12: Latency. Fig. 13: Throughput.

Axolotl

2 |m—sPINN
AgileNN*
Voting

S
S

Axolotl!
NSPINN

AgileNN*
Voting

S

Communication cost
(MB)
Energy consumption

CIFAR-100 ImageNet ~ HAR

Anomaly
detection

CIFAR-100 ImageNet HAR Anomaly

detection

Fig. 14:
cost.

Communication Fig. 15: Energy consump-
tion.

We also evaluate the impact of node balance on the per-
formance of Axolotl. Specifically, our experiments include
a broader range of edge devices, comprising smartphones,
smartwatches, and edge servers, where device combinations
for model deployment are selected randomly. To quantify
the degree of node imbalance, we calculate the standard de-
viations of device computational power for different device
combinations and normalize these by the size of the smallest
blocks in the models. For clarity, these combinations are
categorized by standard deviation into four intervals: [0,1),
[1,2), [2,3), [3/4), and average accuracies are computed for
each interval. Figure 17 demonstrates that Axolotl main-
tains robust performance across four tasks even when de-
ployed on multiple unbalanced nodes. Furthermore, even
at p = 0.8, the variation in accuracy among different levels
of node imbalance does not exceed 3.53%, 4.37%, 3.84%, and
4.00%. This indicates that Axolotl is not limited to identical
laboratory devices but can also effectively scale to various
real-world edge scenarios with node imbalance.

5.5 Curriculum Dropout Mechanism

In § 3.1, we have introduced a hierarchical curriculum
dropout strategy. Here, we conduct ablation studies on both
the dropout intensity level and the consistency level. To
ensure fairness, the ablated models are still subjected to
various block failures during training; however, the dropout
intensity and consistency are determined randomly. We set p
values from 0.2 to 0.8 and average the results of 50 replicates
for each experiment.

The results depicted in Figure 18 indicate that, across
all tasks, the dropout strategy with two levels consistently
achieves the highest accuracy for all values of p. At p =
0.2, the full dropout achieves accuracies of 86.90%, 72.3%,
90.56%, and 96.14% across four tasks, surpassing the model
without any of the two levels, which show accuracies of
80.50%, 69.87%, 84.27%, 91.60% and 72.64%, 66.38%, 79.24%,
89.33%. In contrast, the ablated strategy using random
strategies only achieves 60.10%, 54.57%, 72.19%, and 84.03%.
As p increases, the performance disparity also grows, with
the lead of the full strategy exceeding 8.34%, 3.98%, 15.54%,

3blocks x 4 devices
2blocks x 6 devices

I 6blocks x 2 devices Iblock x 12 devices
B4blocks x 3 devices

80

©
o

= | CIFar-100 ImageNet | oo HAR o5, nomaly

©

g 60 80 90

o

£ 70 50 70 85

602 02 o6 08'%2 o0z 06 0805 ou o6 08%02 04 06 os

p p P P
Fig. 16: Scaling to different number of devices.

10

[Standard deviation IEEM[3,4) [1,2) [0,D]

3)
80

©
S

_ [CIFAR-100 |goh ImageNet HAR Anomaly
< 70 %0 on
g% \
=]
*5 80 60 80
< 70
70 50 70
600.2 0.4 0.6 0.8600_2 04 0.6 0.8400,2 0.4 0.6 0.8600-2 0.4 0.6 0.8
p I3 p P

Fig. 17: Scaling to heterogeneous devices.

and 7.71% when p reaches 0.8. This phenomenon can be
attributed to block dropout, which significantly alters the
loss landscape and causes fluctuations in the optimization
direction, even when the supervised task’s loss surface is
inherently smooth. The fine-grained control provided by
Axolotl at different levels allows for a progressive modifica-
tion of these changes, stabilizing the exploration process to-
ward the optima. It is noteworthy that retaining the dropout
intensity results in better model performance than retaining
the dropout consistency, which is the rationale behind this
design choice.

To further evaluate the stability provided by the curricu-
lum dropout mechanism, we calculate the Kullback-Leibler
(KL) divergence among the outputs of ten models trained
using the same strategy. We conduct experiments for each
strategy across various tasks, and present the distributions
of these divergences in Figure 19. It is evident that under
the curriculum dropout mechanism, the KL divergence
among model probability distributions is significantly lower
than that observed when curriculum dropout is applied
at a single level or under a completely random strategy.
This indicates minimal model variability and demonstrates
enhanced training stability with the curriculum dropout
mechanism. This stability arises because, in contrast to ran-
dom strategies, curriculum dropout controls the variations
among model configurations, thereby guiding the models
towards a more stable optimization trajectory.

5.6 Inverse-Proximal Weight Consolidation

We evaluate Axolotl’s IPWC against the SOTA algorithm
elastic weight consolidation (EWC) [51], both designed to
address catastrophic forgetting. While each method employs
the Fisher information matrix to assess parameter signifi-
cance, IPWC is distinctively tailored for node malfunction
scenarios. For comprehensive analysis, conventional gradi-
ent descent (GD) is also included as a baseline. The em-
ployed model is structured into six blocks, with p = 0.2—0.8
during the testing phase. As illustrated in Figure 20, using
CIFAR-100 as an example, when p is set to 0.8, the accuracy
of IPWC is 76.18%, whereas that of EWC is 65.54%. Both

I w/o both Tevel w/o intensity level w/o consistency level w/ both Tevel]

CIFAR-100 ImageNet HAR Anomaly detection
e7 60 75
850 40 50 50
225 20 25

o

0
02 04 06 08 0 02 04 06 08 0 02 04 06 08 02 04 0.6 0.8
p p p P

Fig. 18: Effects of hierarchical dropout strategy.

[E=3w/both level—iw/o consistency levell_Iw/o intensity level___Iw/o both level |

107 Anomaly |

detectioW ‘H‘
|

KL divergence

Fig. 19: Comparison of KL divergence distribution.

these methods considerably surpass the performance of GD,
which only achieves an accuracy of 38.22%. This superior
performance of IPWC and EWC is consistently observed
across the other tasks depicted in the figures. Experimental
results demonstrate that IPWC effectively mitigates catas-
trophic forgetting and prevents excessive updates across
different dropout configurations. Consequently, the perfor-
mance of the model remains unaffected by the sequence
of block failures encountered during training. Furthermore,
unlike EWC, which applies a uniform regularization weight
across all parts of the model, IPWC allows for more relaxed
constraints around dropout blocks. This flexibility enables
adjacent blocks to share functionalities, introducing redun-
dancy that enhances the model’s resilience to block failures
during the inference phase.

To intuitively demonstrate the effectiveness of IPWC in
mitigating catastrophic forgetting, we repeat the experiment
in Figure 3 after implementing IPWC, with the results
presented in Figure 21. Notably, in Figure 21a, the model
parameters across different configurations do not exhibit the
distinct clusters observed in Figure 3a, indicating that the
model retains the knowledge of other configurations while
learning a new one. Furthermore, Figure 21b illustrates that
although model accuracy still experiences fluctuations due
to system instability, there is a clearly observable upward
trend. This suggests that under the help of IPWC, the model
effectively learns different patterns of node malfunction.
As the configuration index decreases, reflecting configura-
tions trained earlier, the accuracy exhibits only minor fluc-
tuations, with IPWC consistently demonstrating superior
performance over EWC. This indicates that IPWC is better
for handling catastrophic forgetting due to model configu-
ration change, as it effectively monitors changes and utilizes
adjacent areas to mitigate the impact of these changes.

5.7 Resource-Aware Substitute Model

We conduct an ablation study on the substitute model, com-
paring it against a basic up-sampling and down-sampling

[GDEmEWCESSTPWC]
CIFAR-100 ImageNet HAR 00Anomaly detection

{75 60 75
B
§ 50 40 50 50
=
§ 25 20 25

0 0 0 0

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 04 06 08
p P P p

Fig. 20: Performance comparison of different catastrophic
forgetting mitigation methods.

11

~ 0.10 i Skip 30 A,
g o5 o? ® e Blockl| ¥ \ 7 L:w
§ . . w; ox= 2! o Block 2 ;50) W\\, \/
g 0.001 *—" S . e Block 3 §
S ° LA NS =}
5] P, ¢ : Block 4 8
5 LS o’ e Block5| < 20 Experiment 1 Experiment 3
&~ -0.101 o o ° -Experiment 2 Experiment 4
-0.10 0.00 0.10 0 10 20 30
PCA component 1 Epoch

(a) Model weight preservation. (b) Stable accuracy improvement.

Fig. 21: Effects of IPWC.

method, each ensuring smooth model inference. As illus-
trated in Figure 22, the substitute model records an ac-
curacy exceeding 14.92% when p = 0.2 across all tasks.
With increasing system instability, this discrepancy widens,
culminating in a difference ranging from 23.17% to 54.33%
at p = 0.8. The results suggest that although simple re-
shaping can preserve model operation, it leads to significant
feature mismatch, thereby degrading model performance.
In contrast, despite its significantly smaller size compared
to the original model block, the substitute model effectively
retains critical feature transmission, thus sustaining model
performance.

We then evaluate the impacts of kernel dilation and
group pruning on the substitute model’s size and perfor-
mance with p = 0.2, as shown in Figure 23. Note that the
horizontal axis represents the model size relative to the full
substitute model. This substitute model is, in turn, less than
60.5% of the original block size. The results indicate that
utilizing either strategy in isolation to reduce model pa-
rameters results in a drastic decrease in performance across
four tasks. When the kernel size of the substitute model
is set to 51.02% of the full substitute model’s kernel size,
the accuracy drops to below 87.34%, 74.01%, 88.07%, and
94.78% for the four respective tasks. Furthermore, when the
channel number is reduced to 50.00% of the full substitute
model, the accuracy falls below 84.19%, 70.74%, 87.66%, and
93.34%, and diminishes rapidly as the model size continues
to decrease.

Conversely, when our combined method is applied, this
trend of performance degradation is significantly slowed.
With the size of the substitute model reduced to only
50.51%, the accuracy still exceeds 89.47%, 78.10%, 92.81%,
and 96.44%. This suggests that reduction in model size
from any single dimension leads to rapid information loss,
rendering the maintenance of complexity in another dimen-
sion ineffective. Therefore, it becomes imperative to modify
both dimensions simultaneously to find an optimal sub-
stitute model that maximally preserves information within
a specified size constraint. Notably, even when the model
size decreases to only 3.13% of the full block, the accuracy
remains at 76.70%, 60.52%, 80.33%, and 84.18%. At this

Accuracy (%)

0
0702 04 0608 ° 02040608 ° 02040608 - 02040608
P P P 1Y

Fig. 22: Ablation study of substitute model.

f——Kernel size

Channel number—+—Both (Axolotl)]

©
(=]

90

v

: 60 f
[/ CIFAR-100 i
If_3.13 13

901!
80

Accuracy (%)

] Anomaly
70 ImageNet .
404313 g 801313 detection
0 50 100 0 50 100 50 100 0 50 100

Model size (%)

Fig. 23: Impact of substitute model size on accuracy.

point, the size of substitute model deployed on the successor
node is only in the range from 0.22 to 0.51MB, a burden that
is entirely manageable for edge devices.

5.8 Hyper-parameter Search
5.8.1 Pace in Curriculum Dropout Mechanism

In § 3.1, we mention that after determining the number of
dropout blocks, the task difficulty is further influenced by
the similarity between consecutive dropout blocks. The pa-
rameter 7 controls the decay of this similarity. We search for
the optimal 7 within the range from 0.1 to 0.5 for each task,
and conduct a separate search for each task. As shown in
Figure 24a, the optimal 7 values for CIFAR-100, ImageNet,
HAR, and anomaly detection tasks are 0.2, 0.1, 0.4, and 0.3,
respectively. For the image classification tasks, due to the
larger number of classes, a smaller 7 is required to ensure
a lower difficulty increment. While anomaly detection has
fewer categories than RF-based HAR, it requires a smaller
threshold 7 due to the higher complexity of its input data.

100 100
7 o LR LR LN o L L LN L
(&) (&)
© 5071 mmCIFAR-100 © 5071 mmsCIFAR-100
8 ImageNet a ImageNet
g EmHAR 2 EHAR
0 B Anomaly detection 0 B Anomaly detection

0.1 02 03 04 05 08 09 1.0 1.1 1.2
a)T. ())\0.

Fig. 24: Hyper-parameter searching.

5.8.2 Regularization Strength in IPWC

In § 3.2, we compute the regularization term based on A\ to
determine the extent to which the model retains knowledge
of previous dropout configurations, as well as the variation
in regularization strength between adjacent blocks. Simi-
larly, we search for the optimal)¢ within the range from 0.8
to 1.2 for the four tasks. As shown in Figure 24b, the optimal
Ao values for CIFAR-100, ImageNet, HAR, and anomaly
detection are 0.8, 1.0, 0.9, and 1.0, respectively.

5.9 Generalizability to Diverse Model Architectures

To validate the broader applicability of Axolotl beyond
CNNs, we extend our evaluation to transformer and RNN
architectures, as Axolotl’s core design is model-agnostic.
While its fault-tolerance principles are general, applying
Axolotl to new architectures requires tailoring the model
splitting strategy and the generation of substitute models
(as introduced in § 3.3). For transformer-based models,
we split the architecture by assigning each edge device a

12

self-attention module followed by a feed-forward network
(FFN), and the resource-aware substitute models are con-
structed using multi-head attention pruning and dilated
self-attention. For RNNs, we partition a stacked architecture
vertically by assigning a distinct group of recurrent layers to
each device, and the resource-aware substitute models are
constructed via structural sparsification of recurrent weight
matrices and dilated recurrent skip connections.

Model Benchmark Acc. (Stable) Acc. (p=0.4) Drop
LLaMA-1B HellaSwag 41.2% 37.1% 4.1%
MMLU 49.3% 45.8% 3.5%
ARC-c 59.4% 55.6% 3.8%
LLaMA-3B HellaSwag 69.8% 65.3% 4.5%
MMLU 63.4% 59.5% 3.9%
ARC-c 78.6% 74.4% 4.2%
RNN LibriSpeech 94.1% 91.4% 2.7%
IMDB 92.5% 91.2% 1.3%

TABLE 2: Performance on transformer and RNN models.

For the transformer-based evaluation, we use the
LLaMA architecture and assess its performance on three
standard benchmarks: HellaSwag, MMLU, and ARC-c. All
experiments are conducted in an unstable edge environment
with a node failure probability of p = 0.4. As shown in
Table 2, Axolotl enables the LLaMA-1B model to maintain
high performance with only minor accuracy drops of 4.1%,
3.5%, and 3.8% across the three tasks compared to the
stable, single-device baseline. Similarly, the larger LLaMA-
3B model experiences minimal degradation of 4.5%, 3.9%,
and 4.2%. To further demonstrate Axolotl’s generality, we
evaluate its performance on RNNs using the LibriSpeech
and IMDB datasets, and show the results in As shown
in Table 2. Under the same failure condition (p = 0.4),
the RNN model shows a performance degradation of only
2.7% on LibriSpeech and 1.3% on IMDB). These findings
confirm that Axolotl’s fault-tolerant capabilities generalize
effectively, maintaining high performance for distributed
inference across diverse architectures.

6 DiscussiON

To provide a complete understanding of Axolotl, we discuss
key environmental and operational factors that define the
system’s optimal performance boundaries. The system is
designed for robust performance under common partial or
sequential node failures, but its operational limits can be met
in extreme scenarios, such as a catastrophic, simultaneous
collapse of the majority of network nodes, which can desta-
bilize the model’s optimization. Similarly, performance is
linked to the careful calibration of system parameters (7 and
Ao) relative to task complexity, ensuring a proper balance
between plasticity and stability. This principle extends to
the hardware layer; on extremely resource-scarce devices,
the overhead from excessive model fragmentation may in-
fluence the overall efficiency of the distributed approach. Fi-
nally, the system’s failure detection is optimized for outright
node failures. In environments characterized primarily by
high-latency “straggler” nodes rather than disconnections,
the heartbeat protocol may interpret a severely delayed
node as failed, which highlights an opportunity for future
work in more nuanced network-health assessments.

7 CONCLUSION

In this paper, we introduce Axolotl, a novel split ML infer-
ence system designed for edge environments. Axolotl en-
ables the inference of large models by effectively distribut-
ing them across multiple nearby personal edge devices. By
incorporating novel dropout mechanisms, innovative mini-
mal substitution models, and curriculum learning strategies,
Axolotl addresses the key challenges associated with split
ML, ensuring resilience, fault tolerance, and adaptability
in the inference pipeline. Through extensive experimental
validation, we have demonstrated the effectiveness and
robustness of Axolotl on various deep learning networks
and tasks in edge environments. By tackling the challenges
surrounding node failure and adaptability, our system rep-
resents a significant step towards more reliable and efficient
distributed learning implementations for edge devices.

ACKNOWLEDGMENTS

The study is supported by Shenzhen Science and Technol-
ogy Program (No. 20231120215201001) and National Natu-
ral Science Foundation of China (No. 62502191).

REFERENCES

[1] T. Srivastava, P. Khanna, S. Pan, P. Nguyen, and S. Jain, “Mutelt:
Jaw Motion Based Unvoiced Command Recognition Using Ear-
able,” Proc. of ACM IMWUT, vol. 6, no. 3, pp. 1-26, 2022.

[2] Y.Shen,]. Shao, X. Zhang, Z. Lin, H. Pan, D. Li, J. Zhang, and K. B.
Letaief, “Large Language Models Empowered Autonomous Edge
Al for Connected Intelligence,” IEEE Communications Magazine,
2024.

[3] H. Li, H. Chen, C. Xu, Z. Li, H. Zhang, X. Qian, D. Li, M.-c.
Huang, and W. Xu, “NeuralGait: Assessing Brain Health Using
Your Smartphone,” Proc. of ACM IMWUT, vol. 6, no. 4, pp. 1-28,
2023.

[4] A. Benazir, Z. Xu, and F. X. Lin, “Speech Understanding on Tiny
Devices with A Learning Cache,” in Proc. of the 22nd ACM MobiSys,
2024, pp. 425-437.

[5] I McGraw, R. Prabhavalkar, R. Alvarez, M. G. Arenas, K. Rao,
D. Rybach, O. Alsharif, H. Sak, A. Gruenstein, F. Beaufays et al.,
“Personalized speech recognition on mobile devices,” in Proc. of
IEEE ICASSP. IEEE, 2016, pp. 5955-5959.

[6] L.Yang, X.Chen, X. Jian, L. Yang, Y. Li, Q. Ren, Y.-C. Chen, G. Xue,
and X. Ji, “Remote Attacks on Speech Recognition Systems Using
Sound from Power Supply,” in Proc. of the 32nd USENIX Security,
2023, pp. 4571-4588.

[71 J. Yi, S. Choi, and Y. Lee, “EagleEye: Wearable Camera-Based
Person Identification in Crowded Urban Spaces,” in Proc. of the
26th ACM MobiCom, 2020, pp. 1-14.

[8] M. Jiang, S. Liu, Y. Lyu, and Y. Zhou, “Face-Based Authentication
Using Computational Secure Sketch,” IEEE Transactions on Mobile
Computing, vol. 22, no. 12, pp. 7172-7187, 2022.

[9] Q. Cao, N. Weber, N. Balasubramanian, and A. Balasubramanian,
“DeQA: On-Device Question Answering,” in Proc. of the 17th ACM
MobiSys, 2019, pp. 27-40.

[10] A. Majumdar, A. Ajay, X. Zhang, P. Putta, S. Yenamandra,
M. Henaff, S. Silwal, P. Mcvay, O. Maksymets, S. Arnaud et al.,
“OpenEQA: Embodied Question Answering in the Era of Founda-
tion Models,” in Proc. of IEEE/CVF CVPR, 2024, pp. 16 488-16 498.

[11] Y. Li, H. Wang, Q. Jin, J. Hu, P. Chemerys, Y. Fu, Y. Wang,
S. Tulyakov, and J. Ren, “SnapFusion: Text-to-Image Diffusion
Model on Mobile Devices within Two Seconds,” Proc. of NeurIPS,
vol. 36, 2024.

[12] C. Li, Z. Liu, Y. Yao, Z. Cao, M. Zhang, and Y. Liu, “Wi-Fi See It
All: Generative Adversarial Network-augmented Versatile Wi-Fi
Imaging,” in Proc. of the 18th ACM SenSys, 2020, pp. 436—448.

[13] C.E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W.
Lampson, D. Sanchez, and T. B. Schardl, “There’s Plenty of Room
at The Top: What Will Drive Computer Performance After Moore’s
law?” Science, vol. 368, no. 6495, p. eaam9744, 2020.

13

[14] M. Xu, J. Liu, Y. Liu, F. X. Lin, Y. Liu, and X. Liu, “A First Look
at Deep Learning Apps on Smartphones,” in Proc. of ACM WWW,
2019, pp. 2125-2136.

[15] E. Liberis, k.. Dudziak, and N. D. Lane, “unas: Constrained Neural
Architecture Search for Microcontrollers,” in Proceedings of the 1st
Workshop on Machine Learning and Systems, 2021, pp. 70-79.

[16] X. Li, Y. Li, Y. Li, T. Cao, and Y. Liu, “FlexNN: Efficient and
Adaptive DNN Inference on Memory-Constrained Edge Devices,”
in Proc. of the 30th ACM MobiCom, 2024, pp. 709-723.

[17] H. Wen, Y. Li, Z. Zhang, S. Jiang, X. Ye, Y. Ouyang, Y. Zhang,
and Y. Liu, “AdaptiveNet: Post-deployment Neural Architecture
Adaptation for Diverse Edge Environments,” in Proc. of the 29th
ACM MobiCom, 2023, pp. 1-17.

[18] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D.
Lane, “SPINN: Synergistic Progressive Inference of Neural Net-
works over Device and Cloud,” in Proc. of the 26th MobiCom, 2020,
pp- 1-15.

[19] M. Almeida, S. Laskaridis, S. I. Venieris, I. Leontiadis, and N. D.
Lane, “DynO: Dynamic Onloading of Deep Neural Networks
from Cloud to Device,” ACM Transactions on Embedded Computing
Systems, vol. 21, no. 6, pp. 1-24, 2022.

[20] Apple, “Apple CloudKit,” https:/ /developer.apple.com/docume
ntation/cloudkit, 2014.

[21] Google, “Google Firebase,” https:/ /firebase.google.com, 2014.

[22] R. Hadidj, J. Cao, M. S. Ryoo, and H. Kim, “Toward Collaborative
Inferencing of Deep Neural Networks on Internet-of-Things De-
vices,” IEEE Internet of Things Journal, vol. 7, no. 6, pp. 4950-4960,
2020.

[23] Y. Wang, C. Yang, S. Lan, L. Zhu, and Y. Zhang, “End-Edge-Cloud
Collaborative Computing for Deep Learning: A Comprehensive
Survey,” IEEE Communications Surveys & Tutorials, 2024.

[24] L. Zeng, X. Chen, Z. Zhou, L. Yang, and]. Zhang, “CoEdge:
Cooperative DNN Inference With Adaptive Workload Partitioning
Over Heterogeneous Edge Devices,” IEEE/ACM Transactions on
Networking, vol. 29, no. 2, pp. 595-608, 2020.

[25] X. Guo, A. D. Pimentel, and T. Stefanov, “Automated Exploration
and Implementation of Distributed CNN Inference at the Edge,”
IEEE Internet of Things Journal, vol. 10, no. 7, pp. 5843-5858, 2023.

[26] O. Gupta and R. Raskar, “Distributed Learning of Deep Neural
Network over Multiple Agents,” Journal of Network and Computer
Applications, vol. 116, pp. 1-8, 2018.

[27] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative Intelligence between the
Cloud and Mobile Edge,” Proc. of ACM ASPLOS, vol. 45, no. 1, pp.
615-629, 2017.

[28] C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun, “SplitFed:
When Federated Learning Meets Split Learning,” in Proc. of AAAI
vol. 36, no. 8, 2022, pp. 8485-8493.

[29] S. Wang, X. Zhang, H. Uchiyama, and H. Matsuda, “HiveMind:
Towards Cellular Native Machine Learning Model Splitting,” IEEE
Journal on Selected Areas in Communications, vol. 40, no. 2, pp. 626—
640, 2021.

[30] Z. Li, W. Wu, S. Wu, and W. Wang, “Adaptive Split Learning
over Energy-Constrained Wireless Edge Networks,” Proc. of IEEE
INFOCOM, 2024.

[31] S. Zhang, Y. Li, X. Liu, S. Guo, W. Wang, J]. Wang, B. Ding, and
D. Wu, “Towards Real-time Cooperative Deep Inference over the
Cloud and Edge End Devices,” Proc. of ACM UbiComp, vol. 4, no. 2,
pp- 1-24, 2020.

[32] K. N. Khan, A. Khalid, Y. Turkar, K. Dantu, and F. Ahmad, “VRF:
Vehicle Road-side Point Cloud Fusion,” in Proc. of the 22nd ACM
MobiSys, 2024, pp. 547-560.

[33] L. Zhang, L. Chen, and J. Xu, “Autodidactic Neurosurgeon: Col-
laborative Deep Inference for Mobile Edge Intelligence via Online
Learning,” in Proc. of ACM WWW, 2021, pp. 3111-3123.

[34] B.Xie, M. Cui, D. Ganesan, and J. Xiong, “Wall Matters: Rethinking
the Effect of Wall for Wireless Sensing,” Proc. of ACM IMWUT,
vol. 7, no. 4, pp. 1-22, 2024.

[35] T. Zheng, A. Li, Z. Chen, H. Wang, and J. Luo, “AutoFed:
Heterogeneity-Aware Federated Multimodal Learning for Robust
Autonomous Driving,” in Proc. of the 29th ACM MobiCom, 2023,
pp. 1-15.

[36] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic Adaptive DNN
Surgery for Inference Acceleration on the Edge,” in Proc. of IEEE
INFOCOM. 1IEEE, 2019, pp. 1423-1431.

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

(45]

[46]

[47]

[48]

[49]

[50]

[51]

(52]

(53]

(54]

[55]

[56]

[57]

(58]

[59]

[60]

T. Boroushaki, M. Lam, L. Dodds, A. Eid, and F. Adib, “Augment-
ing Augmented Reality with {Non-Line-of-Sight} Perception,” in
Proc. of the 20th USENIX NSDI 23, 2023, pp. 1341-1358.
K. Huang and W. Gao, “Real-time Neural Network Inference on
Extremely Weak Devices: Agile Offloading with Explainable AI,”
in Proc. of the 28th MobiCom, 2022, pp. 200-213.
C. Pei, Z. Wang, Y. Zhao, Z. Wang, Y. Meng, D. Pei, Y. Peng,
W. Tang, and X. Qu, “Why it takes so long to connect to a wifi
access point,” in Proc. of IEEE INFOCOM. IEEE, 2017, pp. 1-9.
S. R. K. Somayaji, M. Alazab, M. Manoj, A. Bucchiarone, C. L.
Chowdhary, and T. R. Gadekallu, “A Framework for Prediction
and Storage of Battery Life in IoT Devices using DNN and
Blockchain,” in 2020 IEEE Globecom Workshops. 1EEE, 2020, pp.
1-6.
S. Kang, H. Choi, S. Park, C. Park,]. Lee, U. Lee, and S.J.
Lee, “Fire in Your Hands: Understanding Thermal Behavior of
Smartphones,” in Proc. of the 25th ACM MobiCom, 2019, pp. 1-16.
J. Switzer, G. Marcano, R. Kastner, and P. Pannuto, “Junkyard
Computing: Repurposing Discarded Smartphones to Minimize
Carbon,” in Proc. of the 28th ACM ASPLOS, 2023, pp. 400-412.
F. A. Salaht, F. Desprez, and A. Lebre, “An Overview of Service
Placement Problem in Fog and Edge Computing,” ACM Comput-
ing Surveys (CSUR), vol. 53, no. 3, pp. 1-35, 2020.
S. Garg, K. Kaur, G. Kaddoum, P. Garigipati, and G. S. Aujla,
“Security in IoT-driven Mobile Edge Computing: New Paradigms,
Challenges, and Opportunities,” IEEE Network, vol. 35, no. 5, pp.
298-305, 2021.
X. Zhang and S. Debroy, “Resource management in mobile edge
computing: a comprehensive survey,” ACM Computing Surveys,
vol. 55, no. 13s, pp. 1-37, 2023.
X. Kong, X. Liu, J. Gu, Y. Qiao, and C. Dong, “Reflash Dropout
in Image Super-Resolution,” in Proc. of IEEE/CVF CVPR, 2022, pp.
6002-6012.
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting,” The journal of machine learning research,
vol. 15, no. 1, pp. 1929-1958, 2014.
M. McCloskey and N. J. Cohen, “Catastrophic Interference in
Connectionist Networks: The Sequential Learning Problem,” in
Psychology of learning and motivation. Elsevier, 1989, vol. 24, pp.
-165.
Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
Learning,” in Proc. of the 26th ICML, 2009, pp. 41-48.
A. Graves, M. G. Bellemare, J. Menick, R. Munos, and
K. Kavukcuoglu, “Automated Curriculum Learning for Neural
Networks,” in Proc. of the 34th ICML. Pmlr, 2017, pp. 1311-1320.
J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusuy, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska
et al., “Overcoming Catastrophic Forgetting in Neural Networks,”
Proceedings of the national academy of sciences, vol. 114, no. 13, pp.
3521-3526, 2017.
C. Jose, M. Cissé, and E. Fleuret, “Kronecker Recurrent Units,” in
Proc. of the 35th ICML. PMLR, 2018, pp. 2380-2389.
S. Chang, Y. Zhang, W. Han, M. Yu, X. Guo, W. Tan, X. Cui,
M. Witbrock, M. A. Hasegawa-Johnson, and T. S. Huang, “Dilated
Recurrent Neural Networks,” Proc. of NeurIPS, vol. 30, 2017.
I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The Long-
Document Transformer,” arXiv preprint arXiv:2004.05150, 2020.
E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov, “Analyz-
ing Multi-Head Self-Attention: Specialized Heads Do the Heavy
Lifting, the Rest Can Be Pruned,” in Proc. of the 57th ACL, 2019, pp.
5797-5808.
A. Krizhevsky, G. Hinton et al., “Learning Multiple Layers of
Features from Tiny Images,” 2009.
J. Deng, W. Dong, R. Socher, L.-]. Li, K. Li, and L. Fei-Fei, “Im-
ageNet: A Large-Scale Hierarchical Image Database,” in Proc. of
IEEE CVPR. Ieee, 2009, pp. 248-255.
S. Ding, Z. Chen, T. Zheng, and J. Luo, “RF-Net: A Unified Meta-
Learning Framework for RF-enabled One-Shot Human Activity
Recognition,” in Proc. of the 18th ACM SenSys, 2020, pp. 517-530.
W. Li, V. Mahadevan, and N. Vasconcelos, “Anomaly Detection
and Localization in Crowded Scenes,” IEEE transactions on pattern
analysis and machine intelligence, vol. 36, no. 1, pp. 18-32, 2013.
R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi, “Hel-
laSwag: Can a Machine Really Finish Your Sentence?” in Proc. of
the 57th ACL, 2019, pp. 4791-4800.

[61]

[62]

[63]

[64]

14

D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song,
and J. Steinhardt, “Measuring Massive Multitask Language Un-
derstanding,” arXiv preprint arXiv:2009.03300, 2020.

P. Clark, 1. Cowhey, O. Etzioni, T. Khot, A. Sabharwal,
C. Schoenick, and O. Tafjord, “Think You Have Solved Ques-
tion Answering? Try ARC, the AI2 Reasoning Challenge,” arXiv
preprint arXiv:1803.05457, 2018.

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech:
an ASR Corpus Based on Public Domain Audio Books,” in Proc. of
IEEE ICASSP. 1EEE, 2015, pp. 5206-5210.

A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning Word Vectors for Sentiment Analysis,” in Proc. of the
49th ACL, 2011, pp. 142-150.

Yuxuan Weng is a research assistant at the
Southern University of Science and Technology.
He received his Bachelor's degree from Sun
Yat-sen University and his Master’s degree from
the Hong Kong University of Science and Tech-
nology. His research interests include mobile
computing, RF sensing, multimodal sensing, and
machine learning.

Tianyue Zheng is an Assitant Professor and
Ph.D. Supervisor at the Southern University
of Science and Technology (SUSTech). He re-
ceived his Ph.D. degree from Nanyang Techno-
logical University, Singapore, in 2023. His re-
search interests focus on mobile computing and
multimodal sensing. He serves program com-
mittee members for several international confer-
ences and a reviewer for multiple journals.

Zhe Chen received the PhD degree with honor
in computer science from Fudan University,
Shanghai, China, in 2018. He received the Doc-
toral Dissertation Award from ACM SIGCOMM
China, in 2019. He is a research fellow in
Nanyang Technological University, Singapore.
His research interests include designing and im-
plementing system for practical large-scale MU-
MIMO systems, deep learning, and Internet-of-
Things application.

Menglan Hu received the B.E. degree in
electronic and information engineering from
Huazhong University of Science and Technol-
ogy, Wuhan, China, in 2007, and the Ph.D. de-
gree in electrical and computer engineering from
the National University of Singapore, Singapore,
in 2012. He is currently an Associate Professor
with the School of Electronic Information and
Communications, Huazhong University of Sci-
ence and Technology.

Jun Luo received his BS and MS degrees in
Electrical Engineering from Tsinghua University,
China, and the Ph.D. degree in Computer Sci-
ence from EPFL, Lausanne, Switzerland. From
2006 to 2008, he has worked as a postdoctoral
research fellow in the Department of Electrical
and Computer Engineering, University of Water-
loo, Waterloo, Canada. In 2008, he joined the
faculty of Nanyang Technological University in
Singapore, where he is currently a full professor.

