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ABSTRACT
Object detection with on-board sensors (e.g., lidar, radar, and cam-
era) play a crucial role in autonomous driving (AD), and these sen-
sors complement each other in modalities. While crowdsensingmay
potentially exploit these sensors (of huge quantity) to derive more
comprehensive knowledge, federated learning (FL) appears to be the
necessary tool to reach this potential: it enables autonomous vehicles
(AVs) to train machine learning models without explicitly sharing
raw sensory data. However, the multimodal sensors introduce vari-
ous data heterogeneity across distributed AVs (e.g., label quantity
skews and varied modalities), posing critical challenges to effective
FL. To this end, we present AutoFed as a heterogeneity-aware FL
framework to fully exploit multimodal sensory data on AVs and
thus enable robust AD. Specifically, we first propose a novel model
leveraging pseudo labeling to avoid mistakenly treating unlabeled
objects as the background. We also propose an autoencoder-based
data imputation method to fill missing data modality (of certain
AVs) with the available ones. To further reconcile the heterogeneity,
we finally present a client selection mechanism exploiting the simi-
larities among client models to improve both training stability and
convergence rate. Our experiments on benchmark dataset confirm
that AutoFed substantially improves over status quo approaches in
both precision and recall, while demonstrating strong robustness
to adverse weather conditions.

KEYWORDS
Autonomous driving, autonomous vehicle, object detection, feder-
ated learning, crowdsensing, multimodal learning.

1 INTRODUCTION
Undergoing worldwide rapid development [52, 55, 60], autonomous
driving (AD) aims to offer a wide range of benefits including better
safety, less harmful emissions, increased lane capacity, and less
travel time [47]. The core of AD is the perception capability to
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detect objects (e.g, vehicles, bicycles, signs, pedestrians) on the
road; it enables interpretable path and action planning. Formally,
the SAE (Society of Automotive Engineers) requires Level 3-5 AD
to be able to monitor environments and detect objects, even un-
der adverse road and weather conditions [7]. To reach these goals,
multiple on-board sensing modalities (e.g., lidar, radar, and camera)
collaboratively deliver complementary and real-time information of
the surroundings. While lidar and camera provide high-definition
measurements in short distance due to attenuation in distance
and degradation by adverse weather or lighting conditions, radar
achieves relatively longer-range monitoring robust to adverse con-
ditions, leveraging the penetrating power of radio waves.

To fully take advantage of the rich multimodal information pro-
vided by various sensors, a plethora of previous arts [5, 21, 27, 30,
40, 42, 64] have employed deep learning to perform multi-modality
fusion as well as pattern recognition, aiming to conduct accurate
and reliable object detection (OD). The mainstream of OD relies on a
two-stage method [5, 21, 40, 42, 64], where proposals for regions of
interest are generated first and then refined for object classification
and bounding box regression. Though OD can handle different
viewing angles in general, we focus only on bird’s-eye view [30, 42]
for reduced complexity, as it reconciles the view discrepancy among
different sensing modalities at a reasonably low cost. Yet even with
this cost reduction, the fundamental difference between OD and
basic learning tasks (e.g., classification) still lead to far more (deep
learning) model parameters than normal, rendering its training hard
to converge even for a single model, yet we shall further promote
the need for training multiple models in a distributed manner.

Ideally, deep neural networks (DNNs) for OD should be trained
on a dataset that takes into account different road, traffic, and
weather conditions. However, the ever-changing driving environ-
ments render it infeasible for car manufacturers and developers to
collect a dataset covering all scenarios. Whereas the idea of crowd-
sensing [11, 66] can be exploited to overcome this difficulty by
outsourcing data collection and annotation tasks to autonomous
vehicles (AVs), conventional crowdsensing suffers from privacy
concerns [8, 59] and data communication burdens. Fortunately,
integrating federated learning (FL) [20] into crowdsensing could
virtually tackle these problems. As an emerging paradigm for dis-
tributed training across massive participating clients, FL demands
a central server only to coordinate the distributed learning process,
with which each client shares only the local model parameters: such
a scheme protects data privacy while reducing communication load
at the same time.

Challenges. Designing an FL system for OD upon AVs’ multi-
modal data is challenging, because all three entities (i.e., human,
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Figure 1: The bird’s-eye view FL-OD of AutoFed.

vehicle, and environment) involved in the system introduce a va-
riety of data heterogeneity. First, relying on clients to label the
data can lead to annotation heterogeneity: some clients may be
more motivated to provide annotations with adequate quality (e.g.,
bounding boxes around the detected vehicle), while others may
be so busy and/or less skillful that they miss a large proportion
of the annotations. Second, crowdsensing by different AVs also
introduces sensing modality heterogeneity,1 since the vehicles may
be equipped with different types of sensors by their manufacturers.
Even for AV models from the same manufacturer, it is common that
certain sensor experiences malfunction, causing corresponding data
modality to get lost. Third, the ever-changing environment (e.g,
weather and road) can introduce drifts in data distributions, further
exacerbating the heterogeneity issue. Unfortunately, prior arts on
FL either focus on homogeneous scenarios [20, 34], or deal with het-
erogeneity of unimodal data [10, 26, 54]). None of existing works is
capable of handling all the aforementioned heterogeneity induced
by humans, vehicle, and environment under our targeted AD sce-
narios. Last but not least, the high complexity of the two-stage OD
network makes its loss surface chaotic [25], further exacerbating
the negative impacts of the data heterogeneity on the performance.

Our solutions. To tackle these challenges, we carefully re-
engineer the classical two-stage ODmodel [45] to accommodate the
multimodal data generated on AVs, and we exploit a major insight
on the loss surface of OD under FL to guide the design of several
learning mechanisms that handle the heterogeneity issue, as briefly
illustrated in Figure 1. Since we notice that tolerance for data anom-
alies is crucial to efficiently navigate on the chaotic loss surface, we
focus on robust designs to achieve such tolerance. Specifically, we
design a cross-entropy-based loss function for training the neural
model to handle unlabeled regions (of certain vehicles) that could
be mistakenly regarded as the background during training. Aut-
oFed also employs inter-modality autoencoders to perform data
imputation of missing sensor modalities. The autoencoders learn
from incomplete data modality and generate plausible values for the
missing modality. Finally, AutoFed exploits a novel client selection
mechanism to handle environment heterogeneity by eliminating
diverged models. All in all, these three mechanisms together may
largely avoid data abnormality and hence prevent the clients’ losses
from falling into local minimums on the chaotic loss surface. Our
key contributions can be summarized as follows:

1Training a single model using FL under the heterogeneity of sensing modality allows
vehicles with fewer sensors to learn from others via FL, and it also improves the model
robustness against sensor malfunctions.

• To the best of our knowledge, AutoFed is the first FL system
specifically designed for multi-modal OD under heteroge-
neous AV settings.
• We design a novel cross entropy loss for training the neural
model for OD, aiming to mitigate the annotation heterogene-
ity across clients.
• We design an inter-modality autoencoder to perform miss-
ing data modality imputation, thus alleviating the modality
heterogeneity across the clients.
• We design a novel client selection mechanism for choosing
mutually-enhancing clients, thus further eliminating the
harmful effects induced by heterogeneity.
• We implement AutoFed prototype and evaluate AutoFedwith
extensive experiments. The promising results demonstrate
that AutoFed can enable robust vehicle detection under AD
scenarios.

Whereas most FL proposals consider only basic learning tasks [20,
22, 26, 54], AutoFed pioneers in FL-driven AV-OD far more sophis-
ticated yet realistic than basic classification or regression. In the
following, § 2 motivates the design of AutoFed by revealing the dam-
aging effects of the heterogeneity. § 3 presents the system design of
AutoFed. § 4 introduces the datasets, system implementation, and
experiment setup, before reporting the evaluation results. Related
works and technical limitations are discussed in § 5. Finally, § 6
concludes the paper with future directions.

2 MOTIVATION
We first investigate the impact of annotation heterogeneity on
the performance of a DNN model for vehicle detection. Then we
show that the heterogeneous modality significantly degrades the
performance of the federated model on OD. Finally, we confirm
the necessity to tackle the model divergence potentially caused by
heterogeneous factors (e.g., diversified environments and human
inputs) in federated training.

2.1 Quantity Skew of Labeled Data
As an FL system, AutoFed relies on AV clients to provide labels
(i.e., bounding boxes around vehicles) for two reasons: i) the server
should not have access to local data due to privacy concerns; and
ii) labeling data locally is more reasonable compared to performing
the labeling offline on the server, because more visual cues can be
leveraged for labeling locally on AVs,2 and we hence deem all such
labels as reliable. However, relying on clients for data labeling can
lead to skew in label quantity: some clients may be more motivated
to provide annotations with adequate quality, while others may
be so busy and/or less skillful that they miss a large proportion of
the annotations. The situation may get worse during training, as
the missing annotations on some AVs could be mistakenly marked
as background by the OD network, thus backpropagating wrong
gradients during local training. As a result, the small number of
labels on some AVs may degrade the overall performance and cause
training instability of the OD network. To demonstrate the damag-
ing effects of missing labeling, we show the average precision and
recall of a two-stage OD network for the task of vehicle detection

2The driver/co-pilot can provide online labels similar to crowdsourcing in Waze [61].
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Figure 2: Damaging effects of missing annotations.
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Figure 3: Damaging effects of missing modality.

in Figure 2. The network utilizes a VGG variant [49] as its back-
bone and was trained by standard backpropagation using an SGD
optimizer on a dataset of 1,000 data samples with 50% data with
missing annotations and 50% data with complete annotations in a
standalone manner. After training, the network is tested on another
1,000-sample dataset. Clearly, the network under complete labeling
outperforms that under missing labeling by around 20% in terms
of both precision and recall. Moreover, it is evident that the perfor-
mance of the DNN under missing labeling experiences a downward
trend after the 20-th epoch, confirming the negative effects of the
wrong gradient signals introduced by missing labeling.

2.2 Heterogeneous Modality across AVs
Most prior work on the fusion of multimodal sensing data assumes
that all modalities are available for every training data point [3, 64].
This assumption may not be valid in reality, as the sensing modali-
ties of different AVs are often heterogeneous for two reasons. On
one hand, the AVs may be equipped with different types of sen-
sors by their manufacturers. On the other hand, even for AVs from
the same manufacturer, it is common that certain sensor experi-
ences malfunctions, causing corresponding data modality to get
lost. Such heterogeneous modalities pose significant challenges to
DNN-based OD. Removing data entries with missing modalities or
keeping only modalities shared among all clients can be a makeshift,
but useful information conveyed in other modalities or clients can
be discarded. Lacking access to global statistics also renders filling
a missing modality with typical statistics (e.g., mean) impractical,
leaving zero-filling [56] as the only possibility. Therefore, we show
the average precision and recall of an OD network in Figure 3; the
model is trained in a standalone manner under complete modalities
and missing modalities with zero-filling. In the training process,
data with missing radar and lidar each accounting for 25% of a
1,000-sample dataset. The results demonstrate that the precision
and recall of training the models with complete modalities out-
perform those with partial modalities by more than 20% and 10%,
respectively, confirming that zero-filling does not fully overcome
the challenge. To mitigate the missing modality, it is necessary to
propose a new data imputation technique.

2.3 Model Divergence
Besides the above label and modality heterogeneity across the
clients, there exist other heterogeneities such as those introduced
by environments (e.g., different weather and road conditions). Such
heterogeneity makes the local models on AVs to be diverged and the
optimization goal can even become contradictory. We demonstrate
such model divergence in Figure 4a, where we involve 40 clients
each holding a 1,000-sample dataset for training. These datasets
have i) annotation level ranging from 10% to 100% (with 10% step
size for every 4 clients), ii) 25% chance to hold data with missing
radar or lidar modality, and iii) equal chance to have data recorded
under clear, foggy, rainy, and snowy weather. After training, the
network is tested on another 2,000-sample dataset. We apply PCA
(principal component analysis) [38] to the model weights at the
10-th epoch, and visualize the first two PCA components, one may
readily observe that, while about half of local model weights form
a cluster (colored in blue), there exist multiple outliers (colored in
red). If we recklessly perform aggregation on these model weights,
the performance of federated model will be significantly degraded
by the outliers. We demonstrate the effects of diverged models in
Figure 4b. The results show that aggregating the diverged mod-
els leads to a 10% drop in OD precision when compared with the
aggregated model from homogeneous training data.

(a) PCA embedding.

0 50 100
Epochs

0

0.2

0.4

0.6

A
ve

ra
ge

p
re

ci
si
on

w/ diverged model
w/o diverged model

(b) Average precision.

Figure 4: Damaging effects of diverging models.

3 SYSTEM DESIGN
Based on our discussions in § 2, we hereby present AutoFed compris-
ing a two-level design: i) a multimodal OD network to fully exploit
the information provided by multimodal sensors equipped on the
AVs, and ii) an FL framework involving specifically designed loss,
missing modality completion module, and client selection mecha-
nism, aiming to achieve heterogeneity-aware federated multimodal
OD on distributed AVs. In the following, we first define our problem
concretely, and then we present the details of the multimodal OD
network and FL framework.

3.1 Problem Statement and Overview
The ultimate goal of AutoFed is to make use of the crowdsensed
data collected from multiple AVs (i.e., clients) to increase the data
diversity, thus improving upon the performance of a standalone
OD network deployed on a single client. Since the sensors on AVs
can have multiple viewing perspectives, i.e., the lidar, radar, and
camera have 3D, bird’s-eye view, and front view, respectively, there
are no one-size-fits-all solutions. Therefore, we specifically choose
to solve the vehicle detection problem [39] (a special case of OD)
from the bird’s-eye view using lidar and radar, thanks to (also con-
fined by) the availability of dataset and vehicle annotations [1].
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We avoid using camera in AutoFed for two reasons. First, the per-
ception capability of lidar and camera largely overlap due to their
similar spectrums. Second, the current settings and network archi-
tecture mostly are focused on the bird’s eye view of the vehicle’s
surroundings, making the camera’s orthogonal front view largely
incompatible. Note that our AutoFed framework is not limited to
any specific OD tasks, because performing vehicle detection actu-
ally encompasses all critical elements in fulfilling other OD tasks.

Since AV scenarios are by default a distributed setting, FL is a
good candidate for better utilizing the data diversity from geograph-
ically distributed clients. However, combining FLwith ODmay exac-
erbate OD’s chaotic loss surface emphasized in § 1, forcing naive ag-
gregation algorithms to yield only comparable or even inferior per-
formance compared to traditional standalone training [18, 32, 67],
especially under the challenges mentioned in § 2. Fortunately, our
insight indicates that high tolerance to data anomalies can often
allow effective training that leads to meaningful local minimums,
by smoothly navigating on the chaotic loss surface; this motivates
our following design considerations. Firstly, both data preprocess-
ing and network architecture should be modularized and flexible
enough to accommodate potentially abnormal multimodal inputs.
Secondly, the network should be equipped with a mechanism to tol-
erate annotation anomalies of the input data. Thirdly, there should
be a way to fill in missing modalities without making the data dis-
tributions abnormal. Finally, the aggregation mechanism must be
sufficiently robust to withstand potentially diverging client models
that could result in a non-optimal outcome after aggregation.

3.2 Multimodal Vehicle Detection
Before introducing the AutoFed framework, we first look at how
to design a multimodal OD network under an FL setting. While
the design method of a conventional two-stage OD network is
well-established, how to integrate multimodal processing into the
network remains an open issue. Furthermore, extending the multi-
modal OD network to the FL scenario put more stringent require-
ments on handling of the multimodal data. Intuitively speaking,
different data modalities of such a network should i) conform to
similar data formats, thus facilitating multimodal fusion, ii) collabo-
rate by sharing information so as to enhance other modalities, and
iii) be loosely coupled so as to support a more flexible FL pipeline
that better deals with heterogeneous data and environment. In this
section, we start with introducing the basics of the conventional
OD network. Then we align lidar and radar data for improving
data compatibility, in order to satisfy the requirement i). Finally,
we present a novel feature-level fusion technique to satisfy the
other two requirements with strong information sharing and loose
coupling among the modalities.

3.2.1 Object Detection Basics. Conventional two-stage OD follows
3 major steps [13, 45], with 2 steps in the first stage as shown by
the “blue” boxes in Figure 5. Generally, a feature map is first ex-
tracted using well-accepted feature extractors (e.g., VGGNet [49]
or ResNet [15]), then region proposals are generated by the region
proposal network (RPN). Specifically, taking the feature maps as in-
put, RPN generates anchor boxes with pre-defined fixed scales and
aspect ratios. The built-in classifier of RPN differentiates whether
each anchor box is foreground or background. The outcome allows

Feature
extraction

Generating
region proposals

Classification & 
regression

Sensor fusion

Conventional two-stage OD pipeline

Modality 
alignment

1st stage 2nd stage

Figure 5: The upgraded OD pipeline of AutoFed’s multi-
model vehicle detection network.

RPN to generate the region proposals; it leverages a built-in re-
gressor to fit the anchor boxes to their corresponding objects by
adjusting their offsets. With the above completing Step-1, Step-2
involves the region proposals being filtered by non-maximum sup-
pression (NMS): the proposals with the highest confidence are se-
lected and excessive proposals overlapping with higher-confidence
proposals above a given threshold are removed. The loss of RPN
is 𝐿RPN = 𝐿RPN

cls + 𝐿
RPN
loc , where 𝐿RPN

cls is a binary cross entropy
(BCE) loss measuring the “objectness” of the classification (i.e., how
good the RPN is at labelling the anchor boxes as foreground or
background), and 𝐿RPN

loc is an 𝐿1 loss quantifying the localization
performance of the predicted regions generated by the RPN.

The second stage (also Step-3) performs a fine-tuning to jointly
optimizes a classifier and bounding-box regressors. After cropping
out the feature map and RoI pooling [45] of the interested region
according to the generated proposals, it further uses a classifier
to detect whether the generated bounding box contains a specific
class of object. It also fine-tunes the bounding boxes using a class-
specific regressor. Essentially, this stage introduces three losses, i.e.,
a BCE classification loss 𝐿cls measuring the network performance
in labeling a predicted box with an object, an 𝐿1 box regression
loss 𝐿reg quantifying how the predicted location deviates from the
true location, and a BCE direction loss 𝐿dir specifying whether the
vehicle is pointing upward or downward to remove ambiguity, thus
confining the possible angles of the rotated bounding box to be in
the range of [0◦, 180◦]. In summary, the overall loss function for
the OD network can be written as:

𝐿total = 𝐿RPN + 𝐿cls + 𝐿reg + 𝐿dir (1)

3.2.2 Modality Alignment. The heterogeneous data generated by
multiple modalities poses a challenge to conventional OD network.
Specifically, the input 3-D lidar point clouds and mechanically
scanned 2-D radar heatmap are incompatible and cannot be readily
fused or imputed (as will be explained in § 3.3.2) on both the original
data space and the feature space. To reconcile the incompatibility,
we first voxelize the 3-D point cloud obtained by lidar [65]. Since we
are interested in performing vehicle detection from the bird’s-eye
view, the horizontal 2-D slices of the resulting lidar data can be
deemed as an image with 36 channels, i.e., 35 channels depicting
the point occupancy in the space and 1 channel indicating the
overall intensity of the lidar signals obtained on the horizontal
plane. Similarly, the radar signal can be deemed as an image with a
single channel since it has no 3-D information. After converting
the data into “multi-channel” images, they are further registered by
considering the extrinsics and resolutions of the sensors, as well as
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vehicle kinematics. Finally, two independent yet identical feature
extractors (those of the OD network as shown on the left side of
Figure 5) are used to process lidar image x𝑙 ∈ L and radar image
x𝑟 ∈ R, where L and R are the datasets containing lidar and radar
images, respectively. While the same architecture of these feature
extractors guarantees that the modality alignment is preserved on
the feature space, they differ in the number of input channels to
cater the respective needs of lidar and radar data.

3.2.3 Feature-Level Sensor Fusion. Two approaches exist for fusing
multimodal data, i.e., data-level and feature-level fusion. AutoFed
opts for feature-level fusion thanks to its better flexibility and low
coupling offered by fusion at a later stage in the network. Specifi-
cally, to extend the OD network in § 3.2.1 to a multimodal setting,
we further add parallel feature extractors for other modalities. Sup-
pose the feature extractors output lidar feature map z𝑙 and radar
feature map z𝑟 , one naive method to perform feature-level fusion
would be to concatenate z𝑙 and z𝑟 , and feed the concatenated fea-
tures to Step-2 of the OD network. However, this straightforward
method fails to exploit the inter-modality relationship. A more
relevant approach for exploiting the relationship is to apply the
cross-attention mechanism [62]. It generates an attention mask,
in which information from a different modality is harnessed to
enhance the latent features of the interested modality (e.g., an at-
tention mask derived from lidar is used to enhance radar features,
and vice versa). Different from the existing self-attention mech-
anism [57], our cross-attention mechanism focuses on modeling
the cross-correlation among different modalities, and it adaptively
learns the spatial correspondence to derive better alignment of
important details from different modalities.

Essentially, our cross-attention mechanism can be described as
transforming the latent representation z to a query q and a set of
key-value pair k and v, and then mapping them to an output. The
query, keys, and values are all linearly transformed versions of the
input z𝑠 : 𝑠 ∈ {lidar, radar}:

q𝑠 = W𝑞z𝑠 + b𝑞, k𝑠 = W𝑘z𝑠 + b𝑘 , v𝑠 = W𝑣z𝑠 + b𝑣, (2)

where 𝑠 is the complementary sensing modality of 𝑠 (e.g., if 𝑠 is
radar, then 𝑠 is lidar, and vice versa), W𝑞 , W𝑘 , W𝑣 and b𝑞 , b𝑘 ,
b𝑣 are trainable matrices and vectors that help transforming the
input to its corresponding query q𝑠 , key k𝑠 , and value v𝑠 , whose
dimensions are denoted by 𝑑𝑞 , 𝑑𝑘 , 𝑑𝑣 , respectively. The output
context z′𝑠 is obtained as a weighted sum of the values in v𝑠 , where

the weight of each value is a normalized product of the query q𝑠
and its corresponding key k𝑠 : z′𝑠 = softmax

(
1√
𝑑𝑘

q𝑠k𝑇𝑠
)
v𝑠 .

3.3 AutoFed Framework
We intend to design an FL framework that extends our multimodal
vehicle detection network in § 3.2 to a training scenario where the
data are collected by geographically distributed AVs. As illustrated
in Figure 6, AutoFed improves the multimodal vehicle detection
network in three aspects: i) modifying the loss of RPN to deal
with client annotation heterogeneity, ii) employing an autoencoder
to perform data imputation of missing sensing modalities, and
iii) applying a client selection strategy based on 𝑘-d tree [2] to
overcome the diverged models brought by the environment and
aforementioned heterogeneity.

3.3.1 Modified Loss Function for Tolerating Annotation Anomalies.
As stated in § 2.1, the heterogeneity of labeled data may send wrong
gradient signals during AutoFed training, since the bounding boxes
that should be classified as foreground otherwise can be wrongly
labeled as background when their correct annotations are missing.
The motivation for our modified loss is that, despite the lack of cor-
rect annotations, the AutoFed model can identify vehicles wrongly
labeled as backgrounds according to its own well-established clas-
sifier, thus avoiding sending erroneous gradient signals during
backpropagation and better guiding the convergence on the OD
loss surface mentioned in § 3.1. Specifically, if the feature map of
an anchor region is found to be similar to a vehicle, the classifier
naturally assigns a high probability 𝑝 of predicting it as a vehicle.
This comes under a reasonable assumption that, since the global
model is trained sufficiently with on average high-quality anno-
tations, it can be more trustworthy than the annotations from a
few incompetent clients. Recall the BCE loss of RPN in § 3.2.1 as:
𝐿RPN

cls = −𝑝∗ log (𝑝) − (1 − 𝑝∗) log (1 − 𝑝), where 𝑝∗ is the training
label taking on values of 0 or 1, respectively indicating the bounded
region being background or vehicle. Consequently, the modified
cross-entropy (MCE) loss becomes:{

0, 𝑝 > 𝑝th and 𝑝∗ = 0,
−𝑝∗ log 𝑝 − (1 − 𝑝∗) log(1 − 𝑝), otherwise, (3)

where 𝑝th is a threshold value after which we believe that the
classifier is more trustworthy than the annotations. The value of
𝑝th is determined by hyperparameter search in § 4.7.1.
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Figure 7: Comparison between CE and MCE loss.

To demonstrate the efficacy of the MCE loss, we train a multi-
modal vehicle detection network using the settings in § 2.1. The
training results of regular CE loss and our MCE are shown in Fig-
ure 7; they evidently confirm the superiority of MCE loss, though
the average precision and average recall of both CE and BCE losses
fluctuate around theirmeans after sufficient training (approximately
15 epochs). First of all, The average precision of vehicle detection is
respectively 0.57 and 0.4 when CE and MCE loss are used. Similarly,
there is a gap greater than 0.1 in the average recalls when the two
losses are used. Moreover, it is clear that, though training with CE
loss achieves higher precision and recall in the few initial epochs,
it is quickly overtaken by the MCE loss, which keeps an upward
trend and converges faster. Last but not least, one may also observe
that there is a slight downward trend of performance when the
CE loss is used after the 15-th epochs. The performance gaps and
different performance trends clearly demonstrate that our MCE
loss can make full use of vehicle annotations while avoiding back-
propagating erroneous gradients caused by missing annotations.

3.3.2 Modality Imputation with Autoencoder for Tolerating Modal-
ity Anomalies. We have shown in § 2.2 that conventional data impu-
tation methods (e.g., filling the missing modalities with 0’s) incurs
information loss, and may even introduce biases into the network.
To leverage the valuable information in the heterogeneous sensing
modalities, we propose to fill in the missing data by leveraging
the relations among different modalities. Since different modalities
are aligned and loosely coupled (as explained § 3.2.2 and § 3.2.3),
we employ a convolutional autoencoder with residual connections
(which connects a layer to further layers by skipping some layers
in between, thus facilitating information flow) to directly perform
modality imputation. The encoder of the autoencoder consists of
4 convolutional layers, and correspondingly, the decoder of the
autoencoder consists of 4 transposed convolutional layers. Con-
sequently, the lightweight architecture of our autoencoder only
incurs negligible overhead representing an increase of only 4.38%
(3.129GFLOPS vs. 2.988GFLOPS) from the AutoFed variant without
autoencoder. It should be noted that the autoencoder is pre-trained
and does not participate in the training process of AutoFed. Dur-
ing the pretraining stage, the autoencoder aims to learn a latent
representation, and reconstruct the missing modality. For example,
when the radar modality R is missing, the autoencoder encodes
the lidar modality L and translates the latent information therein
to fill in the missing radar modality.

To show the efficacy of the above method, we train the multi-
modal vehicle detection network following the settings in § 2.2, and
compare the average precision and recall of autoencoder imputa-
tion with zero-filling in Figure 8a and 8b, respectively. One may
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Figure 8: Modality imputation with an autoencoder.

readily observe that zero-filling only achieves an average precision
of approximately 0.4, lower than an average precision of about 0.5
achieved by our autoencoder imputation. Similarly, autoencoder
imputation also surpasses zero-filling in terms of average recall
by a discernible margin. Figure 8 also indicates that autoencoder
imputation only takes about 5 epochs to converge, much faster than
the convergence speeds (i.e., 10 and 15 epochs) by zero-filling. The
higher average precision and recall, as well as the faster conver-
gence training speed have clearly demonstrated that our designed
autoencoder makes full use of the heterogeneous data by taking
into account the correlations among different modalities.

3.3.3 Client Selection for Tolerating Model Weight Anomalies. En-
vironment heterogeneities, including different weather and road
conditions (as indicated in § 2.3), as well as other human-induced
heterogeneities (e.g., inaccurate annotations), are not easily solv-
able using the techniques described in Sections 3.3.1 and 3.3.2, yet
they can cause serious model divergence among the clients. Train-
ing with diverging clients holding extremely biased datasets may
contradict models from other clients, thus increasing the overall
losses. To make things worse, the chaotic loss surface mentioned
in § 1 and § 3.1 can disorient the gradient descent algorithm used
for training the OD model, and further diverge the model weights.
These observations urge us to devise a novel client selection strat-
egy immune to divergence, rather than blindly using FedAvg to
aggregate model weights from all clients equally. By selectively
removing outlier clients, the client selection strategy should help
the loss navigating on the surface more efficiently.

Suppose there are𝑁 clients {𝐶1, · · · ,𝐶𝑛, · · · ,𝐶𝑁 } in total, which
forms a set 𝑆 . To mitigate the issue of diverged models, we would
like to dynamically select a subset 𝑆 ′ = {𝐶1, · · · ,𝐶𝑚, · · · ,𝐶𝑀 } of
𝑀 clients (𝑀 < 𝑁 ) after each FL communication round to minimize
the sum of inter-client distances of model weights. To achieve this,
we propose that, after receiving the local models from the clients,
the central server constructs a 𝑘-d tree using the received model
weights. The 𝑘-d tree is a bisecting structure where each branch
point is the median in some dimension, and this bisecting structure
helps improve the efficiency of finding the nearest client (local)
models with minimum distances. Subsequently, the central server
traverses every client in the set 𝑆 , and queries its 𝑀 − 1 nearest
neighbors efficiently using the 𝑘-d tree data structure. The client
with the minimum distance sum to its𝑀 − 1 neighbors, together
with its 𝑀 − 1 neighbors, form the subset of selected clients 𝑆 ′.
Since the time complexity of one query is 𝑂 (log𝑁 ), traversing the
whole set 𝑆 demands a complexity of𝑂 (𝑁 log𝑁 ), which saves up a
lot of time when compared with 𝑂 (𝑁 2) complexity of brute-force
search, especially when there are many clients involved. At last,
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the central server aggregates the model weights from the selected
clients in subset 𝑆 ′, and distributes the updated global model to all
clients in 𝑆 for training in the next communication round.

(a) PCA embedding.
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Figure 9: Client selection mitigates diverged models.

To illustrate the effect of our client selection strategy, we train
the multi-modal vehicle detection network following the settings
in § 2.3. After each communication round, we let the central server
selects 40% of the clients (i.e.,𝑀 = 0.4𝑁 ) to form a subset of clients
with minimum inter-client local model weight distance, as demon-
strated in Figure 9a. The average vehicle detection precision is
shown in Figure 9b. One may readily observe that the precision
of vehicle detection reaches up to 0.6 when client selection is en-
abled, and it fluctuates around 0.5 when model weights from all
clients are aggregated using the FedAvg algorithm. Moreover, Fig-
ure 9 also demonstrates that client selection makes the training
converge faster with less than 20 epochs, while the training with-
out client selection barely starts to converge till the 25-th epoch.
These phenomena indicate that client selection helps better utilize
data from beneficial clients. Upon further inspection, we find that
after convergence, the fluctuation of the precision curve with client
selection is much smaller than that without client selection, which
indicates that the mechanism indeed selects mutually-enhancing
clients while excluding erroneous gradient signals from outliers.
Additionally, it can be observed that the average precision with
client selection becomes stable after only 70 epochs. This confirms
that the model has effectively learned from all clients (including
the corner cases), so additional training will not yield any further
improvement in performance.

3.3.4 Putting It All Together. We carefully summarize the training
strategy of the AutoFed framework in Algorithm 1. In the algo-
rithm, Client Update is the local training process for each client,
Radar Imputation and Lidar Imputation are the imputation func-
tion introduced in § 3.3.2, SGD is the standard stochastic gradient
descent algorithm with our MCE loss, Client Selection has been
introduced in § 3.3.3, which includes Construct k-d tree and Query
k-d Tree as the respective processes of constructing and querying
𝑘-d tree, as explained in § 3.3.3, andModel Aggregate as the stan-
dard process of averaging the selected local models. By putting
together AutoFed’s modules, we create a cohesive ensemble to sub-
stantially enhance the tolerance to data anomalies. Although some
techniques can be relevant even to a single model context, they
work together in the FL setting to help AutoFed navigate on the
chaotic loss surface in a more robust and efficient manner.

Algorithm 1: AutoFed training.
Require :𝑁 is the total number of clients, 𝑐 is the

percentage of clients to choose.
Data: {(L1,R1), · · · , (L𝑛,R𝑛), · · · , (L𝑁 ,R𝑁 )} where

(L𝑛,R𝑛) is the local collected lidar and radar data on
the 𝑛-th AV.

1 Server Executes:
2 initialize the global model𝑤𝑔

0 at 𝑡 = 0;
3 𝑆 ← {𝐶1, · · · ,𝐶𝑁 };
4 for communication round 𝑡 do
5 for 𝐶𝑛 ∈ 𝑆 in parallel do
6 𝑤𝑡+1,𝑛 ← Client Update(𝑛);
7 𝑊𝑡 ←𝑊𝑡 ∪𝑤𝑡+1,𝑛 ;
8 𝑀 ← 𝑐 × 𝑁 ;
9 𝑊 ′𝑡 ← Client Selection(𝑊𝑡 , 𝑀);

10 𝑤
𝑔

𝑡+1 ← Model Aggregate(𝑊 ′𝑡 )
11 Client Update(𝑛):
12 𝑤𝑛 ← 𝑤

𝑔
𝑡 (𝑤𝑔

𝑡 is downloaded global model) ;
13 if R𝑛 = ∅ then
14 R𝑛 ← Radar Imputation (L𝑛);
15 else if L𝑛 = ∅ then
16 L𝑛 ← Lidar Imputation (R𝑛);
17 for each local epoch 𝑒 do
18 for each batch 𝑏 do
19 𝑤𝑛 ← SGD(𝑤𝑛, 𝑏) ;
20 return𝑤𝑛 ;
21 Client Selection(𝑊𝑡 , M):
22 𝑇𝑡 ← Construct k-d Tree(𝑊𝑡 );
23 for 𝐶𝑖 ∈ 𝑆 do
24 𝑆𝑖 ← Query k-d Tree(𝑇𝑡 ,𝐶𝑖 , 𝑀);
25 𝑑𝑖 ← Σ𝑀

𝑚=1Dist(𝐶𝑖 ,𝐶𝑚) for 𝐶𝑚 ∈ 𝑆𝑖 ;
26 𝐼𝑚𝑖𝑛 = arg min𝑖 (𝑑𝑖 );
27 for 𝐶𝑚 ∈ 𝑆𝐼𝑚𝑖𝑛

in parallel do
28 𝑊 ′

𝑡,𝐼𝑚𝑖𝑛
←𝑊 ′

𝑡,𝐼𝑚𝑖𝑛
∪𝑤𝑡,𝑚 ;

29 return𝑊 ′
𝑡,𝐼𝑚𝑖𝑛

;

4 PERFORMANCE EVALUATION
To evaluate the performance of AutoFed, we apply AutoFed to build
a vehicle detection application using the benchmark dataset [1].
In particular, we evaluate the performance of AutoFed from four
aspects: i) comparisons with five baseline methods to demonstrate
the superiority of AutoFed; ii) cross-domain tests to show that Aut-
oFed is robust against real-life scenarios with heterogeneous data;
iii) ablation study to show the necessity of key parameter designs,
and iv) investigating the impact of FL-related hyper-parameter on
the model performance.

4.1 Dataset
We mainly use the Oxford Radar RobotCar dataset [1] in our ex-
periment. The dataset is collected by a vehicle driving around Ox-
ford, and it includes both lidar and radar data. The lidar data is
obtained by merging the point clouds collected by two Velodyne
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HDL-32E [58] lidars mounted on the left and right of the vehi-
cle’s top. Each lidar sensor provides a range of 100 m, a range
resolution of 2cm, a horizontal field of view (FoV) of 360◦, and a
vertical FoV of 41.3◦. The radar data is collected by a millimeter-
wave Frequency-Modulated Continuous-Wave (FMCW) NavTech
CTS350-X radar [35] mounted between the two lidar sensors and
at the center of the vehicle aligned to the vehicle axes. The radar
achieves 2-D horizontal scan by rotation, operating with a center
frequency of 76.5GHz, a bandwidth of 1.5GHz, a sampling rate
of 4Hz (hence a range resolution of 4.38 cm), a rotational angle
resolution of 0.9◦, a beamwidth of 1.8◦, and a range up to 163m; it
complements lidar by providing robustness to weather conditions
that may cause trouble to lidar. We further convert the data residing
in the polar coordinates to Cartesian coordinates and then calibrate
radar and lidar extrinsic parameters (i.e., translation and rotation
with respect to the world) by performing pose optimization to min-
imize the differences between lidar and radar observations. Since
there is no original ground truths for vehicle detections, we create
rotated boxes by inspecting the point cloud data using Scalabel [46],
which is a scalable open-source web annotation tool for various
types of annotations on both images and videos.

We also involve another dataset nuScenes [4] in our experi-
ment to demonstrate AutoFed’s generalizability across datasets.
The dataset contains 1 lidar and 5 radars: the lidar has 360◦ hori-
zontal FoV, 40◦ vertical FoV, and 2cm range resolution, while the 5
radars have 77GHz center frequency and 0.1km/h velocity accuracy.
Unlike the radars in the Oxford dataset that perform fine-grained
mechanical scans, the radars in the nuScenes dataset are fixed in
positions and do not have scan capability. As a result, they only
generate low-quality pointclouds. Since AutoFed cannot demon-
strate its full potential with the inferior radar modality, we limit the
evaluation on the nuScenes dataset to only § 4.4. For both datasets,
we take out a total of 50,000 samples, and use 80% and 20% of the
total data to create training and test datasets, respectively.

4.2 System Implementation
We implemented the vehicle detection application using AutoFed
on multiple NVIDIA Jetson TX2 [36] devices. The central server
is equipped with an Intel Xeon Gold 6226 CPU [17] and 128GB
RAM. For both AutoFed and the baselines, we implement an FL
protocol that allows 20 participating clients to randomly take 2,000
non-overlapping samples from the 40,000-sample training set. Each
participating client performs 5 local training epochs for each com-
munication round. As for the software, Python 3.7 and PyTorch
1.9.1 [37] are used for implementing the application. Our vehicle
detection model is built upon Detectron2 [63], which is a Python
library that provides state-of-the-art OD models. In particular, the
settings for the multimodal vehicle detection model are as follows:

• The autoencoder is trained with 20,000 samples from the
Oxford dataset, distinct (in terms of traffic, weather, and
locations) from those used for training the rest of AutoFed.
• The angles of the rotated anchors used by the RPN are set to
-90◦, -45◦, 0◦, and 45◦.
• Both lidar and radar feature extractors are composed of four
consecutive convolutional layers with a kernel size of 3 and
padding of 1.

• The aspect ratio of the anchors is set to 2.5 to conform to the
length-width ratio of regular vehicles [53].
• The IoU threshold (defined later) of NMS for removing ex-
cessive proposals during testing is set to 0.2.

In the local training process, we employ the SGD optimizer by
setting the initial learning rate as 0.01 and the decay factor as 0.01.

4.3 Experiment Setup
Baselines. To comprehensively evaluate the performance of Aut-

oFed, we compare AutoFed against five baselines:

• Standalone trains a vehicle detection model using heteroge-
neous data (e.g., heterogeneous annotations, sensing modali-
ties, and environments) locallywithout collaborations among
clients.
• Standalone+ trains a vehicle detection model locally using
the same setting as Standalone, but the data are sampled in
a homogeneous way.
• FedAvg is the first and perhaps the most widely adopted
FL method [34]. During training, all clients communicate
updated local parameters to the central server and download
the aggregated (i.e., averaged) global model for local training
in the next round.
• FedCor is a correlation-based client selection strategy for
heterogeneous FL [51]. It formulates the goal of accelerating
FL convergence as an optimization problems that maximizes
the posterior expectation of loss decrease utilizing the Gauss-
ian process.
• FedProx adds a proximal term to the loss function of local
training to reduce the distance between the local model and
the global model [26], hence addressing both system and
statistical heterogeneity.

In addition, we adopt the same multimodal vehicle detection model
configuration for each baseline method as AutoFed. We also apply
the same training settings and data configurations as AutoFed to the
baseline methods, the results are reported after the same number of
communication rounds. It should be noted that we use Standalone
and Standalone+ as baselines to provide context for how better FL
methods perform: it confirms that they do improve upon standalone
training, because each client only has limited data in reality.

Evaluation Metrics. Before introducing the evaluation metrics,
we first define an important concept called IoU (intersection over
union), which evaluates the overlap between two bounding boxes.
Suppose the ground truth and predicted bounding boxes are 𝐵𝑔𝑡 and
𝐵𝑝 , respectively, then IoU is given by the overlapping area between
the predicted bounding box and the ground truth bounding box
divided by the area of union between them:

IoU =
Area(𝐵𝑝 ∩ 𝐵𝑔𝑡 )
Area(𝐵𝑝 ∪ 𝐵𝑔𝑡 )

(4)

We define TP as the number of correct detections (i.e., detections
with an IoU greater than the predefined threshold), FP as wrong
detections (i.e., detections with an IoU smaller than the threshold),
and FN as the number of ground truths that are not identified. Based
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(a) AP@IoU=0.5. (b) AP@IoU=0.65. (c) AP@IoU=0.8. (d) AP@IoU=0.5:0.9.

(e) AR, maxDets = 1. (f) AR, maxDets = 10. (g) AR, maxDets = 100. (h) Convergence time.

Figure 10: Comparing AutoFed with several baseline methods, in terms of FL convergence and communication overhead.

on these definitions, we define precision and recall as:

Precision =
TP

TP + FP , Recall = TP
TP + FN . (5)

Since there is often a tradeoff between precision and recall, we also
define an average precision (AP) value across all precision values
from 0 to 1, thus summarizing the precision-recall curve. Moreover,
we calculate the average recall (AR) value at IoU thresholds from
0.5 to 1, thus summarizing the distribution of recall values across
a range of IoU thresholds [29]. AP and AR are our key evaluation
metrics hereafter.

4.4 Superiority of AutoFed
We compare AutoFed with the baselines in terms of the evaluation
metrics defined in § 4.3. Specifically, we report AP when the IoU is
0.5, 0.65, and 0.8, respectively, and themeanAPwhen the IoU ranges
from 0.5 to 0.9. As for AR, we focus on the cases when the number
of maximum detections is 1, 10, and 100, respectively. We report the
evaluation results in Figure 10. Figure 10a shows that, when the IoU
is set as 0.5, the AP of AutoFed is 0.71 while the number of FedAvg
and FedProx are 0.68 and 0.58, respectively. Moreover, the APs of
Standalone, Standalone+, and FedCor oscillate dramatically and
barely converge. Similarly, as shown in Figures 10b, 10c, and 10d, the
performance of AutoFed significantly outperforms the baselines.
It might be curious that the AP curve of AutoFed in Figure 10c
appears to be fluctuating, but this can be readily attributed to the
fact that setting IoU as 0.8 is a stringent criterion for the vehicle
detection task and causes the performance to become unstable.

With regard to AR shown by Figures 10e, 10f, and 10g, AutoFed
exhibits significantly better performance compared with the base-
lines, in terms of both AP and AR. Moreover, we also find that,
when compared with the baselines, AutoFed reaches the maximum
AP and AR with less number of communication rounds, as also
confirmed by the results presented in Figure 10. Specifically, while

AutoFed converges in 10 communication rounds, all baseline meth-
ods converge after 20 communication rounds. Furthermore, the
AP and AR curves of AutoFed rarely fluctuate, and the training of
AutoFed is much more stable than the baselines, indicating that the
multimodal network trained by AutoFed is much more robust.

We also showcase some examples of vehicle detection in Fig-
ure 11. In the examples, we use the 2-D lidar intensity map as
background for reference, and draw the ground truth and predicted
bounding boxes upon it. Figure 11b shows that AutoFed generates
high-precision vehicle detection results very close to the ground
truth in Figure 11a. In contrast, the Standalone, Standalone+, and
FedAvg methods make incorrect predictions outside the road, Fed-
Cor’s misses most of the vehicles, and FedProx misses some vehicles
and generates inaccurate bounding boxes overlapped with each
other. The results evidently confirm that AutoFed outperforms the
baselines with more accurate predictions.

Furthermore, we compare the communication cost of AutoFed
training (the same as other FL baselines) with centralized training,
i.e., all the clients transfer the collected data to a central server
for training the model. The results show that, while centralized
training transfers 660000KB of sensor data during each communi-
cation round per client, AutoFed only transfers 62246KB of model
weights. In other words, AutoFed reduces up to more than 10×
communication cost per client than the centralized training, firmly
validating its communication-efficient design.

We finally compare the performance of AutoFed with the base-
lines on the nuScenes dataset [4] to demonstrate its generalizability
across different datasets. We train AutoFed for 100 communication
rounds on the dataset. As shown in Figure 12, AutoFed outper-
forms all of the baselines on the nuScenes dataset by a large margin,
firmly demonstrating that the evaluation results can be generalized
to other datasets as well. It is worth noting that the overall AP and
AR results of AutoFed on this dataset (0.687 and 0.672) are slightly
lower than those shown in Figures 10a and 10g on the Oxford Radar
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(a) Ground truth. (b) AutoFed. (c) Standalone. (d) Standalone+. (e) FedAvg. (f) FedCor. (g) FedProx.

Figure 11: Example detection results of AutoFed and other baseline methods.

RobotCar dataset, which can be attributed to a variety of factors,
such as the complexity of the scenes and objects, sensor mounting
positions, and most importantly, the sparsity and lower quality of
the radar point cloud provided by the nuScenes dataset.
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Figure 12: Evaluation on the nuScenes dataset.

4.5 Cross-domain Robustness
We evaluate the robustness of AutoFedin cross-domain settings by
investigating how the trained model performs in varied sensing
modalities and different weather conditions. Since the AVs’ routes in
the experiment encompass different roads and areas, the results in
§ 4.4 have already proven the cross-road and cross-area capabilities
of AutoFed, therefore we omit their discussions here.

4.5.1 Various Sensing Modalities. Since AutoFed involves both li-
dar and radar sensors, there are three possible sensor combinations,
i.e., i) lidar + radar (Li + Ra), ii) without radar (w/o Ra), and iii) with-
out lidar (w/o Li). We evaluate the performance of AutoFed under
these three settings, and report the results in Figure 13. The results
show that, when the IoU is set to be above 0.5, the median APs
achieved by AutoFed are 0.71, 0.57, and 0.12 under the aforemen-
tioned three settings. Correspondingly, the median ARs achieved
by AutoFed are 0.70, 0.59, and 0.12. The autoencoder employed by
AutoFed helps the model to maximize the efficacy of information
embedded in either radar or lidar data, and AutoFed exhibits the
smallest performance drop compared with the baselines whose per-
formance is drastically impacted by missing modalities. However,
since the performance drop of missing modalities stems from the
loss of information, even the adoption of an autoencoder cannot
totally fill up the performance gap. We have also noticed that the
AP and AR of AutoFed are significantly lower in the radar-only
mode compared to the other sensor combinations. Upon further
investigation, we suspect that this may be because the importance
of radar is overshadowed by lidar that provides most of the infor-
mation used by AutoFed. Specifically, the majority of the vehicles in
the dataset are close to the ego vehicle, probably due to the narrow

width of the road, and as a result, lidar can detect almost all of these
vehicles because they are within its range. This leads to the lower
performance of the radar-only mode, as radar is often meant to
supplement the lidar sensor for long-range detection.

We also show one example of vehicle detection with three sensor
combinations in Figure 13. As Figure 13c illustrates, when both lidar
and radar are available, AutoFed is able to recognize most of the ve-
hicles on the road. As a comparison, Figure 13d shows that missing
radar data affects the detection of vehicles in the further distance,
but the nearby vehicles can still be identified. This phenomenon
is consistent with the characteristics of the radar sensor, i.e., the
radar has an extended range due to better penetration capability
while lidar can only obtain a much shorter range due to attenuation
caused by in-air particles [68]. In addition, we also visualize the
case of missing lidar in Figure 13e, where the vehicles in distance
can be well detected by the radar. The results clearly demonstrate
the complementary sensing capability of radar and lidar.

(a) Average precision.

(b) Average recall.

(c) Lidar + radar. (d) Missing radar. (e) Missing lidar.

Figure 13: Different missing modalities.
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4.5.2 Robustness against Adverse Weather Conditions. Adverse
weather is a realistic but challenging scenario for vehicle detec-
tion, which has a negative impact on the sensing capabilities [19].
Therefore, we evaluate the performance of AutoFed under different
adverse weathers (e.g., foggy, rainy, and snowy). Due to the lack of
available datasets collected under adverse weather, we employ the
physical models in DEF [3] and LISA [19] to simulate fog, rain, and
snow respectively. Specifically, we set the fog density to 0.05m−1 in
the DEF model and the rate of rain and snow to 30mm/h in the LISA
model. Comparing the backgrounds in Figures 14c, 14e, and 14d,
while foggy weather attenuates lidar signals and shrinks the field
of view, rainy and snowy weathers mainly affect the lidar signals
by inducing scattered reflections near the sensor. In particular, the
three adverse weather conditions degrade the median AP of Aut-
oFed from 0.71 to 0.65, 0.63, and 0.63, respectively, and degrade
the median AR from 0.71 to 0.64, 0.63, and 0.63, respectively. The
performance discrepancies among these adverse weathers can be
attributed to their different reflectance of lidar signals. Despite the
performance degradation, AutoFed exhibits the best generalization
when compared with the baselines. The consistently high perfor-
mance of AutoFed under all adverse weather conditions confirms
that the client selection mechanism has allowed the DNN model
to effectively incorporate information from unusual circumstances
after sufficient training.
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(c) Foggy. (d) Rainy. (e) Snowy.

Figure 14: Different weathers.

4.6 Ablation Study
We evaluate the impact of each module of AutoFed on the model
performance. We use AutoFed to train the model for 150 commu-
nication rounds, and record the AP in Table 1. Take the AP when
IoU is above 0.5 as an example, AutoFed achieves an AP of 0.731,
while AutoFed without MCE loss, modality imputation with au-
toencoder, and client selection obtain the AP of 0.707, 0.692, and
0.542, respectively. One may think that the MCE loss and modality
imputation only improves the result by small margins, while the
client selection is much more effective in significantly improving
performance. However, it is worth noting that both MCE loss and
modality imputation are indispensable parts: although the lack of
the two can be compensated by client selection (which excludes
erroneous gradients) to a certain extent, there still are many het-
erogeneous scenarios that cannot be addressed by client selection
alone, such as those demonstrated in Figures 2 and 3. The integra-
tion of MCE loss and modality imputation, together with client
selection, can act as “belt and braces” to guarantee the robustness
of AutoFed in diversified heterogeneous scenarios.

Table 1: Effects of key AutoFed parts.

AP
IoU=0.5:0.9 IoU=0.5 IoU=0.65 IoU=0.8

AutoFed 0.461 0.731 0.698 0.371
w/o MCE 0.405 0.707 0.660 0.212
w/o AE 0.396 0.692 0.657 0.189
w/o CS 0.342 0.542 0.523 0.272

4.7 Hyper-parameter Evaluation
4.7.1 Loss Threshold. As stated in § 3.3.1, 𝑝th is a threshold above
which we believe that the classifier is more trustworthy than the
manual annotations. On one hand, when 𝑝th is too small, the MCE
loss and traditional CE loss are equivalent, and we cannot exclude
incorrect gradients induced by missing annotation boxes. On the
other hand, many real backgrounds can be mistakenly excluded
if 𝑝th is set too large. Therefore, we evaluate the impact of 𝑝th on
the AutoFed performance. As Figure 15a shows, the AP of vehicle
detection increases from 0.7 to 0.73 as 𝑝th increases to 0.1. However,
the AP rapidly decreases to around 0 at 𝑝th = 0.3. Likewise, a similar
trend can be observed in Figure 15b for AR of the vehicle detection.
Overall, Figure 15 offers a guidance for choosing 𝑝th.
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Figure 15: Impact of the MCE threshold.

4.7.2 The Number of Selected Clients. Another hyperparameter
that significantly impacts the performance of AutoFed is the num-
ber of clients selected for model aggregation. On one hand, a small
percentage of selected clients could not fully utilize the diverse data
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collected by different clients and introduce bias into the federated
model. On the other hand, if a very large proportion of the clients
are selected, we cannot effectively mitigate the detrimental effect
caused by diverged local models. Therefore, the number of selected
clients balances the tradeoff between utilizing data and excluding
diverged models. As Figure 16a shows, the AP of AutoFed first
increases with a greater percentage of selected clients, but starts
to drop after the percentage reaches 0.4. The reason is that as the
excessive clients are selected for aggregation, the divergence among
them will degrade the performance of the federated model. Further-
more, in Figure 16b, it can be seen that AR of AutoFed follows a
similar trend as AP, and reaches its peak when the percentage of
selected clients is 0.4.
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Figure 16: Impact of selected clients percentage.

5 RELATEDWORK AND DISCUSSION
Recent years have witnessed rapid developments in DNN-based
OD methods [13, 14, 28, 31, 43, 45]. These approaches have been
applied to AD [5, 23, 24, 65]. Since most AVs are equipped with
multiple sensors (e.g., lidar, radar, and camera), they become tech-
nology foundations for the OD systems to fully exploit the multi-
modal data by sensor fusion. Among various sensor fusion schemes,
the combination of lidar and another sensor (e.g., radar or cam-
era) [5, 21, 27, 40, 42, 64] is a widely-adopted option due to the
complements between each other [1, 12]. One challenge in fusing
lidar with other sensors is the unique data structure of lidar, i.e.,
3-D point cloud, which is a point set and not compatible with the
2-D matrix in conventional computer vision tasks. One way to over-
come this challenge is to employ specially designed DNNs, such
as PointNet [41], to directly extract features from point clouds and
fuse with other sensing data in the feature space [64]. Another
approach is voxelization via transforming the point cloud to 3-D
data formats like images, with the height dimension being deemed
as image channels. Therefore, the transformed point clouds can be
handled by conventional OD-DNNs and fused with other modalities
as demonstrated in [33, 48, 65, 70].

FL [20] is a distributed machine learning paradigm that transfers
only model weights instead of explicitly sharing raw data with the
central server. AutoFed employs FL to enable data crowdsensing
without breaching privacy and incurring unaffordable communi-
cation cost on AVs. Despite recent FL applications in classification
and regression tasks [20, 22, 26, 44, 50, 54], applying FL to more
sophisticated computer vision tasks such as OD (especially vehicle
detection) is far from being exploited. In [18], the authors investi-
gate the possibility of applying FL to AD applications, and conduct
preliminary experiments to verify privacy protection and conver-
gence speed. FedVision [32] proposes an online visual OD platform

powered by FL, but it focuses more on building and deploying
a cloud-based platform, without concerning much on FL-related
designs. Fjord [16] claims to target the data heterogeneity in FL,
yet it seems to have missed certain complicated aspects, such as
annotation and modality heterogeneity tackled in AutoFed.

While different from existing OD proposals by pioneering feder-
ated OD on AVs, AutoFed is also the first to take into account the
effects of all kinds of multimodal heterogeneity for FL-OD on AVs.
However, AutoFed still bears one limitation: it stresses on the FL
aspect of crowdsensing, pessimistically assuming a finite number
of clients unable to provide complete annotations. In other words,
we have not considered positive aspects innate to crowdsensing,
such the impact of client incentive [66]. In a future study, we will
extend the design goals of AutoFed to include designing proper
incentives, in order to expand its user base and attract more AV
owners to perform collective learning on distributed AV data and
thus guarantee AutoFed service quality.

6 CONCLUSION
Taking an important step towards full driving automation, we have
proposed AutoFed in this paper for federated multimodal vehi-
cle detection. Employing a novel loss function, data imputation
technique, and client selection strategy, the AutoFed framework
gracefully handles the multimodal data crowdsensed by multiple
AV clients, and mines information in the highly heterogeneous data
to its maximum, thus releasing its full potential in the vehicle detec-
tion task. With extensive experiments under highly heterogeneous
scenarios and comparisons with other baselines, we have demon-
strated the promising performance of AutoFed in vehicle detection
for autonomous driving. We plan to extend AutoFed framework to
encompass more sensing modalities, in order to promote its real-life
usage and wider acceptance.

Currently, AutoFed targets on FL-driven vehicle detection, but
we are planning to apply FL to other out-vehicle sensing tasks, such
as pedestrian detection, lane tracking, and environment semantic
segmentation. Moreover, modern vehicles are also equipped with
in-vehicle sensing modalities to improve user experience, and we
believe FL can help improve the performance of deep analytics
upon these modalities too. Therefore, we are actively exploring the
potential of using FL for full vehicle intelligence, particularly for
in-vehicle user monitoring (e.g., [6, 9, 69]); this should put us on
the right track towards a future with full intelligent transportation.
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