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Abstract—As a cornerstone for numerous sensing applications,
wireless indoor localization has been a pivotal area of research
over the last two decades. While techniques such as jamming,
spoofing, and adversarial perturbation have been exploited to
compromise wireless indoor localization, existing attacks face
challenges in accessibility to wireless systems and stealthiness. To
address these limitations, we introduce Loki, a novel physical-
world attack on wireless indoor localization via differentiable
object placement. Specifically, we develop a differentiable wireless
ray-tracing technique that allows us to optimize object placement
in the scene. By repositioning an existing object in the scene by
just a few centimeters, Loki fools existing wireless indoor local-
ization systems into generating erroneous localization results. We
also show via experiments that the object placement generated
by Loki aligns with wireless sensing theory (e.g., the forward
scattering region and Fresnel zone), confirming its explainability.
Additionally, Loki proves effective across various localization
models and scenarios, highlighting its generalizability.

Index Terms—Wireless indoor localization, differentiable ray-
tracing, adversarial attack, physical attack.

I. INTRODUCTION

The increasing demand for context-based services has
driven the development of localization technologies. Wireless
indoor localization, serving as a complementary solution to
outdoor GNSS localization, has emerged as a promising field
attracting significant attention from both academia [1], [2]
and industry [3]-[5]. The wide-scale proliferation of smart-
phones and other wireless devices has provided the necessary
infrastructure for practical and efficient indoor localization [1],
making it a pivotal technology for a wide range of applica-
tions. These include enhancing healthcare [6], strengthening
security and surveillance [7], enabling smart home [8], and
streamlining asset tracking [9]. With its vast potential, wireless
indoor localization has transitioned from research to real-life
deployments. Commercial successes like Apple iBeacon [3],
Google Maps for Indoors [4], and Cisco DNA Spaces [5]
underscore its growing integration into our daily lives.

However, the widespread adoption of wireless indoor lo-
calization has raised significant security concerns, particularly
in safety-critical applications like healthcare [6] and surveil-
lance [7]. In these sectors, efficient and accurate positioning
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Fig. 1. The attack scenario of Loki.

is of utmost importance. However, the inherent broadcast
nature of wireless signals exacerbates these risks, creating
opportunities for adversaries to eavesdrop on and manipulate
wireless transmissions [10]. Such adversarial actions can dis-
rupt or even disable indoor localization systems. As a result,
investigating the security vulnerabilities and understanding the
potential attack vectors against wireless indoor localization
systems are of critical importance.

Conventional attacks on wireless indoor localization con-
sist of jamming [11] and spoofing [12]. Jamming primarily
affects location estimation by emitting strong interference,
while spoofing aims to intentionally mislead the localization
systems using artificially fabricated signals. However, orches-
trating these attacks is challenging and may disrupt existing
communication and sensing services, making them highly
conspicuous [13]. More recent research has shifted towards
adversarial attacks on wireless indoor localization [14]-[17],
where the focus is on crafting adversarial samples in the signal
space using gradient-based methods. These methods iteratively
alter the values of the captured wireless data to maximize
location estimation errors. However, they assume that wireless
signals can be directly modified in signal space, which is
unrealistic because it necessitates the laborious hacking of low-
level firmware or hardware, thereby limiting accessibility.

To address the limitations, researchers have explored per-
forming adversarial attacks directly in the physical world
rather than in the signal space [18]. A notable example is
Phy-Adv [19], which seeks to mislead WiFi-based localization
by employing adversarial shields around access points (APs)
to manipulate the received signal strength. However, shielding
APs with artificial enclosures is not a common practice in
daily settings, rendering such methods conspicuous and read-
ily detectable. Furthermore, Phy-Adv’s dependence on signal
strength manipulation confines its effectiveness to systems
utilizing received signal strength indication (RSSI) for indoor
localization. This narrows its applicability, as the majority



of current solutions have transitioned to using channel state
information (CSI) for more accurate indoor localization [20].

Facing the aforementioned issues, we ask a critical question:
is it possible to develop an attack on wireless indoor localiza-
tion that achieves the goals of effectiveness, accessibility, and
inconspicuity while also being generalizable to a wide range
of environments? Correspondingly, we envision an attack on
wireless indoor localization operating in the physical world,
where we can perform the attack by strategically moving exist-
ing objects without introducing new ones. However, designing
such attacks faces three significant challenges. Firstly, it is
impractical to manipulate object placements exhaustively to
obtain the optimal attack configuration in the real world. To
solve this issue, we must establish a wireless signal propaga-
tion model that enables efficient optimization of object place-
ment, thereby guiding strategic adjustments without exhaustive
physical trials. Secondly, bridging the gap between a model
and the real world is a complex task, as discrepancies between
the two are inevitable. To ensure the effectiveness of our
attack, we must develop an efficient approach that is resilient
to such discrepancies, allowing for successful execution in
real-world scenarios. Last but not least, our ultimate goal is
not merely to attack wireless indoor localization but to reveal
vulnerabilities and raise awareness. To achieve this, we must
conduct theoretical analysis and gain valuable physical insights
and rules (beyond how to move objects) that can contribute
to the development of more secure and robust wireless indoor
localization systems.

To address these challenges, we introduce Loki, a novel ad-
versarial attack on wireless indoor localization through strate-
gic, differentiable object placement. As illustrated in Fig. 1,
a wireless indoor localization model attempts to pinpoint the
location of user equipment (UE), such as a smartphone, using
signals captured from a WiFi AP. Loki manipulates localization
by subtly repositioning an existing object (such as a common
vase) within a few centimeters, thereby altering wireless
signals and leading the system to produce erroneous location
results. Loki begins by constructing a model of the environ-
ment, including its 3-D geometry and physical attributes (such
as dielectric properties and reflectivity). We then apply fully
differentiable ray tracing (RT) [21], [22] to create a model that
associates wireless signals with object placement. Utilizing
this model, we execute adversarial attacks through a gradient-
based optimization method. To enhance the model’s practical-
ity, we introduce a novel robustness augmentation technique
designed to compensate for discrepancies between the model
and real-world conditions, ensuring that Loki is robust and
effective in real-world applications. Additionally, we conduct
a theoretical analysis of Loki’s outcomes, uncovering physical
insights consistent with wireless sensing theory, such as the
Fresnel zone and forward scattering region. Our extensive
experiments, both simulated and in real-world settings, further
validate Loki’s performance across various configurations. The
primary contributions of our work are summarized as follows:

« We present an innovative adversarial attack in the physi-

cal world that targets wireless indoor localization systems
through differentiable object placement. To our knowl-
edge, Loki is the first attack of its kind that is effective,
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accessible, and inconspicuous.

« To support this attack, we develop a wireless RT engine
capable of fully differentiable object placement. It facil-
itates the use of gradient-based methods to effectively
maximize localization errors.

« We develop a novel robustness augmentation method that
integrates hardware, material, and placement variations,
achieving resiliency to real-world variations.

« We analyze the object placements generated by Loki and
find that they align with sensitive regions (e.g., the Fresnel
zone) in accordance with wireless sensing theory, further
demonstrating the explainability of Loki.

« Comprehensive evaluations of various localization models
across various real-world scenarios highlight the Loki’s
effectiveness and adaptability.

The rest of this paper is organized as follows. Section II
introduces the background and motivation of Loki. Section III
explains the threat model. Section IV details the attack design
of Loki. Section V provides Loki’s implementation. Section VI
reports the evaluation results, followed by security analysis
and possible defense methods in Section VII. Section VIII and
Section IX presents related works and discussion, respectively.
Finally, we conclude the paper in Section X.

II. BACKGROUND AND MOTIVATION

In this section, we introduce the background of wireless
indoor localization and the motivation of Loki’s design.

A. Wireless Indoor Localization Preliminaries

Wireless indoor localization can be broadly categorized into
two categories: device-based [23]-[25] and device-free [26],
[27], depending on whether the target carries a device that
interacts with the wireless indoor localization system. This
study focuses exclusively on device-based localization, the
most widely adopted and commercialized approach. Potential
attacks on device-free localization will also be discussed in
Section VIII. In wireless localization systems, signals propa-
gate from the transmitter (Tx) to the receiver (Rx), interacting
with the environment. At the Rx, we measure how the received
signal differs from the transmitted signal, thus obtaining the
CSI, characterizing the environment, and performing localiza-
tion of the Tx or Rx. Specifically, the Orthogonal Frequency
Division Multiplexing (OFDM) signal exhibits fluctuations in
the frequency spectrum, while Multiple Input Multiple Output
(MIMO) antenna arrays result in variations in the spatial
spectrum.

By applying the Fast Fourier Transform (FFT) to the fre-
quency and spatial dimensions of the CSI, we can derive two
key localization metrics, i.e., Time-of-Flight (ToF) and Angle-
of-Arrival (AoA) [28]. ToF specifies the propagation distance
of the signal, while AoA defines the angle of the received
signal. Together, these metrics enable point localization on a
2-D plane using a model-based approach [29], [30]. However,
model-based methods are effective only under ideal conditions
and face challenges such as multipath interference and back-
ground clutter: they are often limited by narrow bandwidth
and insufficient antennas and struggle to distinguish among
these paths, often becoming impractical [31]. To address these
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Fig. 2. The impact of object placement in Fresnel zone and forward scattering
region on CSL

issues, deep learning (DL)-based wireless indoor localization
has been proposed [24], [25]. Leveraging the exceptional
feature extraction and data processing capabilities of DL,
these systems can effectively learn from massive amounts of
CSI samples and ground truth location pairs. This approach
incorporates environment-relevant prior information into the
localization system, reducing bias caused by multipath effects
and achieving more precise localization.

B. Vulnerabilities of Indoor Localization

Recent studies have claimed improved precision in wireless
indoor localization systems [24]. However, these systems may
still be susceptible to certain environment factors. In this sec-
tion, we analyze the potential vulnerabilities of such localiza-
tion systems, focusing on the impact of environment changes
on CSI. During wireless signal propagation, it interacts with
surroundings in complex ways, including reflection, scattering,
and diffraction. Any changes in the environment directly affect
CSI measurements, potentially introducing variations in the in-
put to DL-based localization systems. Wireless sensing theory
identifies two critical “weak spots” that can significantly affect
CSI: the Fresnel zone and the forward scattering region. The
Fresnel zone consists of elliptical areas around the Line of
Sight (LoS) path between Tx and Rx, where obstructions can
cause notable signal changes. The forward scattering region is
an area where electromagnetic waves are scattered towards the
Rx after encountering an obstacle, potentially altering signal
propagation even when direct LoS is partially blocked. We
illustrate the impact of object placement in these two regions
in Fig. 2.

To verify the impact of these “weak spots” on CSI, we
conduct experiments on one Tx and Rx. We set the length
of the LoS path to 2 m and placed a common household
vase with a diameter of 0.5 m at two different points (p;
and py) within 2 m and 0.5 m of the Rx, corresponding to
the Fresnel zone and forward scattering region, respectively.
Fig. 2 shows the collected CSI samples plotted as power delay
profiles. In Fig. 2b, one may observe that placing objects at
adjacent ellipses of Fresnel zones can cause significant CSI
change, due to constructive/destructive interference caused by

phase reversals at different ellipses of the Fresnel zone. Fig. 2d
illustrates that when objects are positioned near the forward
scattering region, the CSI strength is greatly influenced by
the blocking/unblocking of the LoS. These results demonstrate
that the signal space, which serves as input to DL-based lo-
calization systems, can be significantly altered by strategically
placing an everyday object such as a vase, and potentially be
used for attacking DL-based localization systems.

III. THREAT MODEL

We present the threat model of Loki, including the adversary
goal, requirements, capabilities, and constraints in this section.

A. Adversary Goal

In this paper, we target device-based wireless indoor local-
ization systems. A device-based wireless indoor localization
model Fp(H) — A with parameters 6, which takes the
CSI H as an input and outputs the target device’s location
A = (z,y). The primary objective of wireless localization
models is to minimize the expected localization error across
diverse positions within an indoor environment as follows:

min B a)L(Fo(H),A),

where L(-) is the loss function (e.g., root mean square error
(RMSE)) that measures the difference between the output of
Fo(+) and the ground truth A.

The adversary’s goal is to fool the wireless indoor local-
ization models to generate erroneous locations of the target
device by moving objects in the scene. The object move-
ment will impact the wireless channel and compromise the
measurements of CSI. The Rx then feeds the compromised
CSI into Fy, negatively affecting its prediction. Formally, the
adversary goal of Loki can be expressed as follows. Assuming
the sensing scene is composed of objects numbered from 1 to
N, and P, = (x;,y;) is the 2-D position of the i-th object,
and P = {P1, P,..., Py} is a set representing all objects’
positions in the target scene. Let P, = (x, ys) be the position
of the selected object. R is the process of CSI generation in
the scene and H = R(P). Loki aims to craft an adversarial
position P24 for the selected object, resulting in perturbed
CSI, maximizing the difference between the faulty prediction
and the ground truth of the target device’s location. Formally,
the adversary’s goal can be formulated as:

arg max L(Fp(R(P'), A)),
P!

where P’ = P\ P,U P/ constitutes all the objects in the scene
after moving the selected object.

B. Attack Requirements

As mentioned in Section I, conventional attacks in the signal
space face challenges such as inaccessibility, conspicuousness,
and implementation difficulties. In contrast, we envision Loki
as a novel physical-world attack with the following properties,
making it a genuine threat to wireless indoor localization
systems:

o Effectiveness. The attack should successfully manipulate

the target device’s position estimation, significantly im-
pacting the quality of location-based services.



o Accessibility. The attack surface should be readily acces-
sible to the adversary, requiring no complex manipulation
of wireless devices.

o Inconspicuity. The manipulated object should be pre-
existing in the scene, with its subtle repositioning limited
to a few centimeters, making the movement imperceptible
to observers.

e Ease of operation. The object’s position should be easily
alterable by any ordinary individual without external
assistance.

To illustrate our approach in line with these requirements,
we only require repositioning objects that are already present
in the scene and intend to utilize ordinary medium-sized
objects (e.g., a household vase). The displacement applied
to these objects should remain within a reasonable range,
typically in the range of 10cm. Moving already-present objects
within a small range is usually feasible and unnoticeable,
especially in a public area. It is worth noting that while our
design allows for object rotation in conjunction with position
shifting, we deliberately choose not to explore this aspect in
the current paper, as it could significantly compromise the
attack’s stealthiness.

C. Adversary Capabilities

In the following discussion, we explain the adversary ca-
pabilities in the Loki attack. We assume that the adversary
can access the target indoor environment, obtain its spatial
layout, collect CSI data using their own transceivers or existing
infrastructure, and manipulate movable indoor objects. The
spatial layout can be acquired through various ways, such as
floor plans, photographs, or LIDAR scanning, which facilitate
the construction of a digital replica of the indoor scene.
The collected CSI data are then used to calibrate material
properties, as detailed in Section IV-A2. These assumptions
are realistic because indoor spaces requiring location-based
services are generally public areas, freely accessible to individ-
uvals. Furthermore, it is assumed that the adversary has access
to the locations and orientations of wireless transceivers,
information that is also readily accessible.
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Regarding the wireless localization model, we focus on two
primary scenarios: the white-box and black-box settings. In
the white-box setting, the attacker possesses full knowledge
of a victim’s localization model, including its architecture
and weights. This enables the attacker to perfectly replicate
the user’s model, thus facilitating a more effective attack.
This assumption aligns with real-world scenarios, as supported
in [17]. In the white-box scenario, attackers can employ
gradient-based algorithms to execute precise attacks on the
model. In the black-box setting, however, the adversary can
only interact with the model by providing inputs and observing
outputs, without any details of the model’s internal mecha-
nisms. This scenario poses a more challenging yet realistic
task. Black-box attacks leverage model transferability; adver-
sarial attacks are generated on a pre-trained surrogate model
using its specific architecture and CSI dataset. These attacks
are then transferred to compromise the target’s previously
unseen wireless indoor localization model.

D. Adversary Constraints

The adversary of the Loki attack faces the following con-
straints: first, it does not possess the ability to embed adver-
sarial signals within the system, as doing so would require
hacking into wireless devices, which is both impractical and
highly conspicuous. Second, the adversary is restricted from
introducing new objects into the target environment; they are
limited to manipulating existing objects only. Any introduction
of unfamiliar objects in the scene would be noticeable and
could raise suspicion. Instead, the adversary can only work
with the movement of already-present objects. Furthermore,
any manipulation of these objects must adhere to physical
laws. For example, optimized placement of objects cannot
result in overlap with other physical entities, nor should objects
float in the air. Finally, the complexity of the optimization
process for object movement is constrained. A brute-force
traversal of the entire sensing environment for each possible
position is infeasible due to the high computational cost, both
in real-world measurements and in simulations.
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IV. ATTACK DESIGN

In this section, we introduce the attack design of Loki.
As shown in Fig. 3, the workflow consists of four steps:
scene configuration and modeling, radio propagation model-
ing, backward optimization, and robustness enhancement. The
key symbols and their meanings are summarized in Table I.

TABLE I
SUMMARY OF KEY SYMBOLS

Symbol Meaning Symbol Meaning
R(-) RT model & Digital twin
PRT Rx/Tx position CRT Rx/Tx antenna pattern
o Scene objects tmax Max ray bounces
H CSI A’ Reflection spread factor
T(-) | Transfer function R, Scattering matrix
EP Incident field Q Diffraction matrix
E™ Outgoing field D Basis transformation matrix
A True location p Adversarial position
P Feasible region € Max movable distance

A. Scene Configuration and Modeling

1) Scene Configuration: We consider three properties of
the real-world environment, including the transceivers, scene
geometry, and the characteristics of the materials involved,
which are key factors influencing CSI. The geometric prop-
erties can be obtained either by manual measurement or by
using LiDAR to replicate a real-world environment in the
digital world. Besides, the electromagnetic (EM) parameters of
the corresponding material are sourced from the international
telecommunication union recommendation [32]. As for Tx and
Rx, we manually record their positions and publicly obtain
relevant antenna settings from online technical specifications.

2) Scene Modeling:  After getting scene configurations,
we generate a digital scene model suitable for RT. We
formulate the modeling process of a digital twin as & =
G(PR, PT CR, CT, O, tmax). Here, tnay is the maximum num-
ber of allowed interactions between the environment and
ray, discussed in Section IV-B1. PR and CR are the Rx’s
positions and antenna patterns, while PT and CT are the Tx’s
positions and antenna patterns. O represents all the N objects
or obstacles in the scene. O; = {x;, yi, z;, (} is the i-th objects
located at (z;,y;, z;) with materials ¢. High-precision model-
ing hinges on the precise measurement of these key features,
particularly material characteristics. We adopt the calibration
method to enable physical properties to converge to real-world
values, eliminating “mismatches” with minimal effort [33],
[34]. However, even with advanced calibration techniques,
some biases inevitably remain. Therefore, to ensure effective
real-world scalability, we address strategies for enhancing the
robustness of Loki in Section IV-D.

B. Radio Propagation Modeling

1) Shooting-and-Bouncing Ray Method: To acquire the
estimation of wireless signals, the RT approach is widely
adopted to accurately predict the propagation of high-
frequency EM waves [35]. In this paper, our simulation is
conducted using the shooting-and-bouncing ray (SBR) forward

RT algorithm [36]. The basic principle of SBR is to track
individual rays emitted from the source, tracing both direct and
reflected paths by applying Snell’s law and geometrical optics.
According to the RT theory, CSI H can be seen as an integral
over the rays from the Tx, which can be mathematically
represented as: H = [, h(w, O, PR, PT,C®, CT)dw, where
Q is the unit sphere, w denotes a ray path shooting from 2.
h(-) is the function quantifying how the single ray propagates
in the indoor scene. However, there is no closed-form solution
to the equation. Therefore, Monte Carlo sampling [37] is used
to approximate the integral by shooting M rays from the Tx,
and bouncing rays on intersected objects until the maximum
depth ¢, is reached or the ray is captured by the Rx. The
resulting Monte Carlo estimation is:
1M
i > h(w;, 0, PR, PT,CR,.CT). (1)
i=1

2) CSI Generation: The CSI H between a Tx and Rx at
frequency f can be formulated as the sum of M propagation
paths (rays) [38]:

47Tf ZCR

where ¢ is the vacuum speed of light, ¢ and ¢! are variables
related with the intersection between the transceiver and i-th
path with time delay of arrival 7;. T; is the transfer function
of ¢-th path. A propagation path i undergoes t,,,, intersec-
tions with real objects in the scene, experiencing different
propagation phenomena, including reflection, diffraction, and
diffuse scattering. Each intersection is represented as a hit
point P; = (z;,y;,%;), for j = 0,...,tmqes + 1, and the
Py and P;, .. .1 are PT and PF, respectively. For each hit
point, we need to establish a relationship between the incident
field at current hitting point P;, denoted as E}"(Pj), and the
created field E7 "+1(Pj+1) at the next hit point P, involving
the relation of E;“(Pj) to E"(P;), the outgoing field at P;,
and the relation of E$"(Pj11) to E" | (Pj41). The incoming
and outgoing fields at the hit point P; are related as follows:

E"(Pjy1) = F;(EM(Fy)), 3)

H =

Ti(CM(¢]))e 721, )

where F;(-) describes different types of wireless signal inter-
action (e.g., reflection, scattering, and diffraction).

For an incoming EM wave with direction %, incident on a
surface, the field transformation for reflection is:

Fj(EY(Py)) = R(ki, Q) B (P) A'(Pj, Py)e 92X+t (4)

where A"(Pj41, P;) is the spreading factor related with the
shape of the wavefront [39] and d; = || P; — P;_1]| represents
the distance between hit points P; and P;_;. R(:) is a
differentiable function dependent on direction of incidence ks
and material properties ¢. In the scattering process, the Fj(-)
is given as:

Z(k;, ks, dA)

F El]’l
(PP, o

= |REP (7)) e PRhn (5)
where l;:s is the direction of the scattered ray, dA is the size
of a small area element wrapped around the hit point P;,



and Z(k;, ks, dA) is a function of dA, the incidence direction
l%i, the scattering direction I%S, and the scattering pattern [40].
R, is the Fresnel coefficients matrix [32]. According to [41],
diffraction can be calculated as:

Fj(E}(Py)) = QE} (P A (Pyya, Py)e 7234t (6)

where @ is the diffraction matrix and AY(P;;1, P;) is the
spreading factor for diffraction. In particular, when j = 0 in
F;(-), we have:

in in e_j2§d1 in
Eg(Po) = CM(¢y), Fo(Eg(Po)) = —a Eoh)-
The incoming field at the hit point P;;; can be calculated as:
EP 1 (Pjy1) = D ES™(Pj1), (8)

where D; is the basis transformation matrix detailed in [21].
From Eqn. (3)—(8), we can derive the relationship between
the transmitted and received field:

By ei1(Pryant1) = D1 B (- DiFo (B (Po))
=T(Cr(¢"))e 727,

©))
where the 7 = (¢)' ; dj represents the total propagation
delay. T'(-) is the transfer function in Eqn. (2) for the given
propagation path. CT(-), as well as CR, can be obtained as
in [42]. We can successfully model the generation of CSI based
on the aforementioned procedures.

C. Backward Optimization

In this section, we detail the gradient-based optimization
for object placement, in which it is crucial to obtain the CSI’s
gradient w.r.t. the object position. Furthermore, the geometry
constraint must also be considered for moving the object to
prevent its placement from violating the laws of physics. While
existing simulators like Sionna RT represent advancements in
differentiable ray tracing for radio propagation modeling [33],
they lack the full differentiability and support for object posi-
tion optimization required for our wireless indoor localization
application. This limitation necessitates the development of
our own fully differentiable wireless ray tracing simulator.

1) Making it Differentiable: To achieve back-propagation
and acquire the partial derivative of the scene parameters O,
especially the object positions, we need to cast our attention
back to Eqn. (1). We can find that the differentiability of CSI to
scene parameters O depends on whether h(-) is differentiable.
As indicated by Eqn. (2) and Eqn. (9), it is clear that CSI is
differentiable w.r.t. the hit points P, so the partial derivatives,
Op H, can be obtained leveraging the automatic differentiation
(AD) computation capabilities of machine learning frame-
works, like TensorFlow. In most cases, the above strategy
gives correct gradients if the visibility of objects in the
scene does not change, i.e., the M sampled paths would not
vary. However, evaluating the impact of strategically placed
objects requires shifting their positions, inevitably altering
visibility and necessitating path resampling. This introduces
a significant challenge: geometric edges and occlusions cause
discontinuous changes in the RT paths used for wireless signal
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Fig. 4. Illustration of CSI modification through strategic manipulation of vase
position with differentiability.

propagation modeling. These discontinuities disrupt the opti-
mization process by hindering gradient-based methods. While
similar challenges have been addressed in computer graphics,
particularly in scene reconstruction [43], [44], these techniques
are not readily adaptable to the intricacies of RT in wireless
propagation. A promising solution involves smoothing these
discontinuities. By replacing the discontinuous changes in RT
with smoothly parameterized functions [45], we can obtain
meaningful gradients that guide the identification of optimal
attack positions. For instance, the binary validity check of
a path, typically represented by an indicator function 1(-),
exhibits abrupt changes with object movement. Approximating
this with a smooth function, such as H% (where « controls
the smoothing), eliminates the discontinuity and enables ef-
fective gradient-based optimization.

To validate the effectiveness of differentiable placement of
the object, we move the vase to control the CSI, discussed in
Section II-B, through the gradients provided by the module.
Previously, the random placement of the vase caused signifi-
cant disturbances to CSI, but these disturbances are random.
Here, we attempt to leverage the differentiable placement of
the object with the gradient-based method to more intelligently
control the position of the vase, thereby generating interference
with CSI that aligns with our expectations. Specifically, we
take the amplitude of CSI as the optimization objective, with
the aim of shifting the vase using gradient descent to modify
CSI. The optimization process is illustrated in Fig. 4. With
differentiability, one can observe that it is indeed possible to
generate adversarial object positions that result in significant
CSI variations.

2) Geometry Constraints: To move the selected object
properly, we have to adhere to two rules: i) the placement has
to respect physical laws and fall into the feasible region P,
and ii) the new position must be close to the original location
to avoid being conspicuous. We will now elaborate on these
constraints in detail.

a) Physical feasibility constraint: The feasible region
should be sufficient to hold the object and should not result in
a physical overlap of objects. The valid region can be obtained
either by a human annotator, given that we have established
a digital twin of the target scene. The adversary’s objective
can be reformulated with these inherent constraints: P34V =
arg max p,cp L(Fo(R(P\FPsUP/)), A). Generally, rather than
solving the constrained optimization, the Lagrangian-relaxed
form of the problem is preferred to use, as in the work [46]:

P = arg max L(Fo(R(P\ P,U F)), A) = AP.
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Fig. 5. APF of geometry constraints.

However, the geometry constraints of scenes are discrete.
Furthermore, there is no gradient information available for the
coordinates of the selected objects, given these constraints,
which prevents us from optimizing. To tackle this problem,
we smooth the discrete constraints into a continuous function
and establish a differentiable relationship between geometry
constraints and the location of the selected object. Inspired
by [47], we use the artificial potential field (APF) approach to
introduce gradients between the location and the cost function.
The basic idea of APF is that the destination of the moving
object exerts an attractive force U? on it while the obstacles
apply a repulsive force U”, and the resultant force navigates the
object to the destination. The U?® and U" are all represented
by differentiable functions. We focus on the repulsive force
U" imposed by obstacles, as in our context, the mobile object
does not have a definite destination. Thus, we can achieve
automatic obstacle avoidance while optimizing the position of
objects with the following objective:

P = argmax L(Fyp(R(P\ P,UP.)),A) — \U",

where U" can be expressed as follows:

39 (7,(113) - n%) n(p) <o
0 otherwise,

U'(P) =

where n(P) = minpepe [|[P — Psl| is the smallest distance
between the mobile object and the i-th obstacle edge P, and
no and g are appropriately chosen constants. When the object
is not near the obstacle edge, the repulsive force is 0, which
does not have any impact on Loki’s optimization decision. The
repulsive force only pushes the object away when it moves
extremely close to the obstacles, as illustrated in Fig. 5. If
necessary, U" can be replaced with any other proper APF
functions that do not negatively impact Loki’s performance.

b) Inconspicuity constraint: The second geometric con-
straint ensures that the repositioned spot remains close to its
original location, making it visually inconspicuous to human
observers. To quantify this, we introduce € as the maximum
allowable distance between the repositioned position P! and

P, as will be defined in Section V-A. With this constraint,
the optimization problem can be formulated as follows:

P _ arg max{g(]-“@(R(P \{P}UP)),A) - AUr}
g

subject to || P! — P2 < e. (10)

3) Gradient-based Optimization: The subsequent step of
the Loki attack involves determining the adversarial position
of the object to fool the wireless indoor localization model.
This begins by feeding generated CSI into the model to make
a precise prediction of the location. To enlarge the localization
error, we perform a gradient ascent approach. Specifically, we
calculate its gradients w.r.t. the object position P/, and then

S
update P! using these gradients. Note that the loss function
takes both the localization error and the geometry constraints
into consideration. This iterative procedure is conducted until
the maximum number of optimization steps, T, is reached, at
which point the most effective adversarial position is recorded.

Finally, we test the adversarial attacks in real-world scenarios.

D. Robustness Enhancement

While optimizing object placement within a perfectly repli-
cated digital scene offers a valuable starting point, real-
world deployments introduce complexities that can undermine
the effectiveness of adversarial attacks on wireless indoor
localization models. Specifically, CSI is highly susceptible
to variations in placement, materials, and hardware [48].
Therefore, to enhance the robustness of P, we propose a
universal adversarial attack designed to withstand these real-
world variations. Inspired by [49], we leverage the concept
of Expectation over Signal Variation (EoSV). This involves
introducing a set of transformations 7' to the signal and
optimizing the expectation of the objective function:

argmax Eper L(Fo(R(P\ PsUP))),A) — \U",

where 7T represents the set of transformations 7" affecting the
wireless signal. To implement EoSV, we introduce random
discrepancies in the virtual object’s position, on the scale of
a fraction of the carrier wavelength. This compensates for
minor deviations between the ground truth geometry and its
digital representation. A similar approach addresses variations
in material characteristics. Due to the computational cost
of exploring all possible discrepancies, we approximate the
expectation in Eqn.(11) by averaging over five randomly
sampled variations. These variations encompass object posi-
tions, materials, and signal variations introduced by hardware.
Furthermore, mirroring the technique in [17], we incorporate
real-world CSI noise collected in the target environment at
different times of day into the adversarial attack optimization
process. This strengthens the attack’s resilience against random
signal fluctuations encountered in practical deployments.

V. IMPLEMENTATION, SETUP, AND METRICS

In this section, we provide details of Loki’s implementation,
experiment setup, and metrics used in our study.

A. System Implementation

We construct a high-fidelity digital twin of a real-world
indoor environment using Blender 3.6 and import it into
Mitsuba 3 [50] for wireless RT. All deep learning components,
including camera calibration, wireless indoor localization
models, and our novel differentiable object placement module,
are implemented using TensorFlow 2.13 and Python 3.8. The
largest repositioning distance € is set to 10 cm to achieve



inconsipuity to human eyes. For training the differentiable
object placement module, we utilize the Root Mean Square
Propagation (RMSprop) optimizer with a learning rate of 0.01
and a maximum of 20 iterations. This configuration, found to
be effective through empirical testing, is maintained for all
subsequent experiments. The geometry constraint weighting
factor A is set to 0.1 based on hyperparameter tuning. Param-
eters g and no within U" are set to 4 and 1, respectively.
Finally, for EoSV, we introduce random discrepancies in
geometry within two wavelengths and variations in material
characteristics within 5%.

TABLE 11
EXPERIMENTAL SETUP SUMMARY

Scene Meeting Room|  Corridor Classroom | Laboratory
3.53x2.85m? |31.14x2.65 m?|9.46x 7.8 m?|10.79x5.59 m?
Model CiFi AAR SIABR DLoc
Tx
count 1 3 4 4
Antenna
count 3 12 16 16

B. Experiment Setup

In the experiment setup, to illustrate the effectiveness of
Loki across various indoor environments, we select 4 scenes
from the real world for our analysis. The real-world scenes
include a meeting room (3.53m X 2.85m), a corridor (31.14m
X 2.65m), a classroom (9.46 m x 7.8 m), and a laboratory
(10.79 m x 5.59 m). Fig. 6 shows the layout of the four
scenarios. In addition to this, we employ the ASUS RT-
AX86U wireless APs in our setting and obtain CSI with
the AX-CSI tool [51]. We employ the models CiFi [52],
AAR [53], SIABR [25], and DLoc [24] for our wireless
indoor localization security research due to their practicality
and representative nature in the field. CiFi formulates wireless
indoor localization as a classification problem, utilizing DCNN
as the localization model. The system first builds a CSI
database of various locations, then generates localization re-
sults by weighted averaging of the DCNN’s highest-probability
classification outcomes. In contrast, AAR and DLoc tackle
indoor localization as a regression task, enhancing the CNN
model complexity through ResNet. Lastly, STABR is the first
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Fig. 6. The real-world experiment scene layouts.
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to leverage broadband wireless signals for indoor localization.
These models demand diverse experiment setups regarding
the number of Tx devices and antennas: DLoc requires 4
Tx devices with a total of 16 antennas, SIABR needs 3
Tx devices, while CiFi and AAR require only 1 Tx with 3
antennas. We implement these models and collect CSI data
by adhering closely to the methodologies outlined in the
respective papers. The experimental parameters used in our
settings are summarized in Table II.

C. Metrics

To evaluate the performance of our proposed Loki, we use
various metrics, drawing extensively from prior studies [16],
[19], [24], [25], [52], [53]. Specifically, the selected metrics
include:

Localization error. For a specific device in the scene, the
localization error is defined as the discrepancy between the
original estimated location A and the estimated location A%
after Loki’s attack, i.e., ||A — A%Y||,.

Attack Success Rate (ASR). The ASR is calculated as N,
where Ngyccess indicates the number of successful attacking,
and Ny indicates the total number of the attacking. We
identify a successful attack as the alteration in estimated loca-
tion caused by Loki is greater than a threshold 4. Specifically,
once an attack causes a localization error greater than 4, it is
recognized as a successful attack and could be counted. The
metric is first applied to wireless localization in [19].

Nsuceess

VI. ATTACK EVALUATION

In this section, we conduct extensive experiments to show
the superiority and robustness of Loki. After that, we study
how Loki extends to multiple objects, targeted attacks, and
indoor tracking, and investigate the effectiveness of Loki under
black-box settings. Finally, we study the impact of the EoSV
module and the maximum repositioning distance.

A. Overall Performance

We first evaluate Loki’s performance by analyzing the
localization error and ASR across various models and real-
world scenes. In our study, we randomly select 100 reference
points within these scenes, target them using Loki, and present
the results in Fig. 7. As illustrated in Fig. 7a, the median
localization errors for the meeting room, the corridor, the
classroom, and the laboratory consistently exceed 1.95 m,
2.15m, 3.13 m, and 3.62 m across all models, respectively.
These errors are substantial when considered in relation to
the dimensions of the respective environments. We attribute
these substantial errors to several factors. Firstly, CSI, which
reflects communication channels, is highly susceptible to envi-
ronmental changes caused by object movement. Additionally,
while machine learning models generally perform well across
various tasks, they are prone to vulnerabilities from non-
random disturbances [54]. Last but not least, our proposed Loki
attack can effectively identify the adversarial object positions
that can attack the localization model via optimization. One
may see that SIABR and DLoc almost achieve the lowest
localization errors across the four scenarios. This can be
attributed to more Tx devices and antennas, which constitute
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Fig. 7. Overall performance of Loki.

a potential defense method. We postpone the discussion on
defense strategies to Section VIIL.

We also measure the ASR of all these attacks in each
scene. We set the threshold for a successful attack in these
environments to 1.5m, 2m, 2.5m, and 2.5 m according to the
relative sizes of each environment. The results are reported
in Fig. 7b. We can observe that the Loki’s attack achieves an
average success rate of 84.5% across all four environments and
throughout the four models. Notably, the ASR in all the scenes
exceeds 60%, underscoring the resilience of our attack across
diverse environments and various models. To dive deeper into
Loki’s capabilities, we introduce the t-SNE method to visualize
the feature embeddings of the original features and the features
after the attack. In detail, we use CiFi as the target model
and sample various reference points to attack with Loki. We
project the output of the last layer of the CNN of CiFi into
two dimensions using t-SNE to visualize the distribution of
these samples in both their original state and under attack.
The results are depicted in Fig. 7c. It can be observed that
the t-SNE of the samples after Loki’s attack appears more
scattered compared with the original samples due to increased
scene diversity caused by object movement and confusion of
the wireless indoor localization model.

To demonstrate Loki’s effectiveness, we compare it against
three baseline object placement methods for implementing
the attack: i) random attack (RA), which randomly places
the object within a 20 cm range; 2) genetic algorithm (GA)
[55]; and 3) particle swarm optimization (PSO) [56]. Both GA
and PSO are established gradient-free optimization algorithms
that maximize their respective fitness functions. We utilize
the objective function defined in Section IV-C2 as the fitness
function for both methods. We also use Phy-Adv [19] as
another baseline method to show the superiority of Loki. As
shown in Fig. 7d, Loki achieves a localization error of up to
4.86 m, significantly outperforming all these baselines.

B. Robustness Analysis

In this section, we analyze Loki’s robustness to different
real-world factors. These factors include the size of the object,
the distance between the selected object and the device to be
localized, as well as the various types of objects. Here, we
use a range of objects (e.g., a vase, chair, cabinet, bookshelf,
TV set, and sofa) as attack vectors across all four scenarios,
unless otherwise stated.

1) Effect of Object Size: We select objects with different
volumes (length x width x height) to investigate the impact
of their size on localization estimation errors. The results
are shown in Fig. 8. Overall, the object size is strongly
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correlated with the localization error. As the volume continues
to increase, Loki’s attack effectiveness improves significantly.
This is reasonable, as the larger the size of the object, the
more EM waves it interacts with. Therefore, a larger object
can induce more pronounced interference with CSI when it
moves, thereby enabling a broader scope for descent during
gradient search. Meanwhile, we are surprised to find when the
volume of the object is only 0.2m?, the localization errors can
also be within a range close to 3 m, which demonstrates the
effectiveness of Loki.
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Fig. 8. Varying size. Fig. 9. Varying distance.

2) Effects of Distance: We investigate the impact of the
distance from the moved object to the target device. The results
are presented in Fig. 9. It becomes evident that when the
distance to the target device falls within the range of 2.5m, the
performance of the Loki attack is inversely proportional to the
distance, resulting in averages for mean localization estimation
errors above 3.09 m. Moreover, as the distance continues to
increase, the effect of the attack remains almost unchanged.
The phenomenon can be explained by the fact that as the
distance increases, the variation in wireless signals induced
by object movement progressively diminishes, resulting in a
reduced impact on the received CSI, thereby leading to getting
stuck in local optima during optimization. However, even as
the distance increases, the localization error is still above 2.1m,
underscoring the robustness of Loki under diverse distances.

3) Effects of Object Types: We further study the effect of
different objects, whose different sizes and material proper-
ties influence Loki’s attack performance. We evaluate Loki’s
performance with six everyday objects: a vase (VA), a cabinet
(CB), a bookshelf (BS), a display cabinet (DC), a TV set (TS),
and a sofa (SF), utilizing them as attack vectors to determine
Loki’s effectiveness across various conditions. The results are
detailed in Fig. 10. Our findings reveal that the type of object
significantly impacts Loki ’s performance. Notably, using a
table as the attack vector yields optimal results due to its
larger size and consequent amplification of wireless signal
disruption. Interestingly, the vase, despite its smaller size,
exhibits a similar attack performance to the display cabinet.
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This is attributed to the vase’s smooth surface, which enhances
reflectivity and magnifies its impact on wireless signals.

C. Extension to Multiple Objects

In this section, we explore the enhancement of Loki by
simultaneously moving multiple objects. Our experiment in-
volves controlling the movement of 2, 3, and 4 objects at once,
with results depicted in Fig. 11. The data reveal a clear trend:
as the number of objects increases, the effectiveness of the
attack improves. Remarkably, in extreme cases, Loki induces
localization errors exceeding 6 m. This heightened impact
arises because moving multiple objects at once affects the CSI
more significantly than a single object’s movement. However,
the relationship between the number of objects and localization
errors is not linearly proportional. The gain from moving two
objects is greater than that from moving four, likely due to
the increased complexity of the optimization problem, which
becomes more challenging and non-convex with more objects
involved. Nonetheless, achieving localization errors beyond
5 m clearly demonstrates the effectiveness of Loki’s attack
strategy.

D. Extension to Targeted Attack

While our initial system design focused on untargeted
attacks, we extended Loki to explore targeted attacks against
localization methods that treat the problem as a classification
task (e.g., CiFi). For targeted attacks, we reformulate the ob-
jective as: P2 = argminp, cp L(Fy(R(P\PUP,)), Aunchor)
where Agncnor represents the targeted anchor point’s location.
As shown in Fig. 13, the localization errors in Fig. 13a are
slightly smaller compared to Fig. 7a, likely due to the more
restricted parameter space in targeted attacks. Nevertheless,
Loki still achieves an impressive 75.2% success rate on average
in these targeted attacks.
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(a) Localization errors. (b) Probability of success.

Fig. 12. Extending Loki to targeted attack.

E. Attack on Indoor Tracking

We extend our analysis of Loki to evaluate its effectiveness
against the indoor tracking system DLoc, the sole baseline
supporting indoor tracking, moving beyond static targets.
Unlike the single optimization problem described in Eqn. (11),
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tracking moving targets requires Loki to simultaneously attack
all potential locations within the target’s feasible region and
compute the expectation to determine the optimal adversarial
positioning. As illustrated in Fig. 13a, initially, repositioning
a single object induces a median tracking error of 1.2 m.
Notably, the attack’s effectiveness scales dramatically with the
number of repositioned objects. When increased to 4 objects,
Loki achieves tracking errors escalating to 4.3 m. To further
illustrate the attack’s potency, Fig. 13b presents the trajectories
before and after the attack. The visualization clearly reveals
how Loki substantially deviates from the trajectory estimated
by DLoc, underscoring its remarkable capability to disrupt
indoor tracking systems.
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Fig. 13. Attack on indoor tracking.
F. Black-box Attack

In this section, we evaluate Loki’s black-box performance
when the attacker is unaware of the specific architecture of the
target model. We first train a surrogate model and utilize it to
generate an adversarial object position. By physically moving
the object to the position in the real environment, we obtain
perturbed CSI measurements and then feed it into the target
black-box model for location prediction. Two surrogate models
are designed based on the representative structures commonly
adopted in wireless indoor localization systems [24], [25],
including DCNN and LSTM. Specifically, we use a DCNN
surrogate by default for all targets. For the SIABR model, we
additionally test an LSTM surrogate (denoted as STABR-L in
evaluation) to exploit its structural similarity. These models
learn a mapping from CSI to spatial coordinates. Initially,
we deploy a CNN model featuring three ResNet blocks to
train and then launch attacks on models such as CiFi, AAR,
and DLoc, all based on the CNN architecture. Furthermore,
we apply the same adversarial strategy to SIABR, which
integrates LSTM networks with ResNet, to evaluate the impact
of varying model architectures under black-box scenarios.
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Fig. 14. Black-box attack.

The results of these experiments are presented in Fig. 14.
One may observe that black-box attacks using CNN with
3 ResNet blocks against CiFi, AAR, and DLoc achieve an
average localization error of 2.5 m, 2.51 m and 2.13 m,
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respectively; all the ASRs exceed 60%, even under black-box
attack. In the case of attacking different model architectures,
the average localization error and ASR of SIABR are 1.868 m
and 44%. This is because STABR has a more complex network,
including ResNet, LSTM, and an intra-transmitter attention
mechanism. Without knowing the specific model architecture,
the attack scenario is harder only using the CNN with 3
ResNet blocks. Nonetheless, when we employ the black-box
attack using an LSTM combined with ResNet against STABR
(STABR-L), it achieves a higher localization error of more than
2.5m. This result shows that while access to the model helps,
we can still get good performance with a surrogate.

G. Ablation Study

We further conduct an ablation study in this section to
understand the contribution of EoSV. We compare the original
Loki attack with the following cases: without the expecta-
tion of object placement variation (w/o EoPV), without the
expectation of material variation (w/o EoMV), and without
the expectation induced by hardware variation (w/o EoHV).
The comparison results are shown in Table III, illustrating
that EoSV significantly impacts the effectiveness of Loki’s
attack. Specifically, neglecting the influence of materials yields
the greatest impact, with the localization errors decreasing by
approximately 2.00m. The cause of this phenomenon is largely
due to the material properties significantly affecting wireless
propagation, with mechanisms of reflection, scattering, and
diffraction. Overall, the median localization error (over 3.89m)
of Loki is effectively enhanced with EoSV, showing a high
practicality of our attack.

TABLE III
ABLATION STUDY
Component | Loki | w/o EoPV | w/o EoOMV | w/o EoHV
Loc. err. 3.89m 221m 1.89m 2.25m

H. Sensitivity Analysis

In this section, we analyze the impact of maximum reposi-
tioning distance and environment knowledge on Loki’s attack.

1) Analysis of maximum repositioning distance: We con-
duct experiments to investigate how the maximum reposi-
tioning distance affects the attack performance. We vary the
maximum repositioning distance to 5 cm, 10 cm, 15 cm, and
20cm and optimize the object placement within each range. As
shown in Fig. 15, a substantial performance gain occurs when
the movable distance increases up to 10 cm, increasing local-
ization error by up to 1.47 m. Although larger repositioning
distances can further improve the attack performance, the gains
are only 0.55m and 0.72m with 15cm and 20 cm maximum
repositioning distance, respectively. This is largely due to the
periodicity of wireless signal propagation. A displacement of
10 cm is comparable to the signal wavelength (approx. 6-
12 cm), which is sufficient to induce maximal phase shifts
(e.g., shifting from constructive to destructive interference)
within the sensitive Fresnel zones. Extending the movement
range further yields diminishing marginal perturbations to the
multipath structure.
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Fig. 15. Analysis of maximum repo- Fig. 16.
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Analysis of environment

2) Analysis of Environment Knowledge: We also conduct
experiments to explore the effectiveness of Loki under in-
complete environment knowledge. Specifically, we investigate
Loki’s performance in seven scenarios: 1) with complete envi-
ronment knowledge; 2) with missing tiny objects (e.g., books
and backpacks); 3) with added tiny objects; 4) with missing
specific small objects (e.g., desktop computers, chairs); 5) with
added small objects; 6) with missing larger objects (e.g., sofa
and bookshelf); 7) with added larger objects. The results are
reported in Fig. 16. We observe that discrepancies involving
tiny objects exhibit negligible impact on attack performance.
Variations in small objects lead to a slight degradation, with
a reduction of roughly 0.66 m in median localization error,
indicating Loki’s robustness to such variations. In contrast,
discrepancies involving larger objects result in a more notice-
able effect, with the median localization error decreasing by
approximately 1.16 m. Nevertheless, even in these challenging
scenarios, the attack retains sufficient efficacy to compromise
indoor localization models, demonstrating that Loki can still
perform effectively under incomplete environment knowledge.

VII. SECURITY ANALYSIS AND DEFENSE DISCUSSION

In this section, we conduct a comprehensive security analy-
sis of Loki, with the objective of uncovering the fundamental
reasons behind its effectiveness and resilience. Our findings
aim to further inform the development of defensive strategies
for safeguarding wireless indoor localization models against
such attacks. To filter out irrelevant factors and streamline
the experiment process, our tests are carried out in a vacant
classroom. In this controlled setting, the Tx and Rx devices
are positioned at coordinates (0 m, -2.5 m) and (0 m, 1.5 m),
respectively, with a strategically placed vase serving as the
attack vector. Note that the single Tx device is equipped with
three antennas. The vase is positioned at varying distances of
0.5m and 1 m from the Rx and is moved to deceive the local-
ization model. We plot the CSI variations as a contour map,
and provide a visualization of Loki’s optimization trajectories
on top of the CSI contour maps in Fig. 17, to examine how the
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Fig. 17. Security analysis.



adverse locations identified by Loki correspond to the “weak
spots” indicated by wireless sensing theory.

One may readily observe in Fig. 17 that moving an object
within the forward scattering region and the Fresnel zone re-
sults in significant variations in CSI strength. The optimization
trajectories of Loki align with the normal direction on the con-
tour map, where CSI strength undergoes the fastest changes.
Nevertheless, some discrepancies between the normal direction
and these trajectories suggest the need for Loki’s ray-tracing
approach instead of relying solely on conventional wireless
sensing models. These findings reveal that Loki’s optimization
process consistently identifies areas that can disrupt wireless
indoor localization, regardless of an object’s initial position.
These “weak spots” cause pronounced changes in CSI, posing
a considerable risk for errors in localization models. Moreover,
these weak spots are inherent to the physical characteristics of
wireless signals, rendering them unavoidable. This highlights
the effectiveness and robustness of Loki. In the following
section, we further explore strategies to enhance wireless
indoor localization based on this analysis.

One effective strategy to defend against Loki is to enhance
localization models by incorporating more input data, and
a practical approach to achieve this is by increasing the
number of Tx devices and antennas. This creates a richer and
more resilient dataset for the localization models. To evaluate
the efficacy of this defense method, we introduce one or
two additional Tx devices into the scene and customize the
models to accommodate the increased CSI input. As detailed
in Table IV, our findings show that the localization error
decreases as the number of Tx devices increases: from an
average error of 3.57m to 2.96 m and further down to 2.52 m.
Nevertheless, adding more transceivers is not always feasible
in the real world, thus limiting the practicality of such defense.

Another promising defense against the Loki attack is adver-
sarial training [57], [58]. The technique involves integrating a
subset of adversarial examples into the training data, thereby
enhancing model robustness against adversarial attacks during
inference. Notably, adversarial training serves as an equivalent
mechanism to retraining with post-deployment data. In our
approach, we gather CSI that includes adversarial samples
and use the data to train wireless indoor localization models.
By following the process outlined in Section VI, we generate
adversarial CSI specifically targeting the Loki attack. We
expect this training method to reduce the models’ sensitivity to
such attacks. Upon applying adversarial training and assessing
the models’ performance against Loki attacks, the results in
Table IV reveal a reduction in average localization errors from
3.57 m to 2.85 m. We attribute the inferior performance of
adversarial training, compared with adding transceivers, to
the insufficient amount of adversarial samples. Nevertheless,
these findings underscore the potential of adversarial training
to create more resilient wireless indoor localization models.

VIII. RELATED WORKS

Wireless indoor localization has become increasingly sus-
ceptible to various types of attacks. One such attack is
spoofing [59], [60], where a malicious party introduces one
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TABLE IV
EFFECTS OF POTENTIAL DEFENSE METHODS

Localization Adding Adding Adversarial

error (m) 1 Tx 2 Tx training
CiFi 3.37 (10.58) | 2.91(11.04) | 3.19 (]0.76)
AAR 3.04 (J0.61) | 2.70 (]0.95) | 2.98 (]0.67)
SIABR 2.79 (10.56) | 2.28 (J1.07) | 2.51 ({0.84
DLoc 2.65 (10.70) | 2.21 ({1.14) | 2.73 (]0.62)

or more transmitters into the target area to inject fake sig-
nals. This deceit results in the localization model producing
incorrect position estimations. Additionally, attackers may
deploy signal jammers that intentionally emit distorting signals
omnidirectionally, significantly compromising localization ac-
curacy [11]. The threat intensifies with collaborative jammer
attacks, where multiple jammers are used, thereby amplifying
the range and intensity of the jamming signals [13]. However,
spoofing and jamming are often impractical in real-world
scenarios due to two key limitations: i) they require expensive
equipment, hindering widespread use, and ii) attackers need
specialized expertise to execute complex operations like signal
synchronization, fabrication, and replay.

The successful application of DL in wireless indoor local-
ization has brought new security challenges. An adversary can
deliberately perturb input data to deceive an underlying DL
model [54]. Typically, the perturbation is directly added into
the input of these wireless indoor localization models [14],
which is usually deemed unrealistic. The work [61] develops
a reinforcement learning-based attack, though its effectiveness
is limited by challenges in predicting device movements. A
more practical approach is to manipulate interference signals
through a third-party device to produce adversarial sam-
ples [15]-[17], [19]. Nowadays, physical adversarial attacks
have garnered significant attention, especially in the realm
of wireless indoor localization. These attacks are not only
more realistic but also pose greater challenges, as they de-
mand robust perturbations capable of withstanding various
environment factors. The Phy-Adv [19] attack targets the
susceptibility of wireless indoor localization to environment
conditions by ingeniously crafting a shield using common
materials to create perturbations. However, this approach is
merely a preliminary step and suffers from limitations such
as inaccessibility and conspicuousness. Consequently, there
remains substantial potential for further exploration in the
domain of physical adversarial attacks on wireless indoor
localization.

IX. DISCUSSION

While Loki demonstrates superior and robust attacks on
wireless indoor localization, it still bears certain limitations.
First, RT technique is computationally expensive. Neverthe-
less, our differentiable ray tracer remains tractable in our
experimental setup. Specifically, the time and memory cost
to simulate the CSI for a single transmitter-receiver pair takes
approximately 374 ms on average and 6.8 GB GPU memory
on an NVIDIA RTX 4090 GPU, respectively. Second, manual
construction of indoor environments remains labor-intensive.
When feasible, LIDAR can be employed to quickly capture the
geometry of the environment. In practice, a complete LiDAR
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scan can achieve a position accuracy of under 2 cm. Sub-
sequently, we apply data-driven calibration to automatically
refine the environment model’s accuracy. Finally, as wireless
indoor localization systems become increasingly widespread,
the societal implications of our work become more significant.
The ability to manipulate these systems presents security
risks across various applications. To mitigate these risks, we
recommend deploying additional wireless transceivers along
with periodic retraining or adversarial training. It is also
important to emphasize that the objective of our work is
to expose vulnerabilities present in these systems and raise
awareness, thereby stimulating the development of more robust
security measures.

X. CONCLUSION

In this paper, we propose Loki as the first physical-world
adversarial attack on wireless indoor localization utilizing
differentiable object placement. Exploiting existing objects in
the scene as attack vectors, and only reposition them by a few
centimeters, Loki offers superior effectiveness, accessibility,
inconspicuity, and ease of operation. Our experiments validate
the large localization error and high ASR achieved by Loki,
demonstrating its successful application in both ray-tracing
simulation and real-world scenes. Our results expose critical
vulnerabilities in widely used wireless indoor localization
models and hence underscore an urgent need for enhanced
security measures against such attacks.
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