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ABSTRACT
Radio-Frequency (RF)-based Human Activity Recognition (HAR)
rises as a promising solution for applications unamenable to tech-
niques requiring computer visions. However, the scarcity of labeled
RF data due to their non-interpretable nature poses a significant
obstacle. Thanks to the recent breakthrough of foundation models
(FMs), extracting deep semantic insights from unlabeled visual
data become viable, yet these vision-based FMs fall short when
applied to small RF datasets. To bridge this gap, we introduce FM-
Fi, an innovative cross-modal framework engineered to translate
the knowledge of vision-based FMs for enhancing RF-based HAR
systems. FM-Fi involves a novel cross-modal contrastive knowledge
distillation mechanism, enabling an RF encoder to inherit the in-
terpretative power of FMs for achieving zero-shot learning. It also
employs the intrinsic capabilities of FM and RF to remove extra-
neous features for better alignment between the two modalities.
The framework is further refined through metric-based few-shot
learning techniques, aiming to boost the performance for prede-
fined HAR tasks. Comprehensive evaluations evidently indicate
that FM-Fi rivals the effectiveness of vision-based methodologies,
and the evaluation results provide empirical validation of FM-Fi’s
generalizability across various environments.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting design and evaluation methods; • Computing method-
ologies → Artificial intelligence.
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1 INTRODUCTION
With rapid developments [16, 27], Human Activity Recognition
(HAR) gains significant interest in smart homes [15, 42], digital
healthcare [55, 64], and human-computer interaction [9, 53]. In prac-
tice, HAR tasks can be either contact-based [3, 22, 62] or contact-
free [11, 17]; the latter offers the advantage of not imposing the
additional burden and discomfort of wearing devices. Among all
sensing modalities for contact-free HAR, Radio-Frequency (RF)
sensing [31, 44, 54, 75] stands out by demanding minimal resource
for data processing and inference, rendering it ideal for edge de-
vice integration. Additionally, it preserves privacy while providing
sufficient resolution by capturing only contours without identity-
specific features (e.g., facial characteristics and clothing attributes),
while being free of visual constraints [2, 4, 74] such as low-light or
haze. Therefore, RF-HAR is deemed as a promising solution.

Whereas being effective to specific HAR tasks, RF sensing is
hindered by data scarcity and difficulties in annotation. In fact,
comprehensive RF datasets are scarce, and the available ones often
suffer from compatibility issues due to the diversity in RF devices.
This is caused by the significant challenges in annotating RF-sensing
data [58]: Unlike image data, human annotators find it impossible
to intuitively recognize activities from RF data, complicating offline
annotation. As a result, annotators must resort to online labeling,
posing stringent demands on their skills and increasing the difficulty
in verifying data quality after annotation. Therefore, creating a
comprehensive RF-HAR dataset incurs prohibitive costs yet still
lack guaranteed data reliability, largely confining the adoption of
RF sensing in HAR tasks.

The recent advent of FoundationModels (FMs) [5, 18, 51] presents
a promising solution for addressing the scarcity of labeled data in RF-
HAR. Due to their large scale and multimodal training on massive
datasets, these models have acquired comprehensive knowledge.
In particular, FMs [49] are trained through an unsupervised pro-
cess that aligns different data modalities within a high-dimensional
space, enabling them to process and understand diverse inputs.
Such capabilities enable FMs to generalize across diverse domains,
and support applications such as zero-shot image classification [19,
49, 66], object detection [21, 41], and image generation [50, 51]. In
particular, the comprehensive knowledge and zero-shot capabil-
ity of FMs could be crucial to overcome the inherent scarcity of
labeled data in RF sensing, and they may also bear the potential to
push RF-HAR towards open-set recognition [52]. Now the question
becomes: can FMs be harnessed to interpret RF-HAR data? A valid
answer to this question is essential for advancing RF-HAR towards
practical adoption.

https://doi.org/10.1145/3666025.3699349
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Figure 1: Overview of FM-Fi.

Despite the potential of FMs in various domains, applying them
to interpret RF-HAR data presents several unique challenges. First,
the majority of existing FMs have been primarily developed for
tasks in computer vision (CV) [18] and natural language processing
(NLP) [5, 49], thus limiting their direct applicability to RF-HAR.
Although cross-modal knowledge distillation (KD) [29] paves the
way for knowledge transfer from image to RF modality, their ef-
ficacy in adapting to the structured embeddings of FMs remains
unexplored. Second, the image and RF modalities exhibit inher-
ent feature discrepancies. Specifically, the image modality include
extraneous background details that obscure HAR-relevant infor-
mation, whereas the RF modality often features irrevelant static
backgrounds. This misalignment significantly challenges effective
modality integration. Third, while FMs produce informative em-
beddings, their optimal use in HAR requires further fine-tuning.
However, this fine-tuning process is hindered by the scarcity (or
void) of labeled data.

To tackle these challenges, we design FM-Fi, a cross-modal frame-
work that distills the knowledge from FMs to the RF modality, as
illustrated in Figure 1. First, given that conventional KD does not
consider the structures and interdependencies among the embed-
dings generated by FMs, we design a novel contrastive knowledge
distillation (CKD) for transferring knowledge from FM to the neural
model for the RF modality. As opposed to conventional KDs, our
CKD stems from the mutual information between the embeddings
of two modalities: since the interdependency among the embed-
dings’ elements is captured as a form of “information”, they can
thus be better preserved during distillation. Second, FM-Fi employs
the intrinsic capabilities of FM and RF to remove extraneous back-
ground features, thus enabling better alignment between the two
modalities. In particular, the semantic space of FM is leveraged to
score vision features, and the physical properties of the RF modality
are explored to filter static and dynamic backgrounds. Finally, FM-Fi
harnesses a minimal set of annotated data to fine-tune its model via
metric-based few-shot learning, enhancing already achieved zero-
shot classification to fit specific HAR tasks. The synergy of these
three mechanisms sets the stage for the RF encoder to acquire the
full capabilities of the FMs, while opening the way for approaching
open-set HAR given the constant improvement of FMs. In summary,
our key contributions are:

• To the best of our knowledge, FM-Fi is the first cross-modal
distillation system specifically designed from vision FMs to
RF model for zero/few-shot HAR tasks.

• We develop a CKD mechanism to accommodate FM’s intrin-
sic embedding dependencies, enabling successful knowledge
transfer from FMs to RF modality.

• We design extraneous feature elimination methods tailored
to image and RF modalities, achieving a feature-aligned
vision-RF dataset.

• We design a metric-based few-shot learning mechanism to
fine-tune the RF encoder, thereby adapting and enhancing it
for specific closed-set HAR tasks.

• We construct an FM-Fi prototype and evaluate it with exten-
sive experiments: the promising results confirm that FM-Fi
enables high-performance RF-HAR for both zero-shot and
few-shot HAR tasks.

In the following, § 2 introduces the background and motivation
of FM-Fi. § 3 presents the system design of FM-Fi. § 5 introduces
the datasets, system implementation, and experiment setup, be-
fore reporting the evaluation results. Related and future works
are discussed in § 6. Finally, § 7 concludes the paper with future
directions.

2 BACKGROUND AND MOTIVATIONS
In this section, we introduce the background of FM for HAR and
the motivations of FM-Fi’s design.

2.1 FM for HAR
FMs represent a novel category of large-scale neural networks
trained on datasets comprising billions of samples. The training oc-
curs across multiple GPUs over a span of several weeks. Their rapid
adoption across various domains, such as CV (e.g., DALLE [51]
for image generation), NLP (e.g., GPT [5] for chatbot), and mul-
timodal applications (e.g., CLIP [49] for image semantics under-
standing), have demonstrated their extensive capabilities. The en-
hanced image understanding in FMs is facilitated by the adoption
of transformer [18, 63] architecture as encoders, which enable the
derivation of complex representations. Additionally, contrastive
learning [10, 28] has been exploited to align embeddings across
different modalities, integrating visual data with semantic insights.
Last but not least, the training methodology benefits from the use
of unlabeled image-text pairs, allowing for the creation of large-
scale training datasets. All these properties have enabled FMs to
accurately align image and label embeddings for classification tasks
regardless of sample dependency.

The interpretive power of FMs makes them ideal tools for con-
ducting HAR. For instance, when analyzing an image of a person
stretching, as depicted in Figure 2a, the CLIP model can accurately
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Figure 2: Performance of FM for HAR.
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assess the similarity between the embedding of the image and the
text, thereby achieving zero-shot HAR. However, the application
of FMs, initially trained on vision-text data, to RF data introduces
considerable challenges. This difficulty arises from the inherent
abstractness of RF signals. As illustrated in Figure 2b, directly ap-
plying the CLIP model has falsely identified the activity stretching
captured by a mmWave (in the form of point cloud akin to image
pixels) as waving hands. This limitation underscores the necessity
of novel methods for RF data processing to extend the applicability
of FMs beyond visual data.

2.2 Why Conventional KD Fails for FMs?
One viable approach for utilizing FMs for HAR is KD; it involves
transferring the knowledge from an FM to RF model by aligning
their output embeddings, where we utilize the mean squared error
(MSE) loss for an element-wise comparison of embeddings between
image and RF modalities. We employ a synchronized image-RF
dataset in our experiment, whose classes will be detailed in § 5.1, to
assess the zero-shot HAR performance, by comparing a CLIP model
with an RF model trained via a standard KD [29]. One may readily
observe that a naive application of KD on FMs leads to inferior
performance, as depicted in Figure 3a. Specifically, for 10-class
classification, the CLIP-trained RF encoder achieves an average
accuracy slightly above 40%, whereas that achieved by the baseline
CLIP exceeds 80%.

(a) Zero-shot HAR comparison. (b) |RIM − RRF |.

Figure 3: Conventional KD performance.

To understand KD’s ineffectiveness, we explore the interdepen-
dencies among elements of the output embeddings. We compute
the correlation matrices, RIM for the FM (processing the image
modality) and RRF for the RF model, respectively. By subtracting
RRF from RIM, we obtain a difference matrix as shown in Figure 3b.
One may readily observe that the correlation difference of the two
embeddings can be significant and reach up to 0.4. This finding
reveals the limitation of KD: while it aligns the embeddings from
the FM and RF model on an element-wise basis, it fails to account
for the interdependencies among the elements of the FM’s embed-
dings [46]. The interdependency is especially important for HAR,
it is essential that latent factors representing the human subject,
various body parts, and activity states should be related and active,
while other irrelevant factors should also be related but suppressed.
We forward reference to Figure 7b in § 3.2 for a better correlation
matrix difference that better captures the interdependencies among
the elements in the embeddings.

2.3 Effect of Extraneous Feature
To successfully transfer knowledge from the image to RF modality,
alignment between the two modalities is crucial. Both modalities,

Figure 4: Minor background variations significantly alter the
output embeddings of FM.

however, contain extraneous features; for instance, images may
include irrelevant lighting and background objects, while RF data
may be influenced by static backgrounds. As demonstrated in Fig-
ure 4, minor variations in background features, such as lighting
and curtains (as illustrated in the upper row), significantly affect
the embeddings (in the lower row), leading to instability. This insta-
bility is presumed to affect the RF modality as well. Furthermore,
there is no straightforward one-to-one correspondence between
the embeddings of image and RF modalities due to their not sharing
an identical set of features. Consequently, these extraneous features
hinder the knowledge transfer from image to RF modality, necessi-
tating the development of a method to efficiently eliminate such
features.

3 SYSTEM DESIGN
Based on the discussions in §2, we hereby present FM-Fi with five
innovative components: i) an RF encoder that helps encoding infor-
mation from the RF point clouds, ii) a cross-modal CKD framework
for transferring semantic representations from visual feature maps
to RF-based models, iii) a multimodal data alignment module that
eliminates extraneous features, thereby improving HAR knowledge
integration across modalities, iv) a zero-shot HAR mechanism re-
lying on learned associations between the semantics of both RF
and (FM’s) text modalities, and v) a metric-based few-shot learning
network enabling FM-Fi to quickly adapt to various closed-set HAR
tasks with few labeled examples. In the following, we elaborate on
each component, given the overall design depicted in Figure 5.

3.1 RF Encoder
The mmWave data collected for this study is presented as a point
cloud, containing information of coordinates, Doppler frequency,
and intensity, each of which is indispensable for HAR analysis.
Specifically, the point cloud coordinates provide valuable insights
into human posture, while intensity reveals the reflection char-
acteristics, and Doppler frequency offers critical dynamic infor-
mation regarding motion. Before being processed by the neural
network, the point cloud undergoes preprocessing, during which
their centroid is translated to the origin, effectively eliminating
any translational biases. Drawing upon these rich features, we de-
velop a robust RF encoder for extracting meaningful RF embeddings.
Contrary to the inherent order of image pixels, point cloud data
is characterized by an absence of order. Furthermore, the coordi-
nates of a point cloud depend on the selected coordinate system.
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However, neither changing the point order nor the coordinate sys-
tem should affect the feature extraction outcome. To address these
challenges, we revamp the design of PointNet [47] to accommo-
date the properties of mmWave data, as shown in Figure 6. FM-Fi’s
RF encoder includes a spatial transformation network (STN) T ,
attention layers, and a maxpooling module. STN aims to learn a
3 × 3 rotation-scaling matrix W𝑇 , implementing a transformation
on each point as x′ = W𝑇 · x, where x and x′ represent the origi-
nal and transformed coordinates, respectively. To deriveW𝑇 , the
point cloud undergoes processing through convolutional layers and
fully connected layers, outputting a 9-dimensional vector reshaped
into a 3 × 3 matrix. Through this process, the STN captures the
relationship between the point cloud’s global distribution and im-
plicit viewpoint information, asW𝑇 = T (x). This transformation
standardizes the point cloud, and improves its robustness against
geometric variations.

It is important to note that, in addition to spatial coordinates
(𝑥,𝑦, 𝑧), mmWave point clouds incorporate two additional features:
Doppler frequency and intensity. The Doppler feature provides
information about the moving velocity of targets, while intensity
is indicative of their distance and material properties. These two
features are essential for HAR and are consequently concatenated
with the three-dimensional coordinates after STN processing. The
resulting feature vector, now enriched with the transformed coor-
dinates and the two additional features, is fed into a module A,
consisting of several self-attention layers. This module is tasked
with selectively weighting individual points within the global con-
text, thereby effectively filtering out those irrelevant to HAR. The
design details of this module are further discussed in § 3.3.2.
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Figure 6: RF encoder for cross-modal distillation.

We then pass the enriched feature vectors through a multilayer
perceptron (MLP) 𝜙 for dimensionality expansion, after which the
updated coordinates are processed by a maxpooling module. This
module selects the maximal value across all points for each element
of the embedding, a process that remains invariant to the order of
point inputs and equally emphasizes every point in the space. It
should be noted that this step processes the point cloud as a whole,
rather than focusing on individual points. Subsequent to another
MLP, denoted as 𝜓 , the output of the RF encoder is mapped to a
512-dimensional vector. In summary, the process of point cloud
processing can be expressed as follows:

ERF = 𝜓

(
maxpooling

𝑖=1...𝑁

(
𝜙
(
A

(
T (XRFi ) · XRFi

) ) ) )
. (1)

The 512-dimensional output of the encoder guarantees compatibil-
ity with the output from the FM image encoder.

3.2 Cross-Modal CKD
Synchronized vision and RF modalities capturing the same scene
offer closely related physical information, such as spatial structure,
contours, and dynamic information. As a result, the gap between
their semantic embedding spaces can be potentially bridged us-
ing knowledge distillation [20]. The first step in conducting KD
from FM to RF models involves constructing a data bridge to link
the image and RF modalities. Given the scarcity of annotated data,
highlighted in Section 2.2, this bridge only employs unlabeled syn-
chronized data gathered from a pair of camera and radar sensor.
Specifically, it comprises two data types: i) unstructured data from
everyday spontaneous activities, and ii) rehabilitation activity data.
The former provides a large amount of data that captures real-
world complexities, aiding in model generalization; while the latter
includes a wide range of body movements encompassing rare move-
ment cases, thereby offering extensive body variation and motion
diversity. This comprehensive data bridge selection ensures the
subsequent KD process transcends mere recognition of specific
movements and body parts under few environments.

Specifically, we collect datasets consisting of paired image and RF
data, represented as (XIM

𝑖
,XRF

𝑖
), where 𝑖 = 1, · · · , 𝑁 . These datasets

are gathered from the same scenes to bridge the modalities. For each
modality, data is processed by the corresponding encoder, produc-
ing embeddings EIM and ERF. While the representations of different
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modalities share some common information, they do have some dif-
ferences that cannot be aligned. This means relying solely on rigid
metrics like the Euclidean distance in traditional KD is insufficient,
as discussed in § 2.2. Instead, we employ the mutual information
between modalities as the starting point for deriving contrastive
knowledge distillation (CKD) method. This method is better at han-
dling interdependencies within the embedding elements, which are
crucial for storing information of the embeddings. Specifically, to
distill the interdependency information critical for HAR, CKD max-
imizes the lower bound of the mutual information𝑀𝐼 between the
image and RF embeddings EIM and ERF. The mutual information is
defined as:𝑀𝐼 (EIM;ERF) = E𝑝 (EIM,ERF )

[
log 𝑝 (ERF |EIM )

𝑝 (ERF )

]
. Assuming

ERF follows a uniform distribution (i.e., 𝑝 (ERF) = 1
𝑁
), we have:

𝑀𝐼 (EIM;ERF) = E𝑝 (EIM,ERF )
[
log 𝑝 (ERF |EIM)

]
+ log𝑁 .

The conditional probability 𝑝 (ERF |EIM) is estimated as:

𝑝 (ERF |EIM) ≥ exp(sim(EIM, ERF))∑
ERF′ ∈P exp(sim(EIM, ERF′ ))

.

where sim(·)measures the similarity between EIM and ERF, andP is
the set of all possible samples ERF′ . Thereforewe have𝑀𝐼 (EIM; ERF) ≥
log𝑁 − LCKD, where

LCKD = −E𝑝 (EIM,ERF )

[
log exp(sim(EIM, ERF))∑

ERF′ ∈P exp(sim(EIM, ERF′ ))

]
,

where sim(·) is defined as ⟨·, ·⟩/𝜏 , with ⟨·, ·⟩ being the cosine sim-
ilarity, and 𝜏 being the temperature scaling parameter. It should
be noted that, while the mathematical structure of CKD loss may
resemble conventional contrastive losses, its underlying computa-
tion process is considerably different. First, the positive samples in
CKD are drawn from the teacher modality’s embeddings, which
eliminates the need for data augmentation. Second, the student
modality interacts solely with the teacher modality for compari-
son, bypassing intra-modal comparisons and significantly reducing
computational overhead. Lastly, CKD leverages cosine similarity
for measuring similarities of the embeddings, thereby eliminating
the reliance on a critic model, as required by another cross-modal
distillation baseline CRD [61].

As shown in Figure 7a, CKD reduces the distance between embed-
dings of positive RF-image pairs, while simultaneously increasing
the separation between negative pairs within the embedding space.
This contrastive method enhances the distillation process by more
effectively capturing the interdependencies among the embedding
elements. Additionally, Figure 7b shows a significant reduction of
0.2 on average, in the difference between the correlation matrices

Teacher

Student

FM

RF
model

(a) Basic idea. (b) |RIM − RRF |.

Figure 7: Cross-modal CKD.

of the FM and RF, denoted as |RIM − RRF |, when utilizing CKD.
This contrasts with the outcomes observed with traditional KD, as
depicted in Figure 3b. This observation underscores CKD’s superi-
ority in aligning the structural characteristics of the embeddings
across diversified modalities.

3.3 Extraneous Feature Elimination
As described in § 2.3, our goal is to remove extraneous features to
allow CKD to focus on HAR-relevant features. To improve inter-
pretability, facilitate better integration, and reduce the consumption
of computational resources, we perform feature elimination by uti-
lizing signal properties and FM’s knowledge without any extra
models.

3.3.1 Image Modality. Instead of employing an extra segmenta-
tion model for annotation, we employ the image and text encoders
from the teacher model in the CKD framework to generate saliency
maps [57]. A saliency map has the same dimensions as the input im-
age, where each element’s magnitude quantifies the importance of
the corresponding pixel in determining the model’s predictive out-
put of a human. It enables the isolation of image regions that are per-
tinent to human activity, allowing for the exclusion of non-essential
features. Compared with other segmentation approaches, FM-Fi
eliminates the need for additional neural networks, and avoids po-
tential issues that could arise from incompatible weighting method
of input features by non-CLIP neural networks. As shown in Fig-
ure 8, an image processed through the CLIP encoder produces an
embedding vector that encapsulates the spatial and contour infor-
mation of the human body. We compute the similarity score S by
comparing this vector with the text embedding of “a photo of a hu-
man”, which provides a structural interpretation of these attributes.
Following this, we determine the gradient of S with respect to
each input feature of the original image. The aggregate of gradients
within the designated target region𝑇 signifies the relevance of that
feature to the model’s output. The saliency map 𝑀’s individual
elements can be obtained as follows:

𝑀 (𝑢, 𝑣) = ∑
(𝑢𝑡 ,𝑣𝑡 ) ∈𝑇 𝜕S/𝜕𝐼 (𝑢𝑡 , 𝑣𝑡 ), (2)

where (𝑢, 𝑣) represents the pixel coordinates and 𝐼 the original
image. In practice, backpropagation can be applied to the scores,
generating a chain of gradients across layers equivalent to the gra-
dient in Eqn. (2). This process infers the critical elements within
each layer that the model deems essential for discrimination, cul-
minating in the identification of salient features within the in-
put. As a result, the processed saliency region can be expressed as
Fsal (𝑢, 𝑣) = I [𝑀′ (𝑢, 𝑣) > 𝜆] , where I(·) is the indicator function
and 𝜆 is the threshold, and𝑀′ denotes the normalized saliency map.
Elements exceeding the threshold retain their original pixel values,
whereas those below the threshold are subjected to Gaussian ker-
nel blurring. The extensive knowledge and complex architecture
of the FM contributes to its accurate outputs and reliable reason-
ing process. As a result, saliency maps obtained from it efficiently
concentrate on the relevant features in images.

3.3.2 RFModality. Within the RFmodality, we first eliminate static
backgrounds based on the intrinsic physical properties of the data
through a deductive approach. Taking mmWave radar as an ex-
ample, the sensor emits electromagnetic waves in the range of
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30-300GHz and receives the waves reflected by objects. The raw
baseband data collected can be processed to derive information
such as distance, angle, and velocity, which can be further trans-
formed into machine learning-friendly input features, such as point
clouds. Specifically, distance is calculated based on the time interval
between the emission and reception of the waves, while the angle
of an object can be estimated using multiple receiving antennas.
The velocity of an object is inferred through the Doppler effect,
which dictates that the frequency shift of the radar waves can be
formulated as 𝑓𝑑 = 2𝑣

𝑐 𝑓0, where 𝑓𝑑 is the frequency difference be-
tween the reflected and emitted waves, 𝑓0 is the frequency of the
transmitted signal, 𝑐 is the speed of light, and 𝑣 is the velocity of
the target object relative to the radar sensor. Signals in the point
cloud with 𝑓𝑑 = 0, indicative of static backgrounds, are filtered
out to isolate dynamic subjects. It should be noted that, while it
is theoretically possible to mistakenly filter out purely tangential
activities (characterized by a Doppler velocity of zero), the likeli-
hood of such occurrences is minimal due to the diversity of MIMO
sensors and the abundance of data points associated with a single
human subject in real-world scenarios.

However, in addition to the static background, the scenemay also
contain other objects that are irrelevant to HAR (e.g., a moving pet).
These objects can be identified by integrating the aforementioned
Doppler data, with intensity data that conveys material characteris-
tics, in conjunction with the coordinates derived from point clouds.
As detailed in § 3.1 and Figure 6, the RF encoder firstly transforms
the three-dimensional coordinates through rotation and scaling,
which are then concatenated with Doppler and intensity to form an
enriched point cloud feature vector. To eliminate HAR-irrelevant
objects, we introduce a self-attention-based module within the RF
encoder which allows the RF model to autonomously discern points
of interest within a global context by learning from background-
free FMs during the cross-modal learning process. More specifically,
within each layer, we optimize three shared-weight matricesW𝑞 ,
W𝑘 , andW𝑣 across all points. The 5-dimensional feature vector p
of each point is transformed into corresponding query Q = W𝑞 · p,
key K = W𝑘 ·p, and value V = W𝑣 ·p. The weighted point vector p′

can be calculated as p′ = Attention(Q,K,V) = softmax
(
QK𝑇

√
𝑑𝑘

)
V.

The self-attention mechanism enables the model to learn to score
based on W𝑞 , W𝑘 , and W𝑣 , which prioritizes points relevant to
HAR by considering inter-point relationships and the influence of
individual points on the global outcome. Our self-attention module
explicitly expresses the focus on specific regions, thereby offering

enhanced interpretability. Moreover, in contrast to standard MLPs
with fixed architectures, it dynamically adjusts the weighting of
points according to the input data distribution, thereby increasing
the reliability of the model’s decision-making.

3.4 Zero-Shot HAR
Given that FMs are not trained by simply mapping samples to fixed
categories, but rather by understanding the relationship between
image content and arbitrary textual descriptions, they are adept at
handling certain zero-shot tasks, capable of accurately identifying
categories not present in the training set. For instance, CLIP lever-
ages image and descriptive text matching to categorize 1,000 classes
in ImageNet within a zero-shot manner. RF models trained under its
supervision exhibit similar classification capabilities. Specifically,
for any HAR class described in natural language, we can embed it
into an appropriate prompt, such as “A person {𝐶𝐿𝑆}”, where 𝐶𝐿𝑆
denotes action like “walking” or “squatting”. Subsequently, the text
description of this class is divided into individual words, known
as tokens. Each token is then transformed into a corresponding
numerical value that aligns with a vocabulary defined during the en-
coder’s training phase. As a result, the CLIP text encoder processes
these numerical representations rather than the original natural
language to generate a 512-dimensional text embedding.

Following cross-modal CKD, the RF encoder has been endowed
with the capability of the vision FMs to embed spatial informa-
tion into the semantic space. Consequently, it can embed RF data
into 512-dimensional vectors, congruent with the previously de-
scribed text embedding structure. The cosine similarity between
embedding vectors from different modalities serves as the criterion
for their congruence, with the highest scoring category being se-
lected for prediction 𝐼 . The prediction process can be formulated as
𝐼 = argmax

ETX

(
ETX ·EIM

∥ETX ∥ ∥EIM ∥

)
, where ETX represents the text embed-

ding of the label. To optimize computation, we stack the text embed-
dings of all candidate labels to create a matrix𝑊zero-shot ∈ R512×𝑘 ,
whereby score =𝑊zero-shot ·EIM. Given that each text embedding is
normalized, we identify the category corresponding to the highest
score to make prediction. This matrix computation methodology
prevents redundant calculations and enhances the overall efficiency.

3.5 Metric-Based Few-Shot HAR
While zero-shot learning adequately addresses most HAR tasks,
for especially challenging ones characterized by less distinct lan-
guage descriptions, we introduce an additional few-shot learning
module. This module adopts a metric-based approach utilizing a
non-parametric method to predict labels in the query set based
on a weighted sum of true labels in the support set. In contrast to
conventional metric-based learning, FM-Fi’s embedding space is
semantically rich. As such, we enhance the performance of classi-
fication by utilizing the label text embeddings generated by FMs,
further exploiting the semantic information they contain. Specifi-
cally, we employ cosine similarity as our metric function following
the practice of CLIP, given its superior ability to measure the simi-
larity between semantic vectors. Thus, we determine the likelihood
of an unlabeled sample belonging to class 𝑐 as follows:

𝑃 (𝑦𝑐 |Eq,Ds
𝑐 ) =

∑
Es𝑐 ∈Ds

𝑐
⟨Eq · Es𝑐 ⟩ + 𝛾 ⟨Eq · ETX𝑐 ⟩, (3)
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where Ds is the support set, Es and Eq denote the embeddings of a
support and query sample, ETX𝑐 represents the text embedding of
class 𝑐 , and 𝛾 is a hyperparameter that signifies the weight of label
text. Finally, we take the maximum of the computed likelihoods to
yield the prediction.

4 DATASET AND IMPLEMENTATION
In this section, we introduce the dataset collection and processing,
as well as the system implementation of FM-Fi.

4.1 Dataset
For the RF modality, we acquire data using a Texas Instruments (TI)
IWR1443 Boost mmWave radar [60]. This radar operates within the
76-81GHz frequency spectrum, offering a bandwidth of 4GHz. It em-
ploys a frequency-modulated continuous-wave (FMCW) technique,
which transmits a chirp signal that linearly increases in frequency
over time. The system, upon receiving the reflected signals from the
objects, constructs a point cloud. This point cloud aggregates the
data collected over a time span of 200ms, and contains information
such as point coordinates (𝑥,𝑦, 𝑧), Doppler features 𝑑 , and signal
intensity 𝐼 . Our dataset for CKD consists of 90,000 video samples
(each 200 ms in length), totaling approximately 5 hours in dura-
tion. Given that the frequencies of most human activities lie within
the 0.1-10Hz range [45], we set the radar sampling rate to 20Hz.
After denoising with a constant false alarm rate (CFAR) filter, the
resulting point cloud data become 𝑃𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑑𝑖 , 𝐼𝑖 ) , 1 ≤ 𝑖 ≤ 𝑁 ,
where 𝑁 denotes the number of points per frame.

Similarly, we position a Microsoft Kinect V2 RGB camera [40] at
the same conditions as the aforementioned mmWave radar. This
camera is set to capture images with a resolution of 1920 × 1080
(1080P) and a frame rate of 30Hz. The Kinect V2 captures raw
data streams, which are then converted into JPG format to align
with the input requirements of the FM. To synchronize these two
modalities, which operate at different sampling rates, we initially
establish specific start and end actions to assist in preliminary
alignment. Subsequently, we select the lower frequency, i.e., the
radar frequency, as a reference and identify the temporally closest
camera frame for matching, thereby constructing our dataset.

For data acquisition, the pair of radar and camera sensors are po-
sitioned in various locations, including being mounted on different
desktops, walls, and ceilings. The subjects’ heights range from 152
to 186cm, weights from 51 to 109kg, and ages from 10 to 35 years,
with an equal distribution of genders. The distance from the sensor
to the target ranges from 1 to 15 meters. The dataset is collected
across 10 distinct environments: kitchen (KC), living room (LR),
bedroom (BR), gym (GM), parking lot (PL), hallway (HW), staircase
(SC), park (PK), street (ST), and stadium (SD). The kitchen, living
room, bedroom, and hallway represent limited-space living envi-
ronments, each furnished with scene-specific items (e.g., different
furnitures, hydrants, and ladders). The gym and parking lot are spa-
cious indoor scenes, equipped with fitness equipment and vehicles
respectively, and host a modest number of individuals. As outdoor
environments, park, street, and stadium are open areas featuring
different plants, vehicles, large sports equipment, and pedestrians.
The staircase, characterized by its narrow space and complex envi-
ronment, includes stairs and railings. Collectively, these 10 different

environments exhibit unique floor plans and background objects,
underscoring the diversity of real-world scenarios.

Additionally, as elaborated in § 3.2, our dataset is divided into two
main parts: everyday spontaneous activities and structured rehabil-
itation exercises. For the former, approximately 65,000 image-RF
data pairs are collected, capturing participants performing activi-
ties in accordance with their natural behavior patterns. The latter
category encompasses five exercises, each developed in accordance
with professional sports rehabilitation guidelines and performed by
subjects in compliance with a standardized regimen, ultimately pro-
ducing approximately 30,000 sample pairs encompassing a broad
range of body poses.

4.2 System Implementation
We conduct all experiments, including model training, inference,
and saliency map generation, on an NVIDIA TESLA V100 GPU
equipped with 16GB of RAM. Regarding software, our framework
is built upon Python 3.7 and PyTorch version 2.1.0, which supports
CUDA 12.1. Additionally, we employ OpenAI’s CLIP as our FM
teacher model. The CLIP library, released by OpenAI, facilitates
easy integration in Python, providing built-in data preprocessing
and a selection of vision encoders. For the RF modality, we de-
velop an mmWave point cloud encoder using PyTorch. The specific
configurations are as follows:

• We choose ViT-B/32 in CLIP as our vision encoder and a
custom mmWave point cloud encoder, outlined in § 3.1, fea-
turing 1-d convolutional and linear layers with batch nor-
malization and a 0.3 dropout rate.

• For feature selection, we set a saliency threshold of 0.6, ap-
plying Gaussian blur exclusively to regions falling below
this threshold using a kernel size of 30.

• We employ an Adam optimizer with a learning rate of 0.001
for both cross-modal distillation and few-shot learning, with
the latter exploring 1 to 3 shots.

• Our CKD dataset consists of 90,000 pairs of image and RF
data. The labeled RF dataset has 15,000 samples, and is split
into validation and test sets at a 9:1 ratio.

• FM-Fi employs continuous, non-overlapping frames for train-
ing and testing, instead of random sampling of frames to
avoid overfitting caused by neighboring frames.

5 EVALUATION
In this section, we report a thorough evaluation on FM-Fi in several
scenarios and under various parameter settings.

5.1 Experiment Setup
To evaluate the performance of FM-Fi, we select 3 sets of base-
lines for comparison. First, we compare the FM-Fi’s rapid adap-
tation capabilities in RF modality for HAR with limited samples
against state-of-the-art (SOTA) meta-learning-based RF models, RF-
Net [17] and MetaSense [26]. Further, we compare the performance
of FM-Fi against SOTA point-cloud models, PointNet++ [48] and
Point Transformer [72]. Lastly, to assess FM-Fi’s performance in
unseen environments, we include its teacher model CLIP [49] for
comparison.
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(a) CLIP. (b) FM-Fi.

Figure 9: t-SNE plot of embeddings.

• RF-Net employs a dual-path architecture to discern key RF
signal features for HAR and integrates a distance metric
network to facilitate few-shot learning.

• MetaSense trains on multiple tasks calibrated to individ-
ual variances, enabling the model to quickly adapt to new
conditions with minimal samples.

• Point Transformer introduces a self-attention-based archi-
tecture tailored for 3D point cloud analysis that can be used
for segmentation and classification tasks.

• PointNet++ is an extension of the original PointNet archi-
tecture, introducing hierarchical feature extraction to better
handle local structures in point clouds.

Although FM-Fi does not limit the number of HAR classes, we
test it on 10 classes for clarity: waving hands𝑊𝐻 , squatting 𝑆𝑄 ,
climbing 𝐶𝐵, stretching 𝑆𝑇 , jumping 𝐽𝑃 , walking𝑊𝐾 , sitting 𝑆𝑇 ,
cycling 𝐶𝐶 , picking 𝑃𝐾 , and pushing 𝑃𝑆 . We also prepare 10 new
classes for further evaluation: running𝑅𝑁 , standing 𝑆𝐷 , lying down
𝐿𝐷 , crawling 𝐶𝑅, playing ball 𝑃𝐵, dancing 𝐷𝑁 , boxing 𝐵𝑋 , lifting
𝐿𝐹 , cleaning 𝐶𝐿, and doing Yoga 𝑌𝐺 . To gain insights into the
model’s predictive distribution, we also employ confusion matrices
to visually demonstrate the model’s performance on each class. The
experiments strictly follow the IRB approved by our institution.

5.2 Overall Evaluation of FM-Fi
To evaluate whether FM-Fi has acquired CLIP’s embedding capabil-
ity, we first encode image frame-RF sample pairs from our test set
into embedding pairs. These 512-dimensional embeddings are then
reduced to 2 dimensions for visualization via t-SNE. From Figure 9a,
it is evident that the embeddings produced by the CLIP encoder
are distinct and well-separated, indicating a high degree of discrim-
inability in the embedding space and a robust capacity for image
understanding. Figure 9b shows that FM-Fi’s embeddings are sepa-
rable and closely aligned with the teacher model’s, indicating that

Figure 11: Impact of the num-
ber of classes.
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Figure 12: Student vs. teacher
accuracy.

FM-Fi has effectively captured the teacher model’s representational
power.

In Figure 10, we show FM-Fi’s performance across various zero/few-
shot scenarios. It can be seen that even in the challenging zero-shot
context, FM-Fi is capable of basic HAR tasks with a notable 72.5% ac-
curacy. FM-Fi also achieves accuracies of 86.0% and 94.4% for 1-shot
and 3-shot learning. For the 1-shot case, a significant concentra-
tion of samples along the confusion matrix diagonal, indicates that
FM-Fi maintains robust precision and recall for all categories. This
level of performance enables accurate HAR task execution. With
three labeled samples, the model’s accuracy further improves, with
the diagonal average approaching 95%, illustrating a high degree of
prediction confidence. Following the few-shot learning phase, we
assess FM-Fi’s performance on 10 new activities mentioned in § 5.1.
Figure 10d illustrates that the accuracy on new activities aligns
with the results in Figure 10a, indicating that the few-shot learning
module has a minimal impact on zero-shot performance.

We assess the impact of the number of classes on model accu-
racy by analyzing both zero-shot and 3-shot performance when
the number of classes ranges from 5 to 20, as depicted in Figure 11.
The results reveal a decrement in accuracy as the number of classes
increases, with zero-shot learning experiencing a more substantial
reduction than 3-shot learning. This trend can be attributed to de-
creased inter-class distinction and increasing semantic overlap as
the number of classes increases, undermining the performance of
semantic-driven zero-shot methods. In contrast, the metric-based
few-shot classification, which utilizes anchors within the embed-
ding space to enhance decision boundaries, exhibits less perfor-
mance degradation compared its zero-shot counterpart.

Furthermore, we examine the impact of teacher model perfor-
mance on the effectiveness of the RF student model. As shown in
Figure 12, a stronger teacher model is associated with improved
performance of the student model. This results from the teacher’s
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(d) Zero-shot (10 new classes).

Figure 10: Confusion matrices of FM-Fi in zero-shot and few-shot scenarios.
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ability to direct the optimization process towards a more efficient
trajectory. Notably, the student model’s size constraints result in
decreased performance gains, indicative of an asymptotic trend.
Consequently, ViT-B/32 is chosen as our teacher model backbone
due to its superior accuracy of 79.7% on the zero-shot HAR task,
with the corresponding student model also evaluated in the same
setting, achieving 73.6% accuracy. Compared with the vision modal-
ity, the RF modality shows no significant decline in performance,
demonstrating that CKD effectively bridges the modality gap within
the embedding space.

Next, we investigate the impact of practical factors such as the
dataset size for CKD and model complexity on the performance of
FM-Fi. As depicted in Figure 13a, the zero-shot accuracy increases
as the number of CKD data samples increases from 10,000 to 90,000,
but stops to increase when the number of CKD data reaches 80,000,
stabilizing at approximately 75%. This is close to the 79.7% accuracy
of the teacher model, indicating the efficacy of FM-Fi’s CKD. We
then examine the impact of the number of model parameters, as
shown in Figure 13b. It can be observed that FM-Fi’s zero-shot
accuracy improves with as the number of parameters increases,
reaching a peak of 77% when the number of parameters reaches
7 million. However, expanding the model further to 10 million
parameters leads to overfitting and a notable decline in performance
due to the increased model complexity.

Finally, we conduct experiments to evaluate the performance
of FM-Fi when the distance and angle from the subject to the sen-
sor vary. Specifically, the subject performed activities at distances
ranging from 1 to 15m and at angles from -60◦ to 60◦, which corre-
sponds to the radar’s FoV. For each fixed distance, we calculate the
average accuracy across all angles; likewise, for each fixed angle,
we average the accuracy over all distances. Figure 13c demonstrates
that the model’s accuracy initially increases as the distance grows,
then decreases beyond 2m, peaking at 76.7%. This optimal per-
formance at 2m is due to the radar’s ability to fully capture the
subject’s body at this distance. At shorter distances, the beam of the
radar cannot encompass the entire body; and at larger distances,
the signal-to-noise ratio diminishes, lowering the quality of the
input data. Despite the degradation, the accuracy remains consis-
tently above 70.2%, illustrating the strong generalization capability

(a) CKD dataset size. (b) Model size.

(c) Subject-sensor distance. (d) Subject-sensor angle.

Figure 13: Impact of practical factors.

(a) Zero-shot HAR. (b) Resource usage.

Figure 14: Comparison with FM baseline.

of FM-Fi under varying distance conditions. Similarly, Figure 13d
shows that the model’s accuracy decreases as the subject’s abso-
lute angle relative to the sensor increases. However, the accuracy
remains above 72.9% across all angles and peaks at 76.7% when
the subject directly faces the sensor (angle of 0◦). The decline in
performance becomes more pronounced near the edges of the FoV
due to a sharper drop in radiated power and signal quality. Nonethe-
less, the performance degradation is modest, with the decrease not
exceeding 3.8%. Collectively, these results demonstrate that FM-Fi
maintains robust performance, effectively handling variations in
both distance and angle, making FM-Fi delivers consistent and high
accuracy, ensuring sufficient and reliable coverage for HAR.

5.3 Superiority of FM-Fi
5.3.1 Comparison with FM. We compare FM-Fi with FM by as-
sessing their zero-shot capabilities. As shown in Figure 14a, the
accuracy of FM-Fi closely matches that of CLIP across all 10 activity
classes, illustrating the overall effectiveness of FM-Fi. An interesting
phenomenon is that for the two classes of𝐶𝐵 and 𝑃𝑆 , the RF-based
student model achieves higher accuracy than the FM-based teacher
model. The improvement can be attributed to the fact that RF modal-
ity might be less susceptible to background image patterns than
FM, and the extraneous feature elimination enables CKD to transfer
knowledge without irrelevant signals. Additionally, it should be
noted that our collected dataset of 90,000 image-RF pairs is sufficient
for CKD. It is also worth mentioning that FM-Fi’s model, with its 6.9
million parameters, is significantly smaller than CLIP’s 140 million
parameters, as depicted in Figure 14b. Although the model-to-data
size ratio of FM-Fi exceeds that of typical LLMs, it still achieves
strong performance. This distinction can be attributed to two key
factors: first, the knowledge distillation paradigm leverages the
fact that the teacher model (i.e., CLIP) is trained on an extensive
dataset, allowing it to transfer robust and useful representations to
the student model. Second, our smaller dataset, which consists of
both unstructured data and rehabilitation activity data, is of high
quality and highly relevant to the task at hand. These observations
highlight FM-Fi’s ability to deliver competitive performance with
considerably less data and a more compact architecture.

5.3.2 Comparison with Few-shot Baselines. We further compare
FM-Fi with two few-shot baselines MetaSense and RF-Net. In the
experiment, we employ 10-way-𝐾-shot learning by sampling 𝐾
instances from each of 10 classes, creating a shared training set for
all models. Figure 15a features boxplots that detail the comparative
performance of them under 1, 2, and 3-shot settings. In all three
scenarios, FM-Fi consistently outperforms the two baselines by a
significant margin. Although as the number of samples increases,
the median accuracy of FM-Fi does not rise as quickly as that of
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(a) Few-shot learning. (b) Supervised learning.

Figure 15: Comparison with different baselines.

the baselines, it still maintains a lead of at least 23.7%. Furthermore,
the interquartile range (IQR) of FM-Fi’s accuracy is considerably
smaller than that of the baselines, indicating less variability across
multiple experiments.

5.3.3 Comparison with Supervised Baselines on a Larger Dataset.
We further compare FM-Fi with PointNet++ and Point Transformer.
These models are trained on an expanded dataset (including 50,000
labeled RF samples) without CKD. For ease of comparison, we intro-
duce an additional baseline model termed FM-Fi*, which utilizes the
same RF encoder as FM-Fi (with an ensuing multilayer perception
for converting the embedding to classification result). FM-Fi* is also
trained on the same 50,000-sample dataset without CKD. Using only
0.1% of the labeled data compared to the other three models, 3-shot
FM-Fi not only demonstrates superior accuracy but also greater
stability in performance. These results highlight the efficacy of CKD
in learning robust representations while significantly decreasing
the dependency on annotated RF data. Furthermore, among the
three fully supervised models, FM-Fi* exhibits notably better perfor-
mance than the other two models that are specifically designed for
point clouds. The superior performance of FM-Fi* is due to its RF
encoder which effectively integrates point cloud coordinates with
Doppler features and signal intensity, thus utilizing the complete
range of information available in RF data.

5.4 CKD Evaluation
We further compare CKD with KD, as well as contrastive repre-
sentation distillation (CRD) [61], and correlation congruence for
knowledge distillation (CCKD) [46]. First, we compare their perfor-
mance on a 10-class zero-shot HAR task, as illustrated in Figure 16a.
We observe that CKD achieves the highest accuracy in 7 out of 10
classes, only trailing the best method by less than 9.8% in the rest 3
classes. Figure 16b further examines the impact of the number of
activity classes. It can be observed that when the number of classes
is 5, CKD leads other methods by a small margin less than 18.5%.As
the number of classes increases to 20, CKD exhibits the smallest

(a) Class-wise accuracy. (b) Number of classes.

Figure 16: Generalization comparison.
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Figure 17: Impact of interde-
pendency transfer.

Figure 18: Comparisons on ac-
curacy and stability.

drop in accuracy, while the accuracies of all other methods drop by
more than 37.3%.

To understand CKD’s superiority, we analyze the relationship
between the FM-Fi’s accuracy and the extent of interdependency
information transfer.We employ themean differences in the correla-
tion matrices of image/RF embeddings to quantify interdependency
transfer. By varying 𝜏 in the CKD loss, the correlation differences
can be adjusted. Our findings shown in Figure 17 demonstrate
that the correlation difference negatively impacts FM-Fi’s accuracy
(𝜏 = 10 yields the best performance). This trend validates FM-Fi
’s principle: preserving the interdependency information among
the embedding elements is crucial for HAR. In contrast, the infe-
rior results of alternative approaches (indicated by markers near
the curve) can be attributed to their pronounced correlation differ-
ences, which correspond to a diminished efficacy in the transfer of
interdependency knowledge.

Finally, we conduct 50 training rounds (number of classes set
to 10), and perform statistical analysis of the accuracies of various
distillation methods, and show the results in Figure 18. It can be
seen that CKD exhibits the highest median accuracy and narrowest
IQR. In contrast, CRD, CCKD, and KD demonstrate lower accura-
cies and larger IQR. Notably, CRD shows the highest variability in
accuracies, which can be attributed to the instability inherent in its
learning-based critic model used for similarity assessment. CCKD’s
approach, which prioritizes alignment of instance distributions
between image and RF embeddings without addressing the inter-
dependencies among elements, results in suboptimal performance.
Similarly, KD’s performance is compromised due to its inability to
manage the interdependencies within the embeddings’ elements. In
summary, CKD’s advantages arise from: a greater emphasis on the
interdependencies of embedding elements compared to CCKD and
KD, which transfers critical information to enhance performance;
and using cosine similarity instead of a critic model, as in CRD,
which reduces model complexity and increases robustness.

5.5 Feature Elimination Evaluation
5.5.1 Image Modality. In addition to a saliency map-based fea-
ture elimination method, Segment-Anything (SAM) [34] and circle
prompting [56] can also be used to enhance human focus in im-
ages. SAM is the SOTA segmentation algorithm and is shown to be
superior for the HAR task; whereas circle prompting emphasizes
crucial information within an image through circular markings
made by a human annotator. Figure 19a depicts the images pro-
cessed with our saliency map-based method, SAM-based method,
and circle-based method, respectively, along with the predictions
made by CLIP. The ground truth classes have been highlighted
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FM-Fi

SAM-based

Circle-based

(a) Example segmentation methods
and activations.

(b) Probability distributions of cosine
similarity.

Figure 19: Performance comparison of different image fea-
ture elimination methods.

by green for reference. It is evident that due to the extraneous
background features, CLIP fails to correctly classify the outcomes
from the other two prompting methods. In contrast, our approach
effectively mitigates extraneous features, making CLIP solely focus
on the human subject, thus enabling more refined classification.
The probability distributions of the similarity between true and
predicted embedding in Figure 19b further prove the advantage of
FM-Fi’s extraneous feature elimination module.

Among the three methods, FM-Fi is the only one capable of au-
tomatic background removal. This is attributed to FM-Fi’s ability
to autonomously identify people within images through semantic
input. In contrast, the SAM-based method requires manual selec-
tion post-segmentation to remove background elements, while the
circle-based approach relies entirely on manual annotation of sig-
nificant objects. We have also compared the resource demands
of these methods, noting that manual costs are challenging to as-
sess directly. Therefore, we translate the manual annotation task
in the circle-based method into an automated segmentation and
highlight-filling task. Figure 20a shows that our approach not only
leads in performance but also in reduces resource utilization, thus
underscoring the superiority of the saliency map-based feature
elimination module of FM-Fi.

5.5.2 RF Modality. We also evaluate the feature elimination mod-
ule of the RFmodality, which consists of two components: a Doppler-
based object filter and an attention block. To validate the efficacy
of the proposed module, we conduct ablation studies by removing
the Doppler filter and attention block. As such, the experiment in-
volves the following 4 configurations: both parts inactive, Doppler
filter inactive, attention block inactive, and both parts active. We
select 10-class classification for evaluation. Figure 20b presents the

(a) Image modality. (b) RF modality.

Figure 20: Comparison of feature elimination methods.

(a) Different scenes. (b) Different subjects.

Figure 21: Generalization across diverse settings.

findings, where we plot the effect of incorporating various feature
elimination components on the accuracy of zero-shot classification.

Not surprisingly, when both modules are inactive, the accuracy
is the worst and only reaches less than 52.3%.The result also shows
that the Doppler filter, upon excluding objects with zero velocity,
has a positive but limited effect on the model. The attention block,
with its automatic selection of important points, offers a more ef-
fective improvement to overall performance. The combined effect
of both parts surpasses that of each individual component. This
synergy can be attributed to the Doppler filter’s introduction of
physical priors that enhance the subsequent decision-making pro-
cess of the attention block, thereby underscoring the effectiveness
and necessity of our module.

5.6 Generalization Capability
To evaluate the generalization capabilities of FM-Fi, we conduct
tests on the 10 subjects (𝑆1 − 𝑆10) and 10 environments mentioned
in § 4.1. Specifically, we adopt a leave-one-out strategy for 3-shot
testing, where we train on data from 9 environments or subjects and
test on the remaining one; for zero-shot testing, we directly conduct
tests without additional training. We conduct both zero-shot and
3-shot tests in 100 settings (10 environments × 10 subjects) and the
results shown in Figure 21 are obtained by averaging across either
environments or subjects.

Overall, Figure 21a shows that performance tends to be better in
outdoor scenes due to factors such as better lighting, open space,
less background features, and reduced occlusion. However, street
scenes yield poorer results because of the interference from rapidly
moving background objects such as cars and pedestrians, which can
disrupt RF signals. In contrast, for primary RF-based HAR scenar-
ios, especially in domestic settings, FM-Fi maintains performance
levels consistent with previous tests, demonstrating exceptional
capabilities. Moreover, physiological parameters such as age and
height of participants do not affect the performance of FM-Fi, as
evidenced by Figure 21b, which illustrates that our model maintains
at least 68.5% zero-shot accuracy and 89.8% 3-shot accuracy across
all subjects, demonstrating robust generalization capabilities.

5.7 Hyper-parameter Searching
5.7.1 Feature Elimination Threshold. According to § 3.3.1, the thresh-
old 𝜆 is a scalar within the [0,1] range, determining the lower bound
normalized score for pixels exempt from blur transformation. On
one hand, a small 𝜆 preserves the original image content, but fails to
efficiently eliminate background noise. On the other hand, a high 𝜆
value risks removing critical image features, depriving the model of
meaningful input and thereby reducing the discriminability of the
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(a) Image modality. (b) RF Modality.

Figure 22: Feature elimination thresholds.

generated cross-modal supervision signal. To search for the optimal
value of 𝜆, we evaluate the zero-shot performance of FM-Fi at differ-
ent 𝜆 values from 0.2 to 0.8. One may readily observe in Figure 22a
that as 𝜆 initially increases, FM-Fi reaches the best performance at
the optimal threshold 𝜆 = 0.6. Any 𝜆 greater than 0.6 may cause the
saliency mask to erode the human figure, adversely impacting HAR
performance. Consequently, as 𝜆 surpasses 0.6, there is a significant
decline in accuracy from 76.2% to 21.6%.

We further study the impact of velocity thresholds in extraneous
feature elimination for the RF modality. Instead of only removing
the zero-velocity component as in § 3.3.2, we set the velocity filter-
ing thresholds from 0 to 1.2m/s, and show the relationship between
the model’s accuracy and the threshold in Figure 22b. It is observed
that the model performs the best when the Doppler threshold is
set to 0, which corresponds to the removal of static background.
Increasing the Doppler threshold may inadvertently filter out some
moving background clutter; however, it might also eliminate in-
formation pertinent to human activities, leading to a decline in
model performance. When the Doppler threshold reaches 0.8m/s, a
significant portion of human activity information is lost, resulting
in poor model performance. Based on these experiment observa-
tions, a threshold of 0 is selected to preserve all information of
moving objects while excluding static background features, leaving
the subsequent attention module to make further selections.

5.7.2 Weight of Label Text in Few-shot Learning. We evaluate the
impact of varying weights of label text 𝛾 on FM-Fi’s performance
across 1-shot, 2-shot, and 3-shot learning scenarios. Initial assess-
ments are conducted with integer values of 𝛾 in the range 0 to 10,
with results depicted in Figure 23a. We observe that for small values,
accuracy across all scenarios increased with 𝛾 , suggesting effective
semantic information extraction from the RF modality by FM-Fi.
As 𝛾 increases, performance across the three scenarios tends to
converge due to the text embedding becoming the dominant factor.
Such convergence results in performance degradation, approaching
zero-shot levels as 𝛾 further increases. We aim to identify the best
performance point 𝛾 = 5 to 𝛾 = 7. As Figure 23b demonstrates, the

γ

(a) Preliminary search.

γ

(b) Detailed search.

Figure 23: Impact of the weight of label text.

peak performance is obtained at 𝛾 = 5.5. Consequently, we adopt a
𝛾 value of 5.5 as the weight of text label in few-shot learning.

6 RELATEDWORK AND DISCUSSION
Though RF-HAR literature covers enhancing generalizability [11,
17, 25, 26, 33, 39, 77], improving the efficient utilization of scarce
labeled data [36, 43], and refining model architectures [8, 11, 35],
prominent RF-HAR proposals have prioritized studies on generaliz-
ability. In particular,Widar3.0 [77] introduces a domain-independent
and signal-level feature, termed BVP, to enable generalizability.
Another study [33] applies adversarial domain adaptation tech-
niques [23, 24] to generalize across varying scenarios. RF-Net [17]
adopt metric-based meta-learning achieve fast adaptation of its
base networks in diverse environments.

The emergence of FMs has brought new potentials in RF sensing
in general, catering the need for more models capable of capturing
rich information. Therefore, FM-Fi sets itself apart from prior RF-
HAR solutions by not limiting itself to HAR, because it inherits the
broad recognition capability of FM. In fact, we would expect FM-Fi
to be able to support other sensing tasks [12, 30, 32, 70, 71, 73, 76]
including gesture detection [37, 38, 69], gait recognition [7, 59, 65],
and even vibration monitoring [1, 13, 14, 67, 68], by modifying the
target of interest; we plan to explore FM-Fi’s potential beyond HAR
in future work. Currently, it is still an open question if one can claim
open-set capability for FM-enabled HAR [52]. Also, whether FM-Fi
may completely inherit the knowledge of FM (obtained from mas-
sive datasets encompassing a broad spectrum of activities) needs
further studies. Furthermore, the question of how to compress the
RF model by quantization when transferring knowledge from the
FM [6] is also of practical significance. As FM-Fi pioneers in the
knowledge transferring from FM to RF-HAR, we leave these uncer-
tainties to future exploration.

7 CONCLUSION
Taking a significant stride in advancing HAR, we have introduced
FM-Fi, which harnesses the interpretative power of FMs to facil-
itate cross-modal RF-HAR. By employing CKD and extraneous
feature elimination, the innovative RF encoder in FM-Fi effectively
assimilates the semantic embedding derived from FMs. This en-
ables precise mapping of RF data for efficient zero/few-shot HAR
applications, addressing the critical challenge of data scarcity in
RF-HAR. Our thorough experiment analysis across diverse and
complex scenarios confirms FM-Fi’s superiority over conventional
baselines. This research not only demonstrates the effectiveness
of our approach but also lays the groundwork for further advance-
ments in RF-HAR, while aiming for broader RF sensing tasks in
practical settings.
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